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The experimental relationships of dynamic force versus grand piano hammer felt deformation show 
the significant influence of hysteresis characteristics. To explain this phenomenon, a new 
mathematical model of the hammer felt is proposed. In this model the hammer felt is considered as 
a nonlinear history-dependent (hysteretic) material with an exponential kernel function. The 
numerical simulation of interaction of the hammer with a fixed target was used to identify the 
nonlinear and hysteresis parameters of the felt, and good agreement with experiments was achieved. 
Also, this model is used here for the analysis of interaction of the hammer with a real grand piano 
string. 
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INTRODUCTION 

The sound of the grand piano depends mostly on the 
detailed motion of strings excited by the impact of the ham- 
mers. It depends also on the soundboard, of course, but in- 
sofar as the soundboard impedance is very much larger than 
the string impedance, these:two problems are separable. So, 
the creation of good theoretical models of the hammer felt 
and the hammer-string interaction are important problems 
for determining the sound produced by a piano. 

The dynamics of the hammer-string interaction is one 
aspect of piano physics that has been the subject of consid- 
erable research, beginning with von Helmholtz. • Many au- 
thors have tried to understand the results of the experimental 
measurements of the hammer-string interaction and their 
correspondence to the theoretical models. 

In the first model developed by Kaufmann 2 the hammer 
was assumed absolutely rigid. In other words, this model 
deals with a point-mass hammer and with a string of limited 
length. Although this model is far from being realistic, it was 
used for more than 60 years because of its simplicity. 

Hall, 3 in his historical review, commented on the works 
of many authors, describing the experimental results of felt 

deformation under the force acting due to the string. Fletcher 
and Rossing 4 in their recent review also discussed this prob- 
lem rather thoroughly. Some special cases of various ham- 
mers were considered by Hall. 3'5 

More explicit information about properties of the ham- 
mer felt was presented by Suzuki and Nakamura. 6 They re- 
viewed the results of measurements of dynamical hammer- 
string interaction. These data were obtained experimentally 
by Yanagisawa, Nakamura and Aiko, 7 and by Yanagisawa 

89 
and Nakamura. ' Three types of hammersmsoft, medium, 
and hard--acting on various strings were considered in their 
experiments. These experiments show that: 

(i) Force-compression characteristics of the hammer felt 
are essentially nonlinear. 

(ii) The slope of the dynamic force-compression charac- 
teristics is strongly dependent on the velocity of the 
hammer. 

(iii) The relationships of dynamic force versus felt defor- 
mation show the significant influence of hysteresis 
characteristics, so the loading and unloading of the 
felt are not alike. 

All of these items are very important and they must be 
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taken into account in the creation of any realistic hammer 
felt model. None of the earlier hammer felt models can de- 

scribe the experimentally observed hysteretic process of 
loading and unloading of the felt due to the hammer-string 
interaction. 

The present paper is an attempt to construct such a non- 
linear hysteretic hammer felt model that would be in a good 
agreement with experimental data for any rates of loading of 
the hammer felt. The experiments provided by Yanagisawa 
and Nakamura 8 are the basis for the testing of the felt model 
that is proposed in this article. The interaction of such ham- 
mer felt with the real grand piano string is presented here 
only to the extent of illustrating the application of the new 
model of the hammer felt. 

I. FELT STIFFNESS PROPERTIES 

The timbre of sound produced by a piano string is 
strongly determined by the contact time between the hammer 
and the string. In turn, this time depends on the stiffness of 
the hammer felt and hammer velocity. Therefore the contact 
time between the hammer and the string is decreased by a 
strong attack and the number of harmonics in the spectrum is 
increased. Thus the timbre of sound in the lower and the 

middle range of the instrument is appreciably dependent on 
the average variation of the felt stiffness. 

