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ABSTRACT

This paper considers dynamic string motion in which the
displacement is unilaterally constrained by the termination
condition with an arbitrarily chosen geometry. A digital
waveguide model is proposed for simulating the nonlin-
earity inducing interactions between the vibrating string
and the contact condition at the point of string termina-
tion. The current work analyzes the resulting string mo-
tion influenced by the contact conditions with mostly flat
but slightly curved geometries. The effect of a minute im-
perfection of the termination condition on the string vibra-
tion is investigated. It is shown that the lossless string vi-
brates in two distinct vibration regimes. In the beginning
the string starts to interact in a nonlinear fashion with the
bridge, and the resulting string motion is nonperiodic. The
duration of that vibration regime depends on the geome-
try of the bridge. After some time of nonperiodic vibra-
tion, the string vibration settles in a periodic regime. Pre-
sented results are applicable for example in the physics-
based sound synthesis of stringed musical instruments, such
as the shamisen, biwa, sitar, tambura, veena or even the
bray harp and the grand piano.

1. INTRODUCTION

In numerous musical instruments the collision of a vibrat-
ing string with rigid spatial obstacles, such as frets or a
curved bridge, are crucial to the tonal quality of the pro-
duced sounds. Lutes such as the shamisen, biwa, sitar, tam-
bura or veena have a very distinctive sound which can be
described as buzzing. The form of the bridge used in these
instruments is quite different from that usually found in
most stringed instruments, since the profiles of the bridges
are slightly curved, almost flat (see Fig. 1). The spatial
extent of the bridges along the direction of the string is rel-
atively large compared to the speaking length of the strings
themselves [1].

A similar mechanism is also not unknown in Western in-
struments. The treble strings of a grand piano usually ter-
minate at the capo bar (capo d’astro). The V-shaped sec-
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tion of the capo bar has a parabolic curvature, and although
the area to which the string rapidly touches while vibrating
is small compared to the string’s speaking length, it was
shown by Stulov and Kartofelev [2] that the capo bar has a
noticeable effect on the piano tone formation.

Also the Medieval and Renaissance bray harp has small
bray-pins which provide a metal surface for the vibrating
string to impact, increasing the upper partial content in the
tone and providing a means for the harp to be audible in
larger spaces and in ensemble with other instruments [3]. It
is evident that for realistic physically informed modeling of
these instruments such nonlinearity inducing interactions
need to be examined and simulated accurately.

Raman was the first to study the effect and identify the
bridge as the main reason for distinctive sounding of the
tambura and veena [4]. Over the years many authors have
solved this problem using different approaches [3], [5] —
[15]. An overview and comparison of the existing methods
that are proposed for modeling the interaction between the
termination and the string are presented by Vyasarayani, et
al. in [3].

Figure 1. Jawari, the main bridge of the sitar and raraf ka
ghoraj, the sympathetic string bridge.

The aim of the current paper is to model the vibration
of the string which is unilaterally constrained at one of
the points of string termination. Dynamic motion of the
plucked ideal string against the termination condition (TC)
with three different profile geometries are simulated and
obtained results are examined. In addition, a method for
quantifying the effect of minute geometric imperfections
of the mostly flat bridge on the string vibration is provided.

Although the cases examined here are for bridges with
mostly flat profile geometries, the obtained conclusions hold
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to some degree for cases where the bridge profile geome-
tries are more versatile, cf. [2].

Compared to the previously published work, we propose
anew and relatively simple approach for modeling the non-
linear bridge-string interaction and consequently the dy-
namic motion of the entire string. In this work the pro-
posed model is demonstrated using physical parameters
that are obtained from a Chinese lute biwa, thus present-
ing an applied approach.

2. IDEAL STRING

For analyzing the phenomenon of interest, it is sufficient to
describe the dynamic motion of the string using the ideal
string. Phenomena such as losses or dispersion are dis-
carded. We consider the wave equation for the linear and
lossless flexible string:

0%u , 0%u

a2~ 922
with ©(0,¢) = w(L,t) = 0, where L and u(x,t) are the
speaking length and the displacement of the string, respec-
tively. In (1) the value ¢ = +/T/u is the speed of the
traveling waves on the string, where 7T’ is the tension and p
is the linear mass density of the string [16].

