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Abstract. Using a reasonable physical assumption, a simple model of the hammer felt
was developed. The model is in a good agreement with an experimentalversus
deformation relationships obtained both for various numbers of hammerfglastff-

ness. Such a model allowed us to calculate the hammer-string interaction rfiotesl

of the grand piano by evaluating only one parameter - the Young’s modtithe delt
material. As a result, we can choose the hammers for a piano by matching thesmass
of the hammer and the felt stiffness. Consequently, this will improve the qudlibeo
instrument.
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1. INTRODUCTION

In the grand piano, the hammers are significant in the soundafion.
Therefore, choosing a hammer for a certain piano model i weportant. A
good set of hammers with matching parameters gives thetgudlthe instru-
ment. This choice is based on the mathematical simulatidimeohammer-string
interaction. For this calculation, however, the exact galof the physical pa-
rameters of each hammer must be known. The grand piano hiaty eight
hammers, and all of them are different — they have variodfmesses, radii of
the curvature, masses, etc.

Some parameters can be obtained by simple measurementgie Saay
suppose that such parameters as the radius of the headuraraad the mass
of the hammer are known for all the hammers of the grand piBuobit is very
difficult to say anything about the stiffness or the Youngsdulus of the felt
material because the construction of the hammer head msrredimplicated. For
this reason, there are no universal mathematical mode&deifor all hammers.
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2. PROPERTIESOF FELT STIFFENESS

The first model of the piano hammer was proposed by GhijshHo con-
sidered felt as a material obeying the Hooke’s law in the Hientm

F(u) =EW, (1)

where

F — the force due to the felt compressed by the collision upersthng;

u — felt compression;

E — a constant;

p — the compliance nonlinearity exponent.

The real samples of hammers had valuep dfetween 1.5 and 3.5 with
no definite trend op from bass to treble as discussed %h [The value ofp =
1 gives a simple linear system, but it has the unmusical ptpfecause loud
notes are equivalent to amplified soft notes. Values greéhterp =1 are not
entirely due to the peculiarities of the felt; the geometiryhe rounded contact
would already givep =1.5 (known as the Hertz’s law) even for locally reacting
Hookean material. The valye> 3 probably causes too much contrast between
a very harsh tone color when playifgrtissimoand a very blend when playing
pianissimo Hall [3] uses this nonlinear model of the felt in the Hertz form to
model the piano string - hammer interaction and obtainstebagreement with
the earlier data than using his previous calculations,das& completely linear
model.

Suzuki and Nakamurd] describe the properties of the hammer more ex-
plicitly. They present the results of measurements of dyaaatationships be-
tween the hammer felt deformation and the applied forcee@lypes of ham-
mers — soft, medium and hard, acting on the three variousgstriwere dis-
cussed. Our tests of the hammer felt model were based on plegigental data
presented by Suzuki and Nakamura.

All the previous piano hammer models are static(in additm{°]) and
deal with one hammer, the parameters of which must be olot@ix@erimentally
by static or dynamic loading. These data are not suitabletfers hammers, and
at least eighty eight experiments are needed to prove tlag@aall hammers.

The model of the hammer felt presented here is based on tivenkgeo-
metrical parameters of the hammers and describes the ¢oropression char-
acteristics of all the grand piano hammers by evaluating onk parameter —
the Young’s modulus of the felt. In this case, the value of Yoeng’s modu-
lus is limited and is changed approximately from 160 MPa @t and medium
hammers to 260 MPa for hard hammers.

Based on the presented model, we can calculate the intardetioreen the
hammer and the string for all the numbers of the grand piage ked choose
the masses of the hammers and felt stiffnesses in order towa@ quality of
the instrument.
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3. HAMMER FELT MODEL

When we derive a static hammer felt model, we must describal¢he
formation of the felt. Under the acting force, it dependsyon the stiffness
parameters of the felt material, identical for all the hansred the grand piano,
and on the geometrical domain of interaction between theramand the string,
as shown in Fig. 1. Also, we assume that the thickness of this fiather large
as compared to the felt compression. Thus, the existendeediammer wood
kernel may be neglected. In Fig. 1, the following notationsed:u is the dent
of the felt;d = 2r is the string diametemR is the radius of the curvature of the
hammer head.

Hammer

Fig. 1. Geometry of the hammer-string interaction: A — cross-section attresdring,
B — cross-section along the string.

When the hammer strikes, the string deforms the felt and tietikienergy
of the hammer is transformed into the deformation energypofesvolume of the
felt. We assume that this energy is concentrated mainly endgion of inter-
action of these two bodies — the cylindrical hammer and thimabycal string
(shaded in Fig. 1), and that the density of this energy isteosn the volume
of interaction.

Now we can find the value of the force causing deformation

ouU (u)

Here,U (u) is the energy of deformation proportional to the energy s
some volumé/ (u) of the felt.