An excellent feature of a good grand piano is the possi- 
bility to obtain more "brilliant" or "transparent" timbre of 
sound when playing fortissimo, and on the contrary 
"smooth" timbre when playing pianissimo. Such a timbre 
can be achieved from properly designed hammer felt stiff- 
ness for various possible velocities of the hammer. 

One of the first nonlinear models of the hammer felt was 

made by Ghosh, 1ø who considered the felt as a material 
obeying the power law 

F=A U p, A=const. (1) 

Using this model Hall and Askenfelt • measured the values 
of p for 16 real samples of hammers. For the load force F 
ranging from 0.55 to 35 N these hammers had p between 1.5 
and 3.5 with no definite trend of p from bass to treble. One 
hammer was exceptional, with p =5.0. 

According to Hertz's Law the force acting on two con- 
nected locally Hookean bodies gives p = 1.5. The values of p 
different from 1.5 indicate the non-Hooke or the nonlocal felt 

properties. As discussed in Ref. 11, the value of p = 1 gives a 
simple linear system but it has an unmusical property be- 
cause both loud and soft notes are amplified equally. In the 
author's opinion, the most suitable values of p for a good 
grand piano are 2<p<3, while p>>3 gives too much contrast 
in tone when playing fortissimo versus pianissimo. 

Hall •2 used this nonlinear power-law model of the felt 
for the modeling of the hammer-string interaction and ob- 
tained a better agreement with earlier data than using his 
previous calculations based on a completely linear model. 

The interaction of the string with a nonlinear hammer 
felt has been studied by Suzuki. •3 The force-compression 
relationship of the hammer felt was approximated in his ar- 
ticle in the form 

F = Ki U 2 -I- K2 U3 -I- K3 U4, (2) 

with the constant stiffness coefficients K1, K2, and K 3. It 
seems this model is not satisfactory, because the first coeffi- 
cient K1 is negative and so for small felt deformations the 
force has a negative value, too. This is impossible, since the 
hammer does not pull the string. 

Both the power-law and polynomial models are often 
used for the mathematical simulation of the hammer-string 
interaction. But the process of the felt deformation described 
by Eqs. (1) and (2) is nonhysteretic. The loading and unload- 
ing of the felt in such models occurs in the same way. 

Boutilion TM has made an attempt to explain the clearly 
nonlinear hysteretic character of the hammer-string interac- 
tion using the model of the point hammer mass and a non- 
linear hysteretic spring that describes the action of the felt. 
He uses the same power law (1) for description of the force 
acting on the felt, but with various constant values of the 
exponent p for the increasing and decreasing part of the 
spring characteristic. According to this nonanalytical model, 
the felt deformation tends to zero with the unloading of the 
felt. To avoid this behavior, the partial hysteretic character- 
istics due to the waves traveling back and forth along the 
string were included in this model. The agreement of the 
model with the experimental measurements obtained by au- 
thor was rather good. However, other experiments 6-9 show 
that the felt is still deformed after the force is removed even 

in the absence of waves traveling along the string. Also, the 
value of the exponent p in this nonanalytical model cannot 
be a constant, because the slope of the dynamic force- 
compression characteristics is dependent on the velocity of 
the hammer. For this reason, even the loading part of the 
force-compression curve cannot be described by the simple 
Eq. (1) with a constant value of p that must be different for 
the various hammer velocities. 

A somewhat more realistic analytical model of the ham- 
mer felt that is in agreement with experiments (see Refs. 8 
and 9) at all points will be presented in the following section. 

II. HAMMER FELT MODEL 

In deriving a dynamical hammer felt model it is neces- 
sary to take into consideration both the hysteresis of the 
force-compression characteristics and their dependence on 
the hammer speed. These phenomena require that the grand 
piano hammer felt possess history-dependent properties. The 
mechanical behavior of such materials is usually strongly 
dependent on parameters such as time, characteristic fre- 
quency, and rate of loading. For this reason the stress-strain 
curves of history-dependent materials are sensitive to these 
quantities, and the concept of an almost unique curve for a 
given material does not exist. 

