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ABSTRACT 
We investigate the bridge influence on the fundamental natural vibrating frequency of piano 
string in two ways. First, we consider a perfectly flexible string, which one end is rigidly clamped 
and another one is terminated on the bridge. The bridge is considered as a simple linear 
oscillating system, and the influence of the system parameters on a string vibrations spectrum is 
investigated. Also the problem of interaction of the wave traveling along the string with 
viscoelastic inertial support is considered. The both reflected and transmitted waves are 
described. The influence of a stiffness of a string on amplitude of its vibration is also estimated. 
It is shown, that the growth of the string stiffness moves the spectrum of the string vibrations in 
direction of high frequencies. 
 
 
INTRODUCTION  
The problem of determination of natural frequencies of the distributed systems arises in 
connection with an occasion of occurrence of a resonance in these systems under the forced 
oscillations. The resonance appears, when the frequency of external force is the exact integer 
multiplies of one of the natural frequencies of the distributed system [1]. The amplitude of the 
system oscillations at the absence of the dissipative forces theoretically can rise to infinity. 
However, in practice, the dissipative forces (external and internal), which prevent the unlimited 
increase of the amplitude are always exist. Nevertheless, the phenomenon of a resonance can 
affect the rising of inadmissible large amplitudes of oscillations and, as result the origin of the 
undesirable nonlinear phenomena, especially in case of a resonance at one of the lowest 
natural frequency. Thus, the determination of natural frequencies is interesting from the 
practical point of view, for example, for a rating and control of a technical condition of elements 
of the piano, and also for theoretical studies of process of the sound formation. 
 
 
STRING WITH VISCOELASTIC SUPPORT 
The dynamic behavior of the systems, which is described by the partial differential equation of a 
second-order, can be represented in the form of d'Alembert’s waves travelling in both directions 
along the string. The interaction of a wave with a support, which is differing from the free end, 
creates a phase shift between the incident and reflected wave. As the termination of the string 
possesses elastic, inertial or dissipative properties, and, hence, it is the power-consuming too, 
the energy of an incident wave transforms in potential energy of the support, and then it is 
transferred to the system. Thus, the termination of the string acts like transmitter, and a little 
time is needed to provide this process. As a result of this effect the phase of the reflected wave 
is changed. On a basis of the mentioned above, the natural frequencies of system can be 
determined from equation: 
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where l  is the system length, с  is the speed of traveling wave, iϕ  is the phase delay at 

reflection ( )2,1=i , 
c

lω
2  is the phase shift for a double traveling time 

c

l=τ . 

Let’s consider the dynamic behavior of the string with supports, which one is rigid and another 
one is the oscillating system (bridge) consisting of the mass, spring and damper (Figure 1).  

 
Figure 1.- Scheme of model I 

 
In this case due to reflection from the absolutely rigid support the phase changes on π  

( πϕ =1 ), and due to the reflection from the bridge 
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Here ρNz =  is the wave resistance of the infinite string (string impedance); ρ , N  are the 

linear mass density and the string tension; mk=Ω0  is the main natural frequency of the 

bridge; δ,,km  are the inertial, the elastic, and the dissipative coefficients of support. 

Substituting these expressions into Eq. (1), we find 
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               ( Eq. 2) 

 
This is the equation for the resonant frequencies. From Eq. (2) it is possible to derive all limiting 
cases. Because the first natural frequency of piano string is the most important frequency, here 
we consider its behavior depending on a kind of the right termination. It is known [2], and Eq. (2) 
it confirms that the first natural frequency changes in an interval from τπ 2  (for the free end) 

up to τπ  (in a case of the absolutely rigid clamp). The stiffness of the support moves the 
frequency value in the direction of the right side of this interval, the presence of the mass - to 
the left side. If the damper factor is less than the string impedance, the resonant frequency 
moves to the range of low frequencies, otherwise - to the range of high frequencies. 
Let's note, that, as well as for the longitudinal oscillations of a rod [3], rigidly fixed at one end 
and with the damper at another end, at the initial stage of the string excitation (when the time 
does not exceed the double traveling time τ2<t ), there are a such initial conditions, at which 
on this interval of time the amplitude of the string vibration is increased. After the moment 

τ2>t  in each cross-section of the string the transverse displacement of the string decays in 
according to exponential law. The rate of this decay is characterized by the logarithmic 

decrement, which is determined by expression ( ) ( )δδ zzD −+= 11ln .  

This decrement depends on the ratio of the string impedance z to the dissipative coefficientδ , 
which we shall name here as the support impedance. The functional dependence of this 
decrement on the impedances ratio is shown in Figure 2. Thus, if the string impedance is equal 
to the support impedance, the value of logarithmic decrement tends to infinity. It means that at 
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any initial disturbances after the moment τ2=t  the amplitude of the string vibrations practically 
descends instantly. 
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Figure 2.- The logarithmic decrement as a function of the impedances ratio 
 
 
SINGLE INTERACTION OF THE TRANSVERSE WAVE TRAVELING  ALONG THE STIFF 
STRING WITH A VISCOELASTIC INERTIAL SUPPORT 
Before to study the most interesting problem of the string stiffness influence on the natural 
frequencies of the system, we shall consider in detail the modeling task shown in Figure 3, and 
describing the single interaction of a traveling wave with a bridge.  
 