Suppose that the total deformation energy is proportiantide dent of the
felt and to the volume of deformation

U(u) =UyuV(u), U, = const (3)
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Because rather rough assumptions are used here, the volueéooina-
tion is approximately equal to

V(u) = 2RSsir? B, (4)

whereSis the area of the region of interaction shaded on the crestses (A)
in Fig. 1

_1o
an 20-sinx,  ifus<
o —sin2, ifu<r
av) :{ e Al(u/n) -~ 1, ifu>r. ©)

The anglest andf3 are shown in Fig. 1.
Taking into account that the felt compression is small, ile< R, we
obtain u
cosa =1-— o (7)

and ou
Sin?p = = (8)
The volume of deformation is now calculated as
V (u) = 2ur?q(u). (9)

Substituting Eqgs. (3), (4) and (9) into Eqg. (2), we find thecéoacting on the
string due to the felt deformation

— oUr2u(24 49
F(u) =2Ureu(2+ qau)q(u). (10)

It easy to show that the second term in the parenthesesiigtedtfor anyu

3 udq 4
T2 11
4~ qou— 1 (11)
so that the two terms in parentheses in Eq. (10) may be sutiestiby one con-
stant.

If we introduce deformation or nondimensional compressian the felt

according to y

and replace the arbitrary constaitby the expression
Up = EE (1+ ﬁ) , (13)
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then we obtain

d3 d\ Y2
Fo) =B (1 5g)  va. (14)
with the function
| 2arcsinp—2(1—-2y)p, ify<05
ay) _{ 8y + 11— 4, ify>0.5, (15)

and
P=2\y(1l-y), (16)

where now the constait is a Young's modulus of the felt material (or the con-
stant directly proportional to the Young’s modulus). ThestantJ, in the form
of Eq. (13) was obtained in the following way.

According to the Hertz’s law, the force acting on the two cected elastic
spheres with radiR; andR;, respectively, is given by

= RiRe \"? 3
F(u>_3(1—02)<R1+R2) i (7)

whereE is the Young’s modulus and is the Poisson’s ratio. As mentioned
above, the valug = 1.5 of the compliance nonlinearity exponent is not in agree
ment with the experimental data obtained for the real fdticheation. By choos-
ing U, in the form as in Eq. (13), for the small deformatiprc 1, Eq. (14) gives

_ \/§E< R )1/2u5/2

F(u) R TR (18)

which is similar to Eq. (17) and 399, in the form Eqg. (13) can be used by the
analogy of the Hertz’s law to describe of the hammer-stnntgraction as in Eq.
(24). In this case, the value of the compliance nonlineaxyonentp = 2.5 in
Eqg. (1) and that obtained here are in a good agreement witexjperimental
results discussed in .

4. MODEL AND EXPERIMENT COMPARISON

There is only one way to judge the success of the present miidelthe
comparison with the experimental data. fithe relationships of dynamic force
versus deformation are presented for hard, medium and @wirtersAo, Az and
As (key numbersh = 1, n = 37 andn =73, respectively). These nonlinear rela-
tionships show a significant influence of hysteresis charestics. Because the
model presented here is rather simple and ignores thist effely the increasing
parts of the experimental characteristics are discusdesl.also suggested that
the unloading and the loading of the felt are similar.
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Unfortunately in ], such parameters as the masses of the hammers and

their dimensions are not determined. Thus, the comparisbmden the exper-
imental and the theoretical results is not always correabld'l shows the pri-
mary parameters of the grand piano (the parameters knovge thasy to mea-
sure).

Table 1
Primary parameters of the grand piano strings and hammers
Notes
Parameter Ag As As Cy

String

Note frequency f,Hz 28 220 1760 262

Length L,mm 2016 777 115 620

Distance of hammer from

nearest string end [,mm 243 91 8.1 74.4

Diameter d, mm 49 1.075 0.875 1.025

Tension T,N 1629 834 774 670

Linear mass density Mmo/m 1307 7.1 4.7 6.3
Hammer

Key number n 1 37 73 40

Mass m, g 13 10.6 8.2 8.9

Radius of the head R, mm 17 11 5 8

Figure 2 illustrates the comparison of the experimentah dawd the data
calculated using Eqg. (14). The values of the Young’s modu&esd for plotting
curves in Fig. 2 for soft, medium and hard hammers are predantTable 2.
It is clear that a sufficiently simple model presented helia ood agreement
with the experimental data and can be used to describe ofahener-string
interaction.

It is easy to see that Eq. 14 consists of two parts: the firstiptiel de-
pends on the parameters defined only by the key number, ansktiued one
depends only on the dent of the felt. Like ifi,[the second multiplier may be
approximated in the polynomial form or in the form of the usu@awer-law de-
pendence3>®]. The first good approximation of the functidify) = yq(y) in
the interval O< y < 0.6 is given by the function

fa(y) = (24 +9y°), (19)
and the second approximation of the functiy) is
fa(y) = 7.5y%°. (20)
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Fig. 2. Force-compression characteristics of the felt for: A — hard has)e- medium
hammers, and C — soft hammers. Crosses, circles, and squares derexpdhimental

data points‘ﬂ. The solid, dashed, and dotted lines are the calculated curves fobgach
the key number.