In the hammer-string interaction the process of the felt 
deformation starts with some velocity V>0, and we obtain a 
certain loading curve for the hammer felt. The unloading of 
the felt begins with velocity V=0, and the unloading curve 
of the felt will not be like the loading curve. Therefore for 
felt made of history-dependent material the loading- 
unloading curve has hysteresis characteristics. 
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TABLE I. Primary parameters of the grand piano hammers and strings. 

Notes 

Quantity Ao A3 A6 

f (Hz) 28 220 1760 
L (mm) 2016 777 115 
I (mm) 243 91 8.1 
d (mm) 4.9 1.075 0.875 
t (N) 1629 834 774 
/.t, (g/m) 130.7 7.1 4.7 
rn (g) 13.0 10.6 8.2 

As indicated by Rabotnov, i5 a simple model of material 
with memory may be obtained by means of replacing con- 
stant elastic parameters of solids by time-dependent opera- 
tors. So for the case of longitudinal one-dimensional defor- 
mation of a body with memory, the Young's modulus is now 
not a constant, but an operator 

Y(t)-Yo[1-R(t)*], (3) 

where * denotes the convolution sign. 
Suppose that the force exerted by the hammer under the 

instantaneous loading of the felt is proportional to the 
Young's modulus of the felt material, and can be described 
by a nonlinear force shape function of the form 

F(U)=CYg(U), (4) 

with some constant coefficient C. In this case, using (3) for 
the arbitrary rate of loading, the hysteretic felt is defined with 
the aid of the constitutive equation 

F(U(t))-Fo[g(U (t))-R(t)* g(U(t))]. (5) 

Materials described by this equation for which the ex- 
erted force (or the stress) is determined by the history of the 
compression are "materials with memory." 

In principle, R(t) is to be established for real media on 
the basis of experimental data. However, according to well- 
known general physical consideration (see Ref. 15), some 
properties of the relaxation function might be assumed for 
real history-dependent media with almost no restriction of 
generality. 

The relaxation function R(t) must be a positive func- 
tion, which is bounded in the interval 0<t <m, and satisfies 
the following conditions: 

lim f•R(•)d•=O, (6) t-->0 

R(t)-•O, if t->m, (7) 

0<e<l, (8) 

where 

e = R(t)dt. (9) 

By this assumption rather weak restrictions are laid on the 
function R (t). 

Let us choose a simple form of the relaxation function 
given by 

R(t) = (e/r0) exp(- t/r0). (10) 

In Eq. (10) the history-dependent material of the ham- 
mer felt is defined with the aid of two hysteresis parameters 
ß and r 0. Now, using Eq. (10), Eq. (5) can be written in 
dimensionless form as 

1 F(y(r))=F0 g(y( r))- ße -• eGg(y( •))d• . (11) 

This is the governing equation connecting the force F(y) 
exerted by hammer and the felt deformation y(r). Then we 
explore the possibility of getting the theoretical results to 
match the experimental data for real hammers through a 
proper choice of numerical values of these parameters. 

From Eq. (11) we may obtain the form of the force- 
compression characteristic for very fast felt deformation, 
when r,• 1, 

F(y)=Fog(y), (12) 

and for very slow deformation, when r>>l, 

F(y) =F0(1 - ß)g(y). (13) 

In each of these cases the unloading of the felt occurs in 
the same way as the loading. 

For the various types of hammers the nonlinear force 
shape function g(y) can be chosen in the power polynomial 
form or in the form of the usual power-law dependence 

g(y) =yP, (14) 

in order to describe rather well very fast loading of the felt. 
Finally, the governing equation (11) in connection with the 

TABLE II. Numerically determined parameters of the hammers. 

