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a b s t r a c t

The ability of bats to prey on the insects and catch fish on thewing bymeans of echolocation
is remarkable, since the acoustic power transmission through air–water interface is very
small. A mathematical model describing the way in which a bat can detect fish under
the water surface is suggested in this article. The problem of scattering of the spherical
acoustical wave from the water with the spherical air inclusion under the surface is
considered and solved numerically. The frequency dependence on the backscattered
pressure shows significant attenuation of the signal at some frequencies. This offers an
explanation of the surprising efficiency of the acoustic acuity enjoyed by these animals.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1794, Lazzaro Spallanzani reported experimental results supporting his earlier proposal that bats could ‘‘see’’ with
their ears. After repeating many of Spallanzani’s experiments, D. Griffin [1,2] detected ultrasonic transmissions from bats
by using a high frequency microphone developed by G. Pierce, and coined the term ‘‘echolocation’’ to describe how bats use
echoes of the sounds they produce to locate objects in their path.

Much is now known of the natural sonar of bats and their orientational sounds. Several theories have been offered to
explain the marvelous ability of bats to use echolocation to navigate in the dark and find food. Today, we know that there
is a variation between bat species in the design of echolocation calls, which often coincides with the differences in their
behavior and ecology [3–5].

Several studies have attempted to measure the structure and intensity of echolocation signals for bats during flight.
The echolocation pulses emitted by a bat can differ markedly in duration and frequency. Some bat species emit compound
pulses consisting of constant-frequency (CF) and frequency-modulated (FM) components. Other bats use either only short
frequency-modulated (FM) pulses or long constant-frequency (CF) pulses.

The specific echolocation signal structure of horseshoe bat Rhinolophus ferrumequinum is discussed in [6]. It has been
found that the emitted signals consist of a relatively long component of CF, which is preceded by an initial FM component
and followed by a terminal FM component. It has been confirmed that during the flight the bats can compensate the Doppler
shift, which is produced by their own movement, and that the terminal FM component is used for ranging.

The behavior of big brown bat Eptesicus fuscus during aerial interception maneuvers were videotaped in the dark with a
night-vision lens and infrared illumination in [7], and the levels and spectra for a typical echolocation soundswere recorded.
The bandwidth of signals emitted remained approximately the same throughout the maneuver, and the levels of emitted
sounds were approximately constant until the terminal stage, which ended with capture of the prey.

The adjustment of pulse intensity by bats has been discussed in a number of studies. In [8] has considered the quantitative
estimation of the acoustic parameters of the echolocation calls of the fish-catching batNoctilio leporinus during prey capture.
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The results of this study show that during the approach to the target the bat reduces the intensity of emitted pulses, so that
the intensity incidence in the process of reaching the target is constant. Similar echolocation behavior of the bats Pipistrellus
abramus (an FM bat) on the wing was observed in the laboratory by using a custom-made onboard wireless telemetry
microphone, Telemike, placed above the bat’s head. The basic characteristics of echolocation sounds were recorded, and
it was found that as a bat approaches a target the intensity of echoes returning from the target is nearly constant, which
suggests that the bat adjusts pulse intensity at an optimal range [9]. The same Telemike systemwas used for the registration
and analysis of the spectrograms and the temporal amplitude patterns of (CF) echolocation pulses and echoes of bats
Rhinolophus ferrumequinum nippon, and it was suggested that the phase difference in the beat signal provides a useful cue
for target localization [10].

Recent studies confirm that bats possess a highly developed sonar system. However, the ability of echolocating long-
eared bats of the species Vespertilionidae to detect fish under the water surface using its own sonar is especially remarkable.
These bats emit FM pulses with the frequency changing linearly over time. The duration of the pulse varies from one to tens
ofmilliseconds, and the change of frequency during the sweep is usually of the order of one octave. This kind of echolocation
allows bats Vespertilionidae to make their living by catching fish. Bat can do this by flying just above the surface of the water
and emitting a rapid series of chirps. Bats dip their hind feet with sharp claws in the water to catch small minnows from still
ponds. This they may do on the darkest nights and on a glassy calm coastal waters [11].