Table 2

Young's moduli of thefelt E, MPa

Hammer
Key number Hard Medium  Soft

n=1 170 160 160
n=37 260 160 208
n=73 170 160 240

So the force-compression relationship of the hammer fejtineedescribed
as

F(y) = R(2.4y°+9°), (21)
or
F(y) = R 7.5y%3, (22)
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where

d3 d -1/2
Fo=E R (1—1— ZR) : (23)
Egs. (19) and (20) are also rather good representationgeohtdel developed
and may be used to describe the force-compression chaséictef the piano
hammers.

The values of the Young’s moduli presented in Table 2 dematesa suffi-
ciently good agreement with the experimental data bothHethammer number
and the felt type. The value of the Young’s modulus for the innachammers is
constant and nondependent on the key number. Although 2adilews that the
hard Az hammer is really exceptional, the same is valid for the hanthrners.

As referred to above, some parameters of the hammers usked @xperiments
are not described irf]. In the manufacture of the piano hammers, various types
of the felt materials are used, and so the hammers vary inrdiloes. The types

of hammers studied in the experiments are not specified. Wesonapose that
the radius of the curvature of the hakg hammer was not 11 mm but 7 mm, and
then the Young’s modulus of that hammer is equal to 170 MRa &mobably for

the same reason, the radii of the curvature of the Aptind A hammers were
not 11 mm and 5 mm, but less, and the Young’s modulus of thehsofimers is
constant and approximately equal to 160 MPa.

Table 1 also demonstrates some parameters for theQaof€hese values
were used ing] for the numerical simulation of the piano string excitatid'he
force-compression characteristics of the hammer wereittesa the form

F(u) = KuP (24)

with K = 142.3 N/mn®, andp = 2.5. The values of these parameters were ob-
tained experimentally. The model of the hammer felt devedidpere allows us to
describe the force-compression characteristics. Figgreo®s two of the force-
compression characteristics for n@g The solid line is obtained by using Eq.
(14) withE = 122 MPa, and the dashed line is calculated from Eq. (24)U&]n
and Table 1. The agreement of these two curves is rather ¢fdeabvious that

a very softC4 hammer was used in these experiments.

Thus, the model of the hammer felt presented here in Eq. (fah)les usto
calculate the hammer-string interaction for all hammenhefgrand piano from
the noteAy to the noteCg and to match the hammers or to calculate the spectra
of the strings vibrations.

5. CONCLUSION

A new version of the grand piano hammer felt model is proposdus
model is in good agreement with the experimental data ptedery different
authors. It enables us to describe all the numbers of the leasnmith the various
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Fig. 3. Comparison of the two force-compression characteristics of thimfehe Cy4

note. The solid line is the calculated Eq. 14 curve, and the dashed line istherasn-
tally obtained §] curve.

felts (soft, medium and hard) of the grand piano. Accordmthe model, these
felts differ in one parameter — the Young’s modulus of ther®terial. For a set
of the grand piano hammers, the Young’s modulus has a canstare.

This result implies a way to improve the quality of the grananps by
matching the parameters of the hammers by numerical sironlatthe hammer-
string interaction.
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KLAVERI HAAMRI VILDI LIHTNE MUDEL

Anatoli STULOV

Lahtudes phjendatud iilisikalistest oletustest onalja otatud haamri
vildi lintne mudel. Mudel on heas vastavuses nii erinevatebritega haamrite
kui ka erineva ikusega vildi puhul saadud katseligeijja deformatsiooni va-
helise seosega ningimaldab arvutada ainulthe parameetri — Youngi mooduli
alusel kontsertklaveri igabnes haamri ja keele vahelise vastastim Selle
alusel saab valida konkreetse klaveri haamreid sobitag@shte massi ja vildi
jaikust ning parandada seega instrumendi kvaliteeti.

IMPOCTASA MOJEJIb POAJIBHOI'O MOJIOTKA

Amnaromu CTYJIOB

C HCIONb30BaHUEM Pa3yMHBIX  (U3UYECKUX —MPEINOTOKEHHIMA
pa3paboTaHa mpocTasi MOJIENIb POSIIBHOIO MOJIOTKA. JTa MOJEIb XOPOIO
ONMMCHIBAET 3aBUCUMOCTh CWJIbI, JIEWCTBYIOIIEH Ha MOJOTOK, OT
BEJMUYUHBI Jepopmanuu (uiblia Kak JUIsl pa3IMyHbIX HOMEPOB MOJIOTKA,
TaK W Ui Pa3IU4HBIX >KeCTKocTed Quubia. Mojenbs Mo3BOJSeT
paccuuTaTh B3aUMOJICHCTBHE CTPYHBI M MOJIOTKA JJIsl BCEX HOT, BAPBUPYS
TOJILKO OJIMH MapameTp — MOAYJb ynpyroctu ¢uibna. Takas mpouemnypa
JaeT BO3MOXKHOCTh MOAOUPATH MOJIOTKU JJIsl JHOOOTO posiis, yiydllas
KaueCTBO 3ByYaHUs UHCTPYMEHTA.

182