Hammers 

A1 

Quantity hard medium soft pliant 

A37 

hard medium soft 

A73 

F0 (kN) 242.6 200.6 64.7 38.9 
p 2.87 2.95 2.80 2.19 
r0 (/xs) 10.5 11.5 17.0 20.0 
ß 0.947 0.947 0.940 0.936 

V (m/s) 1.25 1.31 1.52 1.45 
t o (ms) 1.37 1.47 1.63 1.32 

9.43 3.58 1.05 

3.40 3.30 2.81 

5.5 7.0 10.0 

0.968 0.956 0.938 

1.25 1.36 1.60 

1.21 1.34 1.52 

hard medium soft 

10.66 9.31 8.48 

3.15 3.12 3.33 

1.9 2.1 2.0 

0.981 0.985 0.985 

1.35 1.47 1.47 

1.01 1.04 1.09 
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nonlinear force shape function in the form (14) is the hyster- 
etic model of the grand piano hammer felt which is proposed 
in this article. 
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FIG. 1. Force-compression characteristics of the felt for (a) A1 hammer, (b) 
A37 hammer, and (c) A73 hammer. Squares, asterisks, triangles, and circles 
denote the experimental data points (Ref. 8). The solid [and one dashed on 
(a)] lines are the calculated curves for each type of the felt. 

cry -oV (16) y(o)=o, a ' 

III. NUMERICAL SIMULATION OF EXPERIMENT 

Comparison with experiment is the way to judge the 
success of the present model. The experimental data on the 
dynamical felt deformation obtained in Ref. 8 were chosen 
for this purpose. In these measurements the hammer struck 
the piece of string fixed on the force sensor, and the force- 
compression and stiffness-time relationships for the various 
types of hammers were obtained. 

The mathematical model of this experiment can be de- 
scribed with dimensionless variables by the equation 

d2y •o 
at2 = •-• •(y), (•S) 

with the initial conditions 

Here F(y) is defined by Eqs. (11) and (14). 
Equation (15) was solved numerically by a modified Eu- 

ler's method. In order to obtain that solution, we must know 
the parameters that describe both the string and the hammer. 
Unfortunately in Ref. 8 the masses of the hammers are not 
given. Thus the comparison between the experimental and 
the theoretical results is not always correct. 

Some of the parameters of the hammers and the strings 
are well known, or they can be measured rather easily. The 
values of such primary parameters of the grand piano for 
notes A o, A 3, and A 6 are displayed in Table I. Here the mass 
of the hammer is the effective mass, which is measured in 
the same way as in Ref. 14. All the values in Table I refer 
only to the particular grand piano ESTONIA that we used. 

Initially unknown, the values of the felt parameters were 
obtained by means of numerical simulation of the model. 
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The force-compression characteristic F(y) was numerically 
calculated from Eq. (15) by assuming initial values of the felt 
parameters. The model was run again and again, each time 
with different felt parameter values, until the prediction from 
the model gave good agreement with the experimental data. 

In experiments 8 with the constant maximum value of the 
driving force on the felt the hard, medium, and soft hammers 
with numbers A1 (note A0), A37 (note A3), and A73 (note 
A6) were used. An unusual type of A1 hammer (termed pli- 
ant) that differs from all other A1 hammers used in the first 
series of experiments was investigated for dynamical impact 
of the string with various initial velocities. The final values 
of the numerically determined parameters of the felt are dis- 
played in Table II for all the hammers considered. 

The comparison of the theoretical model with the ex- 
perimental data is presented in Fig. 1. The agreement of the 
results from the hysteretic model with the experimental re- 
sults of Ref. 8 is rather good. The analysis of parameters 
presented in Table II show that the felt stiffness constant F 0 
and hysteresis constant e are diminished, and vice versa the 
relaxation constant •'0 is increased with the softening of the 
felt for the hammers in the range from A1 to A37. The pa- 
rameters of the hard, medium, and soft A73 hammer are 
close to each other, which was be expected from Fig. l(c). 
The value of p for any number of hammers has no definite 
trend from hard to soft. Only for the pliant hammer the value 
of p is outstanding. The absence of the trend in the set of 
calculated values is due to the entirely arbitrary types of 
hammers chosen for the experiments. So the pair of quite 
different A1 hammers was used. 