String parameters for all the calculations in the current
paper are the same as used by Taguti in [8]. Taguti inves-
tigated a biwa string with the following parameters: string
length L = 0.8 m; linear mass density ¢ = 0.375 g/m;
string tension 7' = 38.4 N. From here it follows that the
speed of the traveling waves along the string is ¢ = 320 m/s

and the fundamental frequency of such a string is fo = 200
Hz.

ey

3. STRING EXCITATION

The string plucking condition can be introduced as follows.
We assume that at the point & = | = 3/4L the emerging
traveling wave is of the form

2
AL 20=t/t0) i 0 <t < to,
U(l,t)z to

147 if ¢ > tp.

@

In (2) A = 1 cm is the amplitude of the outgoing traveling
wave and the duration of the excitation is ¢ = ty = 4 ms.
Selection of the plucking condition (2) ensures that the
plucking force acting on the string point = [ ceases if
t > to (time derivative of (2) is proportional to the pluck-
ing force) [2].

It can be shown that (1) may be satisfied by superposition
of nondispersive traveling waves u,-(t — x/c) and w; (¢t +
x/c) moving in either directions along the string emerging
from the plucking point 2 = . At this point u,(l,t) =
wr(l,t) = u(l,t). These two waves u, and u; are simply
a translation of the plucking condition (2) from the point
x = [ to other segments of the string [16].

In the case of ideal rigid string termination where no TC
is present, the boundary value u(0,t) = u(L,t) = 0 is sat-
isfied if the wave w,.(t —x/c) propagating to the right at the

point x = L creates the wave u;(t + 2/c) = —u,(t —z/c)
moving to the left and the wave w; (t + x/c) propagating to
the left at the point x = 0 creates the wave w,.(t — z/c) =
—uy(t + x/¢) moving to the right. This procedure can be
interpreted as equivalent to the digital waveguide approach
[17, 18, 19].

It follows that for the current model the string displace-
ment u(x,t) at any point 2 of the string and for all time
instants ¢ is simply the resulting sum of waveforms w,- and
u; moving in both directions

w(z,t) = u, (t - %) + (t + %) . 3)

The method for modeling the bridge-string interaction is
explained in Sections 5 and 6.

4. BRIDGE GEOMETRY

Slightly curved bridges of the lutes mentioned in Section 1
are usually located at the far end of the neck. Similarly the
geometric contact condition (TC) is located at the termina-
tion point of the string. Figure 2 shows the traveling waves
u, and wy, string displacement u(z, t), and the location of
the rigid termination (bridge) relative to the string.
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Figure 2. Scheme of the string displacement model. The
traveling waves u, and w; (solid lines), and the forms of
the string (solid lines marked by circles). Position of the
TC relative to the string is shown using gray formation.

4.1 Case 1: Linear bridge with a sharp edge

The function U () that describes the profile of a flat bridge
is calculated as follows

kx, if z <=z,

Ulx) = { “)

oo, if x>z,

where k£ = tan § = 0.008 is the slope of the linear function
where 6 =~ 0.008 rad ~ 0.46°. Value . = 15 mm marks
the coordinate of the truncation of the linear function.

4.2 Case 2: Linear bridge with a curved edge

The profile of a bridge with a curved edge is calculated as
follows

kzx, if x < ayp,
U(z) = 1 ) (&)
ﬁ(xfxb)z, if ©> xy,

where the parameter k& has the same value and meaning
as in the previous case. Parameter R = 10 mm is the
curvature radius of the corresponding parabolic function



f(x) = (2R)~'2? at its minimum. Coordinate z;, = 10
mm marks the transition between linear and parabolic parts
of the geometry.
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Figure 3. Termination condition geometry for the cases
under study. Solid vertical lines mark the positions of the
characteristic values x,, zj and x.. Case 1: linear bridge
with a sharp edge. Case 2: linear bridge with a curved
edge, the dashed line shows the profile of the case 1 for
comparison. Case 3: bridge with a small geometric imper-
fection, the dashed line shows the case 2 for comparison.

4.3 Case 3: Bridge with a geometric imperfection

The bridge in this case is similar to the previous case with
the exception of an addition of small imperfection in the
form of discontinuity in the linear part of the TC in (5).
The bridge profile geometry for this case can be expressed
in the following form

kzx, if x < zg,

U(z) = kx + vy, if x4, <2 < ay, 6)

%(T —1)? + K, if x>,
where the parameters k and R have the same value and
meaning as in the previous cases. Parameter y = 0.11
mm raises the value of linear function in the interval x =
(x4, xp] Where x, = 4 mm and z;, = 10 mm. Constant
K = kxp + y is presented in order to preserve continuity
of the form in vicinity of the point x = x.

