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Abstract

Several stages of physics-based mathematical modelling are described for the design of the piano string scale. Strings are assumed to
be perfectly flexible, and piano hammers are described by a nonlinear hysteretic model. It is also assumed that the parameters of the
hammers for the whole hammer set are determined experimentally beforehand. Simulation procedures are used to systematically adjust
the structure of the piano scale to its optimal value. The efficiency of the piano scale is improved by the analysis of the numerically sim-
ulated string motion and spectra of the string vibrations excited by the impact of the hammer. The set of variables to be optimized
includes the linear mass density and tension of the piano strings and the position of the striking point. In addition, the problem of choos-
ing appropriate tensions for neighbouring strings terminated on separate bass and treble bridges is considered.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The grand piano is a musical string instrument with
more than two hundred years of history. As a result, the
design of a modern grand piano is a masterpiece of art.
However, its musical features have been reached empiri-
cally, as a result of hundreds of experiments and long-term
practical experience.

The musical performance of each instrument is mainly
determined by the piano string scale. This scale is a sum-
mary table of the full collection of the string lengths, string
diameters, diameters of wrapping wires for the bass strings,
and the distance along the string from the hammer striking
point to the nearer string termination. The scaling of the
piano is in general a complicated theoretical problem.
The rules of piano scale design are based on simple physical
principles, on more or less necessary practical requirements
and on purely empirical original data. Considerable
0003-682X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.apacoust.2007.07.008

E-mail address: stulov@ioc.ee
amounts of piano string scale data has been collected and
described, for example, in [1–5].

The author’s first practical experience in this field was
gained through participation in designing and constructing
a new model of the mini-sized Estonia-Minion piano. Using
well-known simple principles, the novel piano string scale
was calculated. Briefly, this procedure was presented in
[6]. The results of these studies were rather good. The first
samples of the new piano were completed by Tallinn Piano
Factory by the end of 1995, and these instruments are
characterized by a remarkable sound projection.

At the end of nineties, the construction of the medium-
sized Parlour piano, which has been manufactured by
Tallinn Piano Factory for many years, was modernized,
and the new string scale of this piano was developed. Some
aspects of the scale design of this instrument were analyzed
in [7].

Until now the rules for piano scale design have been
derived without taking into account the properties or
parameters of piano hammers. It is evident that the process
of exciting the string by striking with a hammer is a very
important component of the sound formation. The sound