It is obvious that the A1 pliant hammer is really excep- 
tional. The values of stiffness and hereditary parameters of 
this hammer indicate that the pliant hammer is not a hard 
hammer, as it seems from Fig. l(a), but most probably, it is 
very soft. This is clear from Fig. 2(a), where the dynamical 
force-compression characteristics for the various hammer 
velocities are shown. With a diminishing of the hammer 
speed, the slope of the loading part of the curves is de- 
creased. To obtain a better agreement with the experimental 
data points for a small velocities of hammer, the value of 
stiffness nonlinearity exponent p=2.15 was chosen (other 
parameters of the pliant hammer are the same as in Table II). 
The numerically calculated stiffness-time characteristics of 
this A1 pliant hammer are shown in Fig. 2(b). They are very 
similar to those experimentally obtained in Ref. 8. 

The numerical calculations are provided here only to 
demonstrate the quality of the hysteretic model, and not for 
determination of the exact values of the felt parameters. It is 
shown that the model can describe the loading and unloading 
parts of the force-compression curve for suitable values of 
primary parameters. By using the primary parameter values 
of the grand piano ESTONIA, which are certainly not the 
same as those used in the experiments, the numerically cal- 
culated hammer velocities differ from velocities in the ex- 

periments by less than 20%. Of course, under other initial 
donditions the calculated values of the felt parameters would 
be changed, but the form of the force-compression curve 
can be described by the hysteretic model with any desired 
accuracy. 

A1 (pliont) / •o 
o- V=1.43 mZs /o 

30- u - V=1.16 m/s / • / 
•- V=0.86 m•.s / ./ o\ / 

$ /2 

øø m) 
80 •- 

(b) 

I / 2• • A1 (pliont) 

I / / k• 2 - v=1.16 mXs 
I / / k• 3 - V:0.86 mXs 

% m. 
• 4oH// / 

o 

o o 0.4 0.8 1.2 1.6 2.0 

time (ms) 
24 

FIG. 2. (a) Force-compression and (b) stiffness-time characteristics of the 
felt for A1 (pliant) hammer for the various initial hammer velocities. Circles, 
squares, triangles, and asterisks denote the experimental data points (Ref. 8). 
The solid lines are the calculated curves. 

IV. HYSTERETIC MODEL FEATURES 

The influence of the hammer speed and of the hysteresis 
parameters of the felt on the force-compression characteris- 
tic is presented in Fig. 3. Figure 3(a) shows the loading and 
unloading of the felt for various initial hammer velocities. 
The initial hammer energy in this case is a constant and is 
equal to 1.8 mJ. The mass of the hammer is not a constant 
for the various curves, but ranges from 0.001 to 1000 g. 

The contact times calculated for each curve are dis- 

played in Table III. For the initial hammer velocity V=60 
m/s, the dimensionless contact time is equal to 
t0/•-0=0.37<1. So as was mentioned above, the loading and 
the unloading of the felt under the fast deformation are close 
to the limit curve I that is described by Eq. (12). For the 
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FIG. 3. Force-compression characteristics for A1 (pliant) hammer. (a) Vary- 
ing the initial hammer speed (initial hammer energy is constant); (b) varying 
hysteresis constant; (c) varying the relaxation constant of the felt. Dashed 
lines I and II are limit curves for very fast and very slow felt loading, 
respectively. 

initial hammer velocity V-0.06 m/s, the dimensionless con- 
tact time is equal to to/r o= 1000>> 1. For this slow deforma- 
tion, the loading and the unloading of the felt are near the 
limit curve II described by Eq. (13). 

Force-compression curves calculated for different val- 
ues of the hysteresis constant are shown in Fig. 3(b). For the 
case of e-0, the loading and unloading of the felt occur 
along the limit curve I. 