The TC geometries presented in (4) - (6) are shown in
Fig. 3.

5. BRIDGE-STRING INTERACTION MODEL

In order to model the bridge-string interaction we assume
that the reflecting wave u,.(t — x/c) moving to the right
appears only at the point z = x*, where the amplitude of
the string deflection u(z*,t) > U(x*). The position of
this point z* is determined by the TC geometry U(z) in
the following way. Since the termination is rigid we must
have u(z*,t) = U(z*), and this condition results in the
appearance (addition) of reflected wave

uT<t—x*>:U(x*)—ul<t+x*), @)
c c

where the waves u; and u, correspond to any waves that
have reflected on earlier time moments and are currently
located at x = z*. The proposed method ensures that the
amplitude of the string deflection, which is determined by
(3), will never exceed the value U (x).
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Figure 4. Reflection of the first wave from the termina-
tion. The traveling waves u,. and u; (dashed lines), and the
forms of the string (solid lines marked by signs) shown for
consequent nondimensional moments of times ¢t; = 0.4
(triangle); to = 0.7 (diamond); 3 = 1.0 (circle).

In Fig. 4 we demonstrate the form of the string in vicin-
ity of the geometric termination during the reflection of the
first wave w; (¢t + x/c) only. Using the procedure described
above, the string deflection as a function of the nondimen-
sional distance along the string is computed for three con-
sequent normalized nondimensional (¢ = 1) moments of
time. At the moment ¢ = ¢; the form of the string (solid
line marked by triangles) is determined only by the travel-
ing wave u;. At the next moment ¢t = ¢ the small segment
of the string is in contact with the surface of the termina-
tion, and the reflected wave w,.(x, t2) has appeared (dashed
line). The corresponding form of the string deflection is
shown by solid line marked with diamonds. At the mo-
ment ¢ = tg the string is in contact with the surface of
the termination on the segment closer to the string edge
(x = 0). The form of the string at this moment is shown
by solid line marked with circles, and the reflected wave
ur(x,t3) is also shown by the dashed line. Thus at some
moments the string wraps or clings to the termination, and
during that time the form of the string on some segment
simply repeats the form of the termination.

6. NUMERICAL IMPLEMENTATION

The bridge-string interaction model and the ideal string vi-
bration are implemented numerically by using discrete t-x
space with the time mesh At and the space mesh Az. Val-
ues for the At and Ax are selected so that

At

==
CAx

; )
where ¢ = /T'/p. Selection of the step-sizes Az and At

according to (8) ensures maximum accuracy of the result
for any given resolution of the computational grid. Thus,



the transmission of the traveling waves u,. and u; with re-
spect to the points of the discrete ¢-x space are

ur(xvutm) = ur(xn—latm—l)v (9)
Ul(xnv tm) = Ul(xn—&-la tm—l)a (10)
where the index n = 0, ..., N corresponds to the discrete
space points and the index m = 0,..., M corresponds

to the discrete time points. Values of the corresponding
coordinates x and ¢ in (9) and (10) can be calculated as
T =z, = nlAz and t = t,, = mAt, respectively.

In order to satisfy the boundary condition at the right side
of the string, namely u(L,t) = 0, the mechanism pre-
sented in Sec. 3 is used. For every successive time moment
tm

ul(xNat'm) = _UT'(xNatm—l)7 (11

where 1y = NAz = L.

The effect of the geometric TC on the string vibration can
be implemented numerically as follows. According to Sec.
5 the traveling wave u,. only appears in the vicinity of the
bridge at the discrete point x,, = x;, where the amplitude
of the string deflection w(z%,t) > U(z¥). Thus, for every
successive time moment ¢,,, and for all =},

Up (@), tm) = ur (@), tm) — Au, (12)
where Au = u(z},t,) — U(z}),). Expression of the form
(12) is more suitable for the iterative numerical scheme
used to generate the result compared to the expression (7)
shown in Sec. 5. Finally, when the aforementioned opera-
tions are conducted the final form of the string’s displace-
ment with respect to the discrete computational grid takes
the form

’U,(l‘n,tm) = u'r‘(xrutm) + ul(xn;tm)- (13)

Numerical parameters selected to calculate the presented
results are: Az = 0.985 mm, At = 3.077 us, number
of spatial points N = 816, including spatial points dedi-
cated for the bridge Nyc = 25, number of the time points
M = 130000, from here it follows that the temporal sam-
pling rate is 325 kHz. The relevant part of the computer
code written using the Python programming language is
available for examination at the supplementary web page
of this article [20].