Figure 3.- Scheme of model 2 
 

The distinctive features of such interaction in many respects can define the probable 
phenomena at the multiple reflections too, which takes place in the bounded systems. 
The transverse displacement of a stiff string is described by the governing equation 
 

0=+− xxxxxxtt IEuNuuρ                ( Eq. 3) 
 
The boundary conditions at 0=x  can be written as 
 

( ) ( ) ( )tututu 0,0,0 =+=−                 ( Eq. 4) 

( ) ( ) 0,0,0 =+=− tutu xxxx                ( Eq. 5) 

[ ] 0
000

=+−=++ xxxxx IEuNuuuhum &&& δ                ( Eq. 6) 

 
Here, as well as above, ρ , N , IE  are the linear mass density, the string tension, and string 

stiffness; h , m , δ  are the elastic, the inertial, and the dissipative coefficients of support. 
Usually, the analysis of linear tasks can be divided into two separate stages: 1) to solve a 
kinematical problem (determination of frequencies ω  and wave numbers k  of the waves 
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excited in the distributed system); 2) to search the amplitudes of these waves and the forces of 
interaction. 
Let the source located on the infinite distance on the left from the object radiates a simple-
harmonic wave ( ) ( )[ ]xktiAtxu f 000 exp, −= ω , which due to the interaction with the object 

creates the reflected waves ( ) ( )[ ] ( )[ ]xktiAxktiAtxur 222111 expexp, −+−= ωω , and the 

transmitted waves ( ) ( )[ ] ( )[ ]xktiAxktiAtxu p 444333 expexp, −+−= ωω , where jA  are the 

amplitudes, jω  are the frequencies, and jk  are the complex constants (j=1- 4). 

Substituting expression 
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               ( Eq. 7) 

 
into Eq. (3) and into boundary conditions Eq. (4) - Eq. (6), the following dispersion equation 
results 
 

042222 =−− kkc αω      ( ρNc =2 , ρα IE=2  )               ( Eq. 8) 
 
and also the kinematical invariant 
 

0ωω =                 ( Eq. 9) 
 
that express the condition of equality of frequencies of waves in the system of coordinates 
connected with the concentrated object. The kinematics problem (Eqs. (8), (9)) defines eight 
pairs of values of ω  and k  at the left and the right sides of the object, one pair of which 
corresponds to the incident wave. However, we have only four equations i.e. the boundary 
conditions for determination of the wave amplitudes. Thus, it is necessary to find the additional 
conditions. Among all the waves that are determined by Eqs. (8), (9), are realized only what 
satisfy the condition of bounding of the amplitude of the string vibration at infinity 
 

( ) ∞<txu , ,  as ±∞→x                 ( Eq. 10) 
 
and what satisfy the Sommerfeld radiation condition (the secondary waves should take away 
the energy from the object)  
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where HSVe =  is the speed of the energy transmission, H  is the energy density, and S  is 

the energy flow. Let's note, that inside of many models of elastic systems the speed of the 
energy transmission eV  coincides with the group velocity of waves dkdVV gre ω== . 

The frequencies ω  and the wave numbers k  determined by Eqs. (8), (9), can be both real and 
complex quantities. In case of complex ω  and k , it is necessary to keep only that solutions 
determined by Eq. (7) what satisfy the condition (10). In case of real ω  and k , the choice of 
the actual physical solutions can be executed with the help of the condition (11). 
Thus, due to the interaction of the incident wave with an object the following waves are realized: 
one reflected wave with 04 ωω = , γ−=4k , one transmitted wave with 03 ωω = , γ=3k , and 

the waves with the non-uniform amplitude. These waves are the exponentially damped 
oscillations with 01 ωω = , βik =1 , 02 ωω = , βik −=2 ,  

where ( )
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The amplitudes of the secondary waves can be found from the system of the algebraic 
equations 
 

04321 AAAAA −=−−+  

0
2

2
2

1
2

021
AkAkAk −=+  

04
2

3
2

43
=+ AkAk  

0
2

040
2
0

2
430

2
0

2
32

2
21

2
1

)())(()

)(()()(

04

321

AIEkNikAihmIEkNikAihm

IEkNikAIEkNikAIEkNik

+−=++−+−++−

−+−+++

δωωδωω
  

 
These equations are obtained after substitution of the solution into the Eq. (3), and boundary 
conditions (4-6). The solutions of this system are 
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The dependences of the dimensionless amplitude of the string vibrations as a function of the 
dimensionless frequency calculated for the ideal string (without stiffness, curve 1), and for the 
stiff string (curve 2) are presented in Figure 4. 
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Figure 4.- Amplitude of the string vibrations vs. frequency 
 
Let's notice, that the resonant action consisting in the incident wave as though does not “feel” 
the termination is possible in case when the dissipative losses are absent, and the natural 

frequency of the support mh=Ω0  is equal to ( ) mNIE −+=Ω 222
00 2 ββγω . In this 

case the transverse displacement of the bridge will be maximal. 
 
 
NATURAL FREQUENCIES OF THE STIFF STRING 
Let l  be the length of the stiff string between the supports, which one is rigid and another one is 
the oscillating system having the elastic and inertial properties. The natural frequencies of this 
string can be found from the system of equations 
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( ) 0, =tluxx                                                               
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In Figure 5 is shown the dependence of the dimensionless natural frequency of the string 
vibrations as a function of the string stiffness.  
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Figure 5.- Frequency of the string vs. string stiffness 
 
Here the values of frequency have been normalized as above in Figure 4, by the natural 

frequency of the support mh=Ω0 , and NlEd 24 64πε =  is the dimensionless parameter 

characterizing the string stiffness in terms of its diameter d  and Young’s modulus E . 
The calculations show that the growth of the string stiffness moves the spectrum of the string 
vibrations to the high frequencies. 
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