Force-compression curves calculated for different val- 
ues of the relaxation constant are presented in Fig. 3(c). For 

TABLE III. Duration of contact time calculated for the various parameters 
of A1 (pliant) hammer. 

Duration of contact (ms) 

Curve number 1 2 3 4 5 

Fig. 3(a) 0.0074 0.074 0.38 1.76 20.0 
Fig. 3(b) 0.74 0.99 1.32 1.52 2.0 
Fig. 3(c) 0.71 1.12 1.32 1.46 1.56 

small values of r 0 the loading and unloading parts of the 
curve are close to the limit curve II. 

As shown in Table III, contact time increases with an 
increasing hysteresis constant and with a decreasing relax- 
ation constant. The results of calculations presented in Fig. 3 
permit one to study the influence of the felt parameters on 
the form of the force-compression characteristics. The theo- 
retical hysteretic model of hammer felt provides a means for 
simulating any necessary force-compression curve. 

V. GRAND PLANO HAMMER-STRING INTERACTION 

The hysteretic hammer felt model may also be used for 
describing an actual hammer-string interaction. In the ex- 
periment described in Ref. 8 the string was fixed on the force 
sensor. The real grand piano string moves under the hammer 
action. 

When the key is pressed down the hammer, in its rota- 
tion around the pivot, strikes the string with some velocity V 
which is directed upward. The string begins pushing back on 
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FIG. 4. For A37 (medium) hammer (a), (c) time histories and (b), (d) force-compression characteristics numerically calculated for the real grand piano note 
A 3 . The initial hammer velocities are V-5 and 0.5 m/s. The solid lines on (a) and (c) are the force-time curves, and the dashed lines are the compression- 
time curves. 

the hammer, and at the end of interaction the hammer moves 
away from the string. The angular displacement during the 
collision is quite small so that the hammer's movement is 
treated as a simple translation. 

Consider an idealized model of the string, in which the 
two portions of the string can be represented as slowly rotat- 
ing straight segments. This model is true for a slow loading 
of the string when the hammer-string interaction takes a 
very long time compared to the natural period of the string 
vibrations. In all examples presented below, the contact time 
between the hammer and the string is greater than the period 
of vibration of the string, and so this model of the string 
corresponds to the hammer-string interaction in the middle 
and treble ranges. 

According to this simple string model, the displacement 

of the string from the equilibrium position is proportional to 
the force Q(t) acting on the string: 

W-qQ. (17) 

Because only half of the total mass of the string is deflected 
to the distance W in this linear model, the motion of the 
string is defined by the equation 

d2W 

m -)-•-=F-Q. (18) 
The displacement of the hammer Z(t) depends on both 

the felt deformation and the string deflection 

Z=U+W, (19) 

and the equation of motion of the hammer is 
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d2Z 

m •+F=0. (20) 

By choosing for a unit length the string diameter, from 
Eqs. (17)-(20), we obtain a system of equations for descrip- 
tion of the hammer-string interaction in nondimensional 
variables 

d2w 4 4 
dr 2 = - Mq w+ •-• F(y)=0, (21) 

d2y 
: W- 1 + •- F(y)=0. (22) 

Here the function F(y) is also defined by Eqs. (11) and (14). 
The initial conditions for this system of equations are 

dw 

y(0)=w(0)= •rr (0)=0, (23) 

120 0.8 

1 O0 // •,,• • 
E' 0.6 

80 
õ o.4 o_. 

X 0.2 T 

0 • ; 0.0 • I I I I 

0.00 0.25 0.50 0.75 1.00 1.25 

time (ms) 

120 

dy ro V • oo - 
dr (0)= d ' (24) •. 

The system of equations (21) and (22) was numerically 
solved by the modified Euler's method, and the results of the 
hammer-string interaction are presented in Figs. 4 and 5. All 
parameters of the hammers and the strings are taken from 
Tables I and II. 