The proficiency of a bat on thewing to detect fish inwater cannot be simply explained by the extremely high efficiency of
acoustic acuity enjoyedby these animals,whichhas beendiscovered inmany field and lab experiments in the air. The process
of detecting fish must be much trickier, because between the bat and the fish there is a gas–liquid interface. Transmission
of sound through air–water surface is normally very weak due to a very strong acoustic impedance contrast of these two
media. The surface of water is an almost perfect reflector for the incident plane acoustical wave. The acoustic transparency
of a plane interface of two homogeneousmedia does not exceed χ = 2m/n, wherem is the ratio of themass density of air to
that in water, and n is the ratio of the sound speed in water to that in air [12]. Under normal conditions in case of air–water
interface these values are m ≈ 0.0013, and n ≈ 4.5, and thus the acoustic transparency of the air–water interface is equal
to χ ≈ 6 · 10−4.

The echo signal from the fish would be produced almost certainly by the swimming-bladder, since a fish’s body is
acoustically similar to water. This sound wave going out into the air would be reduced by a factor χ ≈ 6 · 10−4 once
again, which means that during two trips through the air–water interface the echo from a fish would be reduced to χ2, or
3.6 · 10−7 of the emitted signal. To this large reduction must be added additional losses, because only a small fraction of the
sound in water would be reflected by a fish, and only a little part of what did escape into the air would find the listening
bat. In this case the bat must detect the echo that is a million times weaker than the echolocation call, and this fact makes
it seems almost impracticable for a bat to detect fish through the air–water interface by using their echolocation.

Here we may compare the threshold level of the fish-catching bat with that of the insect-eating bat, providing their
echolocation in the air. The intensity of the echolocation call falls off as the square of the distance. Since a small scatterer
would be considered as a point source, the intensity of the echo falls off also as the square of the distance. Thus the level of the
echo returning back to the bat ears falls off as the fourth power of the distance. Therefore, if we suppose that the fish-catching
bat does detect a small fish with 1 cm swimming-bladder at a distance Rf = 10 cm, then the insect-eating bat having the
same threshold level must detect a flying insect 1 cm in diameter at a distance Ri, which may be found from relation

Rf

Ri

4

= χ2.

This distance Ri = Rf /
√

χ , or at least 400 cm. At this distance an echo from the insect is equal to the echo from the fish at
the distance 10 cm. The distance 400 cm is a very long range for insect-eating bats, and therefore the bats must activate at
such distances the highest level of their perception sensitivity, which in fact is the upper bound of its capacity. Here we are
not dismissing the ability of a fish-catching bat to detect fish through the water surface by their direct echoes, however, it
seems extraordinary, that the main method of getting food rests on the maximum exertion of bat’s senses. The purpose of
this article is to derive the more reasonable model of the fish-catching bat’s echolocation.

2. Problem analysis

First, it seems that the swimming-bladder reflects the incident wave at the resonant frequency rather well, and this
fact can help the bat to detect the fish. The usual range of echolocation of bat of the species Vespertilionidae lies in range
50–100 kHz. Since the resonance frequency of the swimming-bladder of the radius a = 1 cm is equal to approximately
1 kHz, and the swimming-bladder does not radiate significant energy at higher resonance modes, the swimming-bladder
oscillations are arguably of ‘‘no interest’’ to bat.

Another plausible explanation of how the echolocating bat detects fish is based on the resonant features of the water
layer between the spherical air inclusion and the water surface. In this case one may hope to find a phenomenon similar to
that of the wave propagation through the plane layer whose acoustical properties are strongly different from those of the
medium in which the wave propagates. It is well known that the acoustical wave reflects back from this layer almost fully,
but if the layer’s thickness is equal to the integer part of the half of the wavelength, then the layer is completely transparent.
It is very interesting to find out whether a similar phenomenon takes place between a plane and spherical surface.
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Fig. 1. The spherical coordinate systems and distances involved in calculating the scattering from the water surface with the bubble inclusion.

