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Abstract. Using a reasonable physical assumption, a simple model of the hammer felt
was developed. The model is in a good agreement with an experimental force versus
deformation relationships obtained both for various numbers of hammers andfelt stiff-
ness. Such a model allowed us to calculate the hammer-string interaction for allnotes
of the grand piano by evaluating only one parameter - the Young’s modulus of the felt
material. As a result, we can choose the hammers for a piano by matching the masses
of the hammer and the felt stiffness. Consequently, this will improve the quality of the
instrument.
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1. INTRODUCTION

In the grand piano, the hammers are significant in the sound formation.
Therefore, choosing a hammer for a certain piano model is very important. A
good set of hammers with matching parameters gives the quality of the instru-
ment. This choice is based on the mathematical simulation ofthe hammer-string
interaction. For this calculation, however, the exact values of the physical pa-
rameters of each hammer must be known. The grand piano has eighty eight
hammers, and all of them are different – they have various stiffnesses, radii of
the curvature, masses, etc.

Some parameters can be obtained by simple measurements. So,we may
suppose that such parameters as the radius of the head curvature and the mass
of the hammer are known for all the hammers of the grand piano.But it is very
difficult to say anything about the stiffness or the Young’s modulus of the felt
material because the construction of the hammer head is rather complicated. For
this reason, there are no universal mathematical models suitable for all hammers.
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2. PROPERTIES OF FELT STIFFNESS

The first model of the piano hammer was proposed by Ghosh [1] who con-
sidered felt as a material obeying the Hooke’s law in the Hertz form

F(u) = Eup, (1)

where
F – the force due to the felt compressed by the collision upon the string;
u – felt compression;
E – a constant;
p – the compliance nonlinearity exponent.
The real samples of hammers had values ofp between 1.5 and 3.5 with

no definite trend ofp from bass to treble as discussed in [2]. The value ofp =
1 gives a simple linear system, but it has the unmusical property because loud
notes are equivalent to amplified soft notes. Values greaterthan p =1 are not
entirely due to the peculiarities of the felt; the geometry of the rounded contact
would already givep =1.5 (known as the Hertz’s law) even for locally reacting
Hookean material. The valuep > 3 probably causes too much contrast between
a very harsh tone color when playingfortissimoand a very blend when playing
pianissimo. Hall [3] uses this nonlinear model of the felt in the Hertz form to
model the piano string - hammer interaction and obtains a better agreement with
the earlier data than using his previous calculations, based on a completely linear
model.

Suzuki and Nakamura [4] describe the properties of the hammer more ex-
plicitly. They present the results of measurements of dynamic relationships be-
tween the hammer felt deformation and the applied force. Three types of ham-
mers – soft, medium and hard, acting on the three various strings, were dis-
cussed. Our tests of the hammer felt model were based on the experimental data
presented by Suzuki and Nakamura.

All the previous piano hammer models are static(in additionto [5,6]) and
deal with one hammer, the parameters of which must be obtained experimentally
by static or dynamic loading. These data are not suitable forothers hammers, and
at least eighty eight experiments are needed to prove the data for all hammers.

The model of the hammer felt presented here is based on the known geo-
metrical parameters of the hammers and describes the force-compression char-
acteristics of all the grand piano hammers by evaluating only one parameter –
the Young’s modulus of the felt. In this case, the value of theYoung’s modu-
lus is limited and is changed approximately from 160 MPa for soft and medium
hammers to 260 MPa for hard hammers.

Based on the presented model, we can calculate the interaction between the
hammer and the string for all the numbers of the grand piano keys and choose
the masses of the hammers and felt stiffnesses in order to improve a quality of
the instrument.
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3. HAMMER FELT MODEL

When we derive a static hammer felt model, we must describe thede-
formation of the felt. Under the acting force, it depends only on the stiffness
parameters of the felt material, identical for all the hammers of the grand piano,
and on the geometrical domain of interaction between the hammer and the string,
as shown in Fig. 1. Also, we assume that the thickness of the felt is rather large
as compared to the felt compression. Thus, the existence of the hammer wood
kernel may be neglected. In Fig. 1, the following notation isused:u is the dent
of the felt; d = 2r is the string diameter;R is the radius of the curvature of the
hammer head.

Fig. 1. Geometry of the hammer-string interaction: A – cross-section acrossthe string,
B – cross-section along the string.

When the hammer strikes, the string deforms the felt and the kinetic energy
of the hammer is transformed into the deformation energy of some volume of the
felt. We assume that this energy is concentrated mainly on the region of inter-
action of these two bodies – the cylindrical hammer and the cylindrical string
(shaded in Fig. 1), and that the density of this energy is constant in the volume
of interaction.

Now we can find the value of the force causing deformation

F(u) =
∂U(u)

∂u
. (2)

Here,U(u) is the energy of deformation proportional to the energy density of
some volumeV(u) of the felt.

