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Abstract. We investigate the vibrations of the ideal flexible string, which one end is rigidly
clamped, or coupled with a linear damped oscillator, and another one is terminated on the curved
contact surface. The vibrating string touches repeatedly this termination, and this, in turn, causes
the modulation of fundamental frequency of the string, and the train of high frequency oscillations
is generated. The problem is studied both analytically, andnumerically. The effect of the contact
nonlinearity and of the shape of the contact surface on of thespectral structure of the string vibra-
tion is considered. The influence of the impact amplitude on the vibration spectra of struck string is
discussed.
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INTRODUCTION

Investigation of the boundary condition of vibrating string is a very important problem
in musical acoustics. It is well known that the fundamental frequency of piano string is
strictly determined by the type of the string termination. The types of the string support
in the piano are different for the bass and treble notes. All the far ends of the piano
strings are terminated on the bass and treble bridges, whichare the rather complicated
resonant systems. The nearest ends of the bass and long treble strings begin from the
agraffe that can be considered as an absolutely rigid clamp termination. But the most
part of the treble strings starts from the edge of the cast iron frame. These strings turn
the rigid edge, and its vibration tone depends on the curvature of this termination. The
similar type of the string support we can see on the guitar andsome other musical string
instruments.

Usually, the changing of tone caused by the curvature of the string support is negligi-
ble, but there is a family of Japanese plucked stringed instruments (biwa and shamisen),
which sounding strictly determined by the string termination [1, 2]. These lutes are
equipped with a mechanism called "sawari" (touch). The sawari is a contact surface
of very limited size, located at the nut-side end of the string, to which the string touches
repeatedly, producing a unique timbre of the instrumental tone called the sawari tone.

This paper studies the influence of the geometrical nonlinearity of the string termina-
tion on the spectrum of its vibrations.



SAWARI MODEL

The nonlinear model of sawari mechanism is considered in [3,4] and the scheme of this
model is shown in Figure 1.
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FIGURE 1. Scheme of sawari model

It is assumed that the displacementy(x, t) of the ideal (flexible) string of lengthL
obeys the second-order wave equation. The right-hand end ofthe string is supported by
the bridge, which is considered as a resonator. The left-hand end (x = 0) terminates at
sawari surface, which is assumed to be rigid enough, and thatis defined byy = f (x).
When the string pushes this surface from above, the sawari surface deforms, and, as a
result, the repelling net forcef = −Ky∗(x, t) acts on the string. HereK is the positive
constant, which is large enough, and that depends on the material of the sawari (made of
tarred bamboo), and the cross section of the silk string.

The nonlinear condition of sawari–string interaction is determined by

y∗(x, t) =

{

y(x, t)− f (x) , if y(x, t) < f (x)
0, if y(x, t) ≥ f (x)

(1)

Hence, the governing equation for the string is given by

µ
∂ 2y
∂ t2 = T

∂ 2y
∂x2 −Ky∗ (2)

whereT is the tension andµ is the linear mass density of the string.
The effect of sawari mechanism was studied in [1–4] experimentally and numerically.

It was shown that the sawari excites a local disturbance of the string motion, which gets
rich spectral components up to very large numbers of the fundamental frequency of the
corresponding monochord (without sawari).

It is evident, that the similar mechanism of the contact nonlinearity can also generate
the high frequency oscillations of the piano strings. In thefollowing section will be
presented another approach to the problem of vibration of the piano string with a
nonlinear support.

PIANO STRING

The scheme of position of the treble piano string is shown in Figure 2. The left-hand end
of the string wire is fastened to the cast iron frame. Then thestring bends around the
rigid edge of the frame, runs over the piano bridge, and terminates again on the frame.



The string is assumed to be ideal (flexible). The piano hammerstrikes the string at the
contact pointx0, and this generates two simple nondispersive traveling wavesy(t +x/c)
andy(t − x/c) moving in both directions. At the first moment the amplitude of these
waves is always positive.
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FIGURE 2. Scheme of piano string model

Let’s consider the wavey− = y(t +x/c) moving to the edge termination given byf (x).
This wave reflects back from the edge, so that at any momentt on the rigid surface we
havey− + y+ = 0. It means, that the reflected wavey+ = −y−, but the phases of these
waves are different. The phase shift and the form of the reflected wave depend on the
amplitude of the incident wave.

In musical acoustics all functions of timey(t) are limited to the band from 0 to
ωmax = 3 · 105 s−1, approximately. Therefore, such function is completely determined
by giving its ordinates at a series of discrete points [5]

y−(t) =
∞

∑
n=−∞

y(tn)
sinωmax(t − tn)

ωmax(t − tn)
(3)

wheretn = nπ/ωmax. Because each ordinatey(tn) reflects back at the momentt = t∗n
whenyn = y(tn) = f (x), the reflected wave can be represented in the form

y+(t) = −

∞

∑
n=−∞

y(tn)
sinωmax(t − tn + t∗n)

ωmax(t − tn + t∗n)
(4)

wheret∗n = 1
c f−1(yn). Here f−1(yn) denotes the inverse function off (x).

The spectrum of reflected waveY+(ω) is related through the spectrum of incident
waveY−(ω) by equation

Y+(ω) = Y−(ω)D(ω) (5)

whereD(ω) is defined by

D(ω) =
∞

∑
n=−∞

exp[−
iω
c

f−1(yn)] (6)

Equations (5, 6) show that even if the left-hand end of the piano string has a rigid
termination, which only changes the sign of reflected waves,the spectral structure of
traveling waves had changed significantly. The new trains ofhigh frequency oscilla-
tions that do not exist initially grow up eventually, and itsdistribution depends on the
amplitude of the initial wave excited by the piano hammer andalso on the frame edge
curvature.



RESULTS FOR THE PIANO STRING

The simplest use of the presented model is for plotting displacement–time curves and
power spectra for particular wave parameters. It is of most interest to plot families of
curves showing how the reflected wave spectrum changes as theamplitude of incident
wave is varied. Figure 3 shows the spectra of the incidenty− and reflectedy+ waves.
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FIGURE 3. Normalized power spectra for various amplitude A

The incident wave pulse has been chosen in the formy− = Asinπt/t0 with t0=1 ms.
The frequency band is limited toωmax = 3 ·105 s−1. The curvature radius of the edge
is equal toR=5 mm, thus the edge form function is determined byy = ax2, wherea =
0.1 mm−1. It is evident that the power spectrum of reflected wave growsup significantly
and essentially reshapes with increasing of the incident wave amplitude.

CONCLUSIONS

It has been shown that presented model of piano string with nonlinear support provides
a good practical way to make predictions about the vibrationspectra of struck string.
One respect in which this model is still idealized is its assumption of very simple string
boundary condition at the piano bridge. One could perhaps use a more sophisticated
representation of finite bridge impedance to generalize thesimple delay-line treatment
of the traveling waves used here.
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