To verify this supposition the stationary problem of scattering of a spherical acoustical wave by the water surface with
the bubble inclusion in the vicinity of the air–water interface was formulated and solved. The graphical statement of the
problem is shown in Fig. 1.

The interface between the air region I and water region II is proposed here as a spherical surface with radius R0. The flat
interface can be obtained as R0 → ∞.

The transmitter (and receiver) is placed at a point O1, which is a distance H above the water surface. The spherical air
bubble of radius a (region III) is submerged at depth h under the water surface, and thus the problem under consideration
is axially symmetric.

The pressure of the spherical transmitted wave is

P1 = P0R−1 exp(ik1R), (1)

where P0 is the constant pressure amplitude, R is the distance from the source point, k1 is the acoustic wave number for the
air, and the time dependent parameter exp(−iωt) is omitted.

The backscattered pressure P2 in the air, and the pressure of wave PII in thewater are presented in the form of a spherical
functional series in the spherical coordinate system O2 (ρ, δ, ξ)

P2 =

∞
n=0

n
m=−n

Anmh(2)
n (k1ρ)Xm

n (δ, ξ), (2)

PII =

∞
n=0

n
m=−n

[Bnmjn(k2ρ) + Cnmnn(k2ρ)]Xm
n (δ, ξ). (3)

Inside the air inclusion III the pressure of wave PIII is presented also in the form of the spherical functional series in the
spherical coordinate system O3 (r, θ, ϕ)

PIII =

∞
n=0

n
m=−n

Wnmjn(k3r)Xm
n (θ, ϕ). (4)

Using the series expansion, the spherical transmitted wave P1 is presented also in the form of a spherical function in the
spherical coordinate system O2 (ρ, δ, ξ)

P1 =

∞
n=0

n
m=−n

gnmh(1)
n (k1ρ)Xm

n (δ, ξ), (5)
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where

gnm =
2ik1P0
Nnm

jn[k1(R0 + H)]; Nnm =
2

2n + 1
(n + m)!

(n − m)!
,

and

Xm
n (α, β) = Pm

n (cosα) exp(imβ).

Here jn, nn, h
(1)
n , h(2)

n , are the spherical Bessel, Neumann, and Hankel functions; Xm
n are the spherical harmonics, and Pm

n
are the associated Legendre functions. The acousticwave number k2 is thewave number for thewater, and thewave number
for the air k3 = k1. All series (2)–(5) are satisfied by boundedness condition and the Sommerfeld radiation condition.

Using the addition formula [13,14] for the spherical wave functions, the pressure of wave PII in water can be rewritten
in the spherical coordinate system O3 (r, θ, ϕ) in the form

PII =

∞
n=0

n
m=−n

[Unmjn(k2r) + Vnmnn(k2r)]Xm
n (θ, ϕ). (6)

The relationship between the coefficients is given by

Bnm =

∞
p=0

p
s=−p

UpsQ (0)
nmps(k2R0); Cnm =

∞
p=0

p
s=−p

VpsQ (1)
nmps(k2R0), (7)

where

Q (0)
nmps(k2R0) =

2
Nps

ip−n
p+n

σ=|p−n|

iσ b(nmps)
σ jσ (k2R0)X

m−s
σ (0, ϕ),

Q (1)
nmps(k2R0) =

2
Nps

ip−n
p+n

σ=|p−n|

iσ b(nmps)
σ nσ (k2R0)X

m−s
σ (0, ϕ),

and

b(nmps)
σ = (−1)s


(n + m)!(p + s)!(σ − m + s)!
(n − m)!(p − s)!(σ + m − s)!

1/2

(np00|σ0)(npm, −s|σ ,m − s).

The symbol (n1n2m1m2|n,m1 + m2) denotes the Clebsch–Gordan coefficients, the sets of numbers that arise in angular
momentum coupling under the laws of quantum mechanics. The explicit form of these coefficients and coefficients b(nmps)

σ

is given in [13].
Using the asymptotic formulas for the spherical functions at x −→ ∞

h(1),(2)
n (x) ≃ (∓i)n+1e±ix/x,

jn(x) ≃
1
x
cos


x −

n + 1
2

π


,

nn(x) ≃
1
x
sin


x −

n + 1
2

π


,

and the characteristics of the associated Legendre functions,

P−m
n (z) = (−1)m

(n − m)!