7. RESULTS AND DISCUSSION

Figure 5 shows the time series of the string deflection u(l, t)
computed at the plucking point x = [. Visual inspection of
the string deflection ([, t) reveals that for all the presented
cases the strings vibrate in two distinct regimes. The strong
influence of the bridge on the string’s motion is noticeable
for a certain period of time, and its duration depends on the
bridge geometry. During this time prolonging for ¢ = t,,
the string vibrates in nonperiodic regime. One can clearly
see that after the moment ¢ = t,, the behavior of the de-
flection u(l, ) becomes seemingly highly periodic. Closer
examination reveals that the string’s displacement is actu-
ally still slightly changing and therefore is not absolutely

periodic (string continues to interact with the bridge) but
the change is small and can be neglected. This regime is
called here the periodic vibration regime. It must be noted
that this almost periodic vibration regime is possible only
when the bridge profile is mostly flat and the string is con-
sidered ideal and lossless.
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Figure 5. Time series of the string deflection w(l,t) for
the cases 1, 2, and 3. Nonperiodic and periodic vibration
regimes are separated by vertical lines corresponding to the
time moment ¢ = .

Table 1 shows the corresponding durations of the non-
periodic vibration regimes t,, for the cases under study.
In addition, the corresponding number of string deflection
u(l, t) periods P, are shown.

top (8) | Pup
Case 1l | 0.13 26
Case2 | 0.16 32
Case3 | 0.30 60

Table 1. The duration and the number of the string deflec-
tion periods of the nonperiodic vibration regime.

The transitions between the nonperiodic and periodic re-
gimes presented in Fig. 5 are also visible in the spectro-
grams presented in Fig. 6. All spectrograms are calculated
using the Hanning window of the size 45 ms and the over-
lap value 55% of the window size. The animations of the
simulated string vibration terminated against the bridges
with profile geometries described in (4) — (6), are avail-
able for download on the supplementary web page of the
current article [20].

7.1 Case 1: Linear bridge with a sharp edge

Spectrogram of the signal related to the case 1 is shown in
Fig. 6a. Dashed vertical line corresponds to the duration
of the nonperiodic vibration regime ¢y, of the string. It can
be seen that during the nonperiodic vibration regime the
energy of the lower vibration modes is being transferred to
the higher modes. This effect of spectral widening can be
noticed when comparing Figs. 6a and 7. Figure 7 shows
the spectrogram of the corresponding linear case where no
amplitude limiting TC is applied. Transfer of the energy



from lower to higher vibration modes is a sign of nonlin-
ear behavior resulting from the interaction of the vibrating
string and the bridge. This phenomenon is similar to the
slapped bass effect [6] and the nonlinear limitation of the
string amplitude by the damper in the part-pedaling effect
in the grand piano [21, 22]. In the periodic vibration re-
gime (t > t,p) the spectrum remains constant which is an
expected result (cf. Fig. 5).
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Figure 6. Spectrogram of the signal u(l,t) for the cases:
a) case 1, b) case 2 and c¢) case 3. The transition between
nonperiodic and periodic vibration regimes at ¢ = &, is
shown using dashed line.

7.2 Case 2: Linear bridge with a curved edge

The spectrogram corresponding to the case 2 is shown in
Fig. 6b. As can be seen the result in this case is similar to
the case 1 with the exception of the 30 ms longer nonperi-
odic vibration regime.

7.3 Case 3: Bridge with a geometric imperfection

Figure 6 c shows the spectrogram for the case 3. Now the
nonperiodic vibration regime is 300 ms long, which is al-

most two times longer compared to the case 2. Again, the
energy transfer from lower to higher modes is visible dur-
ing the nonperiodic vibration regime.
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Figure 7. Spectrogram of the signal u(l,t) for the linear
case (no TC).

Relatively long nonperiodic vibration regime in connec-
tion with the properties of nonlinear dynamic systems can
make playing such an instrument challenging. The timbre
of the instrument can be very strongly influenced by the
selection of the plucking point and the plucking manner,
which results in uneven timbre behaviour. This effect is
present for example in the sitar, and it makes the learning
to play the sitar more complicated compared to the similar
Western instruments.

Figure 8 shows four periods of the string deflection (I, t)
during the periodic vibration regime, where the interac-
tion of the string with the bridge is minimal. Figure 8
presents a comparison of all nonlinear cases 1 — 3 to the
corresponding linear case. Nonlinear cases are rendered
almost identical for ¢ > ¢,,. This result is explained by
the fact that the selected contact condition profiles defined
by (4) - (6) have linear sections near to the string termina-
tion point (x = 0). With the progression of time this linear
section of the bridge trims the effects of the other (non-
linear) sections of the geometry, thus eventually rendering
the periodic string vibrations for all nonlinear cases almost
identical.