Suppose that the total deformation energy is proportional to the dent of the
felt and to the volume of deformation

U(u) = U0 uV(u) , U0 = const. (3)
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Because rather rough assumptions are used here, the volume ofdeforma-
tion is approximately equal to

V(u) = 2RSsin2β , (4)

whereS is the area of the region of interaction shaded on the cross-section (A)
in Fig. 1

S=
1
2

r2q(u) , (5)

and

q(u) =

{

2α−sin2α , if u≤ r
π+4[(u/r)−1] , if u > r .

(6)

The anglesα andβ are shown in Fig. 1.
Taking into account that the felt compression is small, i.e.u ≪ R, we

obtain
cosα = 1−

u
r

, (7)

and

sin2β =
2u
R

. (8)

The volume of deformation is now calculated as

V(u) = 2ur2q(u) . (9)

Substituting Eqs. (3), (4) and (9) into Eq. (2), we find the force acting on the
string due to the felt deformation

F(u) = 2U0r
2u(2+

u
q

∂q
∂u

)q(u) . (10)

It easy to show that the second term in the parentheses is restricted for anyu

3
4
≤

u
q

∂q
∂u

≤
4
π

, (11)

so that the two terms in parentheses in Eq. (10) may be substituted by one con-
stant.

If we introduce deformation or nondimensional compressiony of the felt
according to

y =
u
d

, (12)

and replace the arbitrary constantU0 by the expression

U0 = E
d2

R

(

1+
d

2R

)−1/2

, (13)
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then we obtain

F(y) = E
d3

R

(

1+
d

2R

)−1/2

yq(y) , (14)

with the function

q(y) =

{

2arcsinφ−2(1−2y)φ , if y≤ 0.5
8y+π−4, if y > 0.5,

(15)

and
φ = 2

√

y(1−y) , (16)

where now the constantE is a Young’s modulus of the felt material (or the con-
stant directly proportional to the Young’s modulus). The constantU0 in the form
of Eq. (13) was obtained in the following way.

According to the Hertz’s law, the force acting on the two connected elastic
spheres with radiiR1 andR2, respectively, is given by

F(u) =
4E

3(1−σ2)

(

R1R2

R1 +R2

)1/2

u3/2 , (17)

whereE is the Young’s modulus andσ is the Poisson’s ratio. As mentioned
above, the valuep = 1.5 of the compliance nonlinearity exponent is not in agree-
ment with the experimental data obtained for the real felt deformation. By choos-
ingU0 in the form as in Eq. (13), for the small deformationy≪ 1, Eq. (14) gives

F(u) =

√
2E
R

(

rR
r +R

)1/2

u5/2 , (18)

which is similar to Eq. (17) and soU0 in the form Eq. (13) can be used by the
analogy of the Hertz’s law to describe of the hammer-string interaction as in Eq.
(14). In this case, the value of the compliance nonlinearityexponentp = 2.5 in
Eq. (1) and that obtained here are in a good agreement with theexperimental
results discussed in .

4. MODEL AND EXPERIMENT COMPARISON

There is only one way to judge the success of the present model. It is the
comparison with the experimental data. In [4] the relationships of dynamic force
versus deformation are presented for hard, medium and soft hammersA0, A3 and
A6 (key numbersn = 1, n = 37 andn =73, respectively). These nonlinear rela-
tionships show a significant influence of hysteresis characteristics. Because the
model presented here is rather simple and ignores this effect, only the increasing
parts of the experimental characteristics are discussed. It is also suggested that
the unloading and the loading of the felt are similar.
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Unfortunately in [4], such parameters as the masses of the hammers and
their dimensions are not determined. Thus, the comparison between the exper-
imental and the theoretical results is not always correct. Table 1 shows the pri-
mary parameters of the grand piano (the parameters known those easy to mea-
sure).

Table 1

Primary parameters of the grand piano strings and hammers

Notes
Parameter A0 A3 A6 C4

String
Note frequency f , Hz 28 220 1760 262
Length L, mm 2016 777 115 620
Distance of hammer from
nearest string end l , mm 243 91 8.1 74.4
Diameter d, mm 4.9 1.075 0.875 1.025
Tension T, N 1629 834 774 670
Linear mass density µ, g/m 130.7 7.1 4.7 6.3

Hammer
Key number n 1 37 73 40
Mass m, g 13 10.6 8.2 8.9
Radius of the head R, mm 17 11 5 8

Figure 2 illustrates the comparison of the experimental data and the data
calculated using Eq. (14). The values of the Young’s modulusused for plotting
curves in Fig. 2 for soft, medium and hard hammers are presented in Table 2.
It is clear that a sufficiently simple model presented here isin good agreement
with the experimental data and can be used to describe of the hammer-string
interaction.