(n + m)!
Pm
n (z), z ∈ (−1, +1),

Pm
n (z) ≡ 0 ifm > n,

Pm
n (1) = 0 ifm ≠ 0, Pn(1) = 1,

the expressions for Q (0,1)
spmn at ϕ = 0 are determined by

Q (0)
nmps = (−1)n−mip−n (2n + 1)

k2R0

(n − m)!

(n + m)!

p+n
σ=|p−n|

iσ bnmps
σ cos


k2R0 −

σ + 1
2

π


,

Q (1)
nmps = (−1)n−mip−n (2n + 1)

k2R0

(n − m)!

(n + m)!

p+n
σ=|p−n|

iσ bnmps
σ sin


k2R0 −

σ + 1
2

π


.
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The acoustic pressure waves must satisfy the boundary conditions

P1 + P2 = PII, at ρ = R0, (8)
1
µ1

∂

∂ρ
(P1 + P2) =

1
µ2

∂

∂ρ
PII, at ρ = R0, (9)

PII = PIII, at r = a, (10)
1
µ2

∂

∂r
PII =

1
µ3

∂

∂r
PIII, at r = a. (11)

Here µ1 is the density of the air (µ3 = µ1), and µ2 is the density of the water. The wave number k3 = k1 also.
Substitution of (2)–(5) into (8)–(11) results

gnmh(1)
n (k1R0) + Anmh(2)

n (k1R0) = Bnmjn(k2R0) + Cnmnn(k2R0), (12)

l

gnmh(1)′

n (k1R0) + Anmh(2)′
n (k1R0)


= Bnmj′n(k2R0) + Cnmn′

n(k2R0), (13)

Unmjn(k2a) + Vnmnn(k2a) = Wnmjn(k1a), (14)

l

Unmj′n(k2a) + Vnmn′

n(k2a)


= Wnmj′n(k1a). (15)

Here l = (k1µ2)/(k2µ1), and the primes represent the derivatives of the respective Bessel functions with respect to their
arguments.

Using (7), the infinite system of equations for deriving the coefficients Ups and Vps is employed

∞
p=0

p
s=−p

VpsZ (1)
nmps = G(1)

nm;

∞
p=0

p
s=−p

UpsZ (2)
nmps = G(2)

nm, (16)

m = n, n + 1, . . . , for n ≥ 1, and m = 1, 2, . . . , if n = 0.

Here

G(1)
nm =

Fnm
dn

; G(2)
nm =

Fnm
cn

; Ωnp =
cnfp
dnbp

.

Fnm = −
2il

(k1R0)2
qnm,

bn = lj′n(k2a)jn(k1a) − j′n(k1a)jn(k2a),
fn = ln′

n(k2a)jn(k1a) − j′n(k1a)nn(k2a),

cn = lh(2)′
n (k1R0)jn(k2R0) − j′n(k2R0)h(2)

n (k1R0),

dn = lh(2)′
n (k1R0)nn(k2R0) − n′

n(k2R0)h(2)
n (k1R0),

Z (1)
nmps = Q (1)

nmps − ΩnpQ (0)
nmps; Z (2)

nmps = Q (0)
nmps − Ω−1

np Q (1)
nmps.

The analysis of the infinite systems of the algebraic equations similar to the system (16) is presented in [15], where it is
also shown that such systems can be solved by a truncation method.

3. Numerical analysis

In the present study we are particularly interested in obtaining the backscattered pressure P2 only at the source point
O1. The calculation procedure is the following. At the first step we can find the constant coefficients Vps and Ups from the
infinite systems of Eqs. (16). The next step is the calculation of coefficients Bnm and Cnm using the relationships (7). Then
the relationship (12) allows one to obtain the constant coefficients Anm, and thus to determine the backscattered wave P2
according to Eq. (2).