Displacement (1, ¢) (mm)

-5 L L I
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Figure 8. Four periods of the string displacement u(l, t)
for the nonlinear cases 1, 2 and 3 are shown using solid
line (all identical). Corresponding linear case (no TC) is
shown using dashed line.



In addition to the aforementioned results it was noted that
a small glide and shift of the fundamental frequency fj
(and consequently the frequencies of all the other modes,
because f; = i fo where 7 is the mode number) of the other-
wise harmonic vibration is present. This effect appears for
all presented cases and only during the nonperiodic vibra-
tion regime after which the frequency slides back to normal
(i.e. fo = 200 Hz). Emergence of this effect is explained
by the effective shortening of the speaking length of the
string due to the spatial extent of the bridge and the inter-
action of the string with the bridge.

7.4 String vibration spectrum in the periodic
vibration regime

After the period of nonperiodic vibration regime has passed,
the string enters the periodic vibration regime. The spec-
trum of the string vibrations for any time instant of intrest
is computed using Fourier analysis. If

T
u(z,t) Z( cosw;t + B;sinw )sm( 7 ) (14)

%

with normal-mode angular frequencies w; = iwg, where
wo = 27 fy and 7 is the mode number, then

2 [ T
A =— ,t)sin [ — | dx, 1
A u(z, t) sin ( ) T 15)

2 [t j
B; = Lwi/o v(z, t) sin (T) dx, (16)

where v(x,t) is the velocity of the string. It follows that
the string mode energy F; of the ith mode is defined by

Muw?
E;=—"1 (A? + B? 17
T (A7 +BY), (17
where M = pL is the total mass of the string. And the

mode energy level is defined as

E;
EL; = 10log,, <E> . (18)
0

Fourier analysis using (18) shows that the spectra of cases
1, 2 and 3 are almost identical for ¢t > t,, (cf. Fig. 8).
As mentioned earlier this result is explained by the fact
that the selected contact condition profiles defined by (4) -
(6) have linear sections near to the string termination point
(z = 0). Figure 9 shows the comparison of the spectrum
of the linear case (no TC) with those of the nonlinear cases
1, 2 and 3. The spectrum of the linear case is shown for
the time interval ¢ = (¢, c0) and the nonlinear cases are
shown for the time interval ¢ = (tp, 00).

Results from spectrogram analysis shown in Fig. 6 are
confirmed here by calculations made using (18) and the
resulting spectrum is shown in Fig. 9.

Widening of the spectra compared to the linear case and
the transfer of energy from lower to higher vibration modes
is visible. Relative level of some higher modes grow up to
25 dB. This means that resulting tone of the musical instru-
ment that is equipped with the rigid, slightly curved bridge

which influences the string vibration is completely differ-
ent from that of an instrument having a regular bridge.

B)

Relative level (d

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mode number 7

Figure 9. Stationary spectrum of the string vibrations for
t > tnp. Spectra corresponding to the nonlinear cases 1, 2
and 3 are shown using circles (all identical). Linear case
(no TC) is shown using triangles.

8. CONCLUSIONS

This article introduced a model that simulates the vibration
of an ideal string terminated against a bridge with an arbi-
trary geometry. Additionally, a method for modeling the
effect of minute geometric imperfections of the bridge ge-
ometry on the string vibration was presented. It was shown
that the lossless string vibrates in two distinct vibration re-
gimes. In the beginning the string starts to interact in a
nonlinear fashion with the bridge, and the resulting string
motion is nonperiodic. After some time of nonperiodic vi-
bration, the string vibration settles in a almost periodic re-
gime, where the dynamic motion of the string is repetitious
in time.

The duration of the nonperiodic vibration regime depends
on the geometry of the termination. It was concluded that
minor imperfection of the bridge profile geometry elon-
gate the duration of the nonperiodic vibration regime and
produce noticeable changes in the evolution of the tim-
bre in the nonperiodic regime of vibration. The resulting
spectrum in the periodic regime is identical for all non-
linear cases studied. Comparison of the resulting spectra
in the periodic vibration regime of the linear and nonlin-
ear cases showed that the interaction of the string with the
rigid bridge widens the spectrum by transferring energy
from lower to higher vibration modes.
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