It is easy to see that Eq. 14 consists of two parts: the first multiplier de-
pends on the parameters defined only by the key number, and thesecond one
depends only on the dent of the felt. Like in [7], the second multiplier may be
approximated in the polynomial form or in the form of the usual power-law de-
pendence [2,3,5]. The first good approximation of the functionf (y) = yq(y) in
the interval 0< y < 0.6 is given by the function

f1(y) = (2.4y2 +9y3) , (19)

and the second approximation of the functionf (y) is

f2(y) = 7.5y2.3 . (20)
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Fig. 2. Force-compression characteristics of the felt for: A – hard hammers, B – medium
hammers, and C – soft hammers. Crosses, circles, and squares denote the experimental
data points [4]. The solid, dashed, and dotted lines are the calculated curves for eachof
the key number.

Table 2

Young’s moduli of the felt E, MPa

Hammer
Key number Hard Medium Soft

n = 1 170 160 160
n = 37 260 160 208
n = 73 170 160 240

So the force-compression relationship of the hammer felt may be described
as

F(y) = F0(2.4y2 +9y3) , (21)

or
F(y) = F0 7.5y2.3 , (22)
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where

F0 = E
d3

R

(

1+
d

2R

)−1/2

. (23)

Eqs. (19) and (20) are also rather good representations of the model developed
and may be used to describe the force-compression characteristic of the piano
hammers.

The values of the Young’s moduli presented in Table 2 demonstrate a suffi-
ciently good agreement with the experimental data both for the hammer number
and the felt type. The value of the Young’s modulus for the medium hammers is
constant and nondependent on the key number. Although Table2 shows that the
hardA3 hammer is really exceptional, the same is valid for the hard hammers.
As referred to above, some parameters of the hammers used in the experiments
are not described in [4]. In the manufacture of the piano hammers, various types
of the felt materials are used, and so the hammers vary in dimensions. The types
of hammers studied in the experiments are not specified. We may suppose that
the radius of the curvature of the hardA3 hammer was not 11 mm but 7 mm, and
then the Young’s modulus of that hammer is equal to 170 MPa also. Probably for
the same reason, the radii of the curvature of the softA3 andA6 hammers were
not 11 mm and 5 mm, but less, and the Young’s modulus of the softhammers is
constant and approximately equal to 160 MPa.

Table 1 also demonstrates some parameters for the noteC4. These values
were used in [8] for the numerical simulation of the piano string excitation. The
force-compression characteristics of the hammer were describe in the form

F(u) = Kup (24)

with K = 142.3 N/mmp, andp = 2.5. The values of these parameters were ob-
tained experimentally. The model of the hammer felt developed here allows us to
describe the force-compression characteristics. Figure 3shows two of the force-
compression characteristics for noteC4. The solid line is obtained by using Eq.
(14) withE = 122 MPa, and the dashed line is calculated from Eq. (24) using [8]
and Table 1. The agreement of these two curves is rather good.It is obvious that
a very softC4 hammer was used in these experiments.

Thus, the model of the hammer felt presented here in Eq. (14) enables us to
calculate the hammer-string interaction for all hammers ofthe grand piano from
the noteA0 to the noteC8 and to match the hammers or to calculate the spectra
of the strings vibrations.

5. CONCLUSION

A new version of the grand piano hammer felt model is proposed. This
model is in good agreement with the experimental data presented by different
authors. It enables us to describe all the numbers of the hammers with the various
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Fig. 3. Comparison of the two force-compression characteristics of the felt for the C4

note. The solid line is the calculated Eq. 14 curve, and the dashed line is the experimen-
tally obtained [8] curve.

felts (soft, medium and hard) of the grand piano. According to the model, these
felts differ in one parameter – the Young’s modulus of the felt material. For a set
of the grand piano hammers, the Young’s modulus has a constant value.

This result implies a way to improve the quality of the grand pianos by
matching the parameters of the hammers by numerical simulation of the hammer-
string interaction.
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KLAVERI HAAMRI VILDI LIHTNE MUDEL

Anatoli STULOV

Lähtudes p̃ohjendatud f̈uüsikalistest oletustest on välja töötatud haamri
vildi lihtne mudel. Mudel on heas vastavuses nii erinevate numbritega haamrite
kui ka erineva j̈aikusega vildi puhul saadud katselise jõu ja deformatsiooni va-
helise seosega ning võimaldab arvutada ainultühe parameetri – Youngi mooduli
alusel kontsertklaveri igas sõlmes haamri ja keele vahelise vastastikmõju. Selle
alusel saab valida konkreetse klaveri haamreid sobitades haamrite massi ja vildi
jäikust ning parandada seega instrumendi kvaliteeti.

ПРОСТАЯ МОДЕЛЬ РОЯЛЬНОГО МОЛОТКА 
 

Анатолий СТУЛОВ 
 

С использованием разумных физических предположений 
разработана простая модель рояльного молотка. Эта модель хорошо 
описывает зависимость силы, действующей на молоток, от 
величины деформации фильца как для различных номеров молотка, 
так и для различных жесткостей фильца. Модель позволяет 
рассчитать взаимодействие струны и молотка для всех нот, варьируя 
только один параметр – модуль упругости фильца. Такая процедура 
дает возможность подбирать молотки для любого рояля, улучшая 
качество звучания инструмента. 
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