Figure 4 shows the interaction of the A37 medium ham- 
mer with one string (of a three-string set) for A 3. 

When the hammer with velocity V=5 m/s [Fig. 4(a)] 
strikes the string, the drivin. g force on the felt is increased in 
time from the initial point to point 1, and the string is accel- 
erated. At point 1 the velocity of the string is greater than the 
velocity of the hammer and the string begins to run away 
from the hammer, but the eontact between the hammer and 

the string is maintained. Therefore between points 1 and 2 
the driving force is decreased, and the felt partly unloads. 

After maximum deflection, the string increases its driv- 
ing force on the hammer as shown between points 2 and 3; 
this fact is not connected with the exact form of l•he waves 
traveling along the string. After point 3, the spoe•d of the 
hammer is greater than the speed of the string, and the ham- 
mer moves away from the string. The hammer loses the con- 
tact with the string 3.83 ms after the beginning of interaction. 
At this time the felt is still partly loaded, and complete un- 
loading of the felt occurs with some velocity due to its 
history-dependent features. The contact time in this case is 
approximately equal to the period of vibrations of this string. 

A bend on the force-time characteristic between the 

points 2 and 3 takes place due to the memory of the felt, and 
its place depends on the rate of the felt loading [compare Fig. 
4(c)]. The form of the compression-time curve is similar to 
the force-time characteristic, but compression is slightly de- 
layed due to relaxation. The force-compression characteris- 
tic for this case with corresponding points is shown in Fig. 
4(b). If the initial speed of the hammer were greater than 5 

80- 

o 40- 

._ 

._> 
•- 20 

0 

O0 

A7,3 :(medium) / J 

I I I 

0.2 0.4 0.6 0.8 

compression of the felt (mm) 

FIG. 5. For A73 (medium) hammer with initial velocity V=5 m/s (a) time 
histories and (b) force-compression curves numerically calculated for the 
real grand piano note A 6 . The solid line on (a) is the force-time curve, and 
the dashed line is the compression-time curve. 

m/s, point 2 on the force-time characteristic would be low- 
ered, and the hammer would lose contact with the string in 
approximately 0.4 ms at the beginning of interaction. In this 
case we would see a second, repeated strike, when the string 
catches up with the hammer in reverse motion. 

In Fig. 4(c) and (d) similar patterns are presented for a 
small initial hammer velocity. In this case the maximum 
value of the driving force on the felt is achieved only at point 
3 in the reverse motion of the string. This fact is more no- 
ticeable in the treble range as shown in Fig. 5. Here the 
interaction of the A73 hammer with the string of A 6 is pre- 
sented. Because the natural vibration frequency of this string 
is rather high, the string runs away rapidly from the hammer 
after the initial interaction. So the main compression of the 
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felt occurs in the contrariwise motion of the hammer and the 

string at point 3. 
The contact time in this case is equal to 1.1 ms, and is 

twice greater than the period of the string vibrations. 

Vl. CONCLUSION 

It has been shown that reasonable assumptions about the 
history-dependent properties of hammer felt provide the ba- 
sis for a simple mathematical model for investigation of the 
piano hammer-string interaction. The model of felt with 
memory permits a description of the felt deformation that is 
consistent with experiments. The model demonstrated here 
makes predictions in good agreement with experimental data 
for various types of piano hammers and for a broad range of 
hammer velocities. 

The numerical simulation of the interaction of a hammer 

with a fixed target permits the determination of the values of 
the stiffness and hysteresis parameters of the hammers used 
in the experiments. The interaction of a hysteretic hammer 
with a highly idealized string presented in Sec. V is only a 
first step in the direction of using of this model and the 
results probably give a correct qualitative indication of the 
effect of hysteresis for high notes. Further application of this 
model should include the interaction of the hysteretic ham- 
mer with more realistic models of the string in order to get 
results that come closer to measurements in real pianos. 
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