The solution of the infinite systems of Eqs. (16) can be obtained by truncating the systems to an order of p = N , whereN is
the maximum number of terms required in the summation series. To avoid complex calculations, we will consider here the
low frequency range. The order of N can be determined by using a stepwise approach until the numerical results converge.
If we choose the maximum non dimensional frequency k1a ≃ 15, then we have k2a ≃ 3, and the suitable accuracy can be
achieved by truncating the systems (16) to an order of N > k2a = 3.

The approximate solution for the backscattered pressure in the frequency range 0.05 < k1a < 18 was obtained for
the source point O1 (H = 6 cm above the water surface), and the spherical inclusion O3 (radius a = 1 cm), submerged at
the depth h = 5 cm. Here k1a is the non dimensional wave number for the air. This non dimensional frequency range
corresponds to the approximate acoustical range 250–90 kHz.



584 A. Stulov / Wave Motion 50 (2013) 579–585

Fig. 2. Frequency dependence on the backscattered pressure.

The frequency dependence of backscattered pressure is shown in Fig. 2. For the low frequencies (k1a < 0.3) the backscat-
tered pressure is mainly determined by a resonant frequency of the swimming-bladder.

If the bat detected the echo from the swimming-bladder directly, in a high frequency range we could expect to see
an almost constant value of the pressure amplitude with a very small (10−6) modulation due to the scattering from the
swimming-bladder, and nothing else. But, in fact, the amplitude of the backscattered wave reflected from the water surface
depends on the frequency of the incident wave significantly. At some frequencies we may find the narrow dips (marked by
magnifying glasses), where the amplitude falls by up to 75% of the mean level. The width of these dips is equal to 0.006 in
k1a units, or 30 Hz approximately.

We will now attempt to provide a qualitative estimation of application of stationary case to the problem of the bat
echolocation. Experimentalmeasurements show that bats candetect a shift in echo frequencywith a highdegree of accuracy,
as small as 50 Hz [16,17]. Also, if the bat emits the frequency-modulated pulses such that frequency changes as a linear
function of time, with the velocity of alteration 5 kHz/ms, then the dip of the width of 30 Hz is scanned through the time
interval 6 µs. It is a rather long interval, because the bat can resolve as little as 2 µs in the time separation of echoes
[18,19]. In addition, the duration of emitted pulse is equal to about several milliseconds. During this period, in the water
layer of thickness 4 cm, the wave can take over a hundred re-reflections. Thus, the process of the frequency change is quite
slow, and one may consider the process of the echolocation as a stationary problem.

In spite of the dip narrowness, it is evident that if the frequency of the emitted signal is equal to the corresponding
frequency of the dip, the echo from the water surface drops out significantly, indicating the presence of fish under the
water surface. Conceivably, the impact of the fish tissue surrounding the swimming-bladder expands the dip width, and
this phenomenon helps the bat detect the air inclusion in water by using frequency-modulated pulses more easily.

4. Conclusions

Although the analysis in this article considers an ideal model of the fish and its swimming-bladder, a plausible method
of the bat’s echolocation was derived. The important evidence of the theory, which is presented here is the fact that only the
echolocating bats of the species Vespertilionidae that emit the frequency-modulated pulses (FM) can detect the fish under
the water surface. The bats of the other species Rhinolophidae who emit the long constant-frequency (CF) pulses followed
by short FM component are not fish-eaters [3].

The method of the bat echolocation is explained here in terms of the interaction of the frequency-modulated acoustical
pulse with the water layer between the swimming-bladder and the water surface. It was shown that in the presence of the
swimming-bladder the amplitude of the echo reflected by the water surface depends on the signal frequency. In the usual
range of 50–100 kHz of the echolocation there are at least three regions of frequency for which the amplitude of the echo
reflected back to the bat varies by up to 25%. Thus, the bat can locate the fish in water not through the detection of echo
directly reflected by the fish, but using information about the reflection features of the water surface, which may indicate
the presence or absence of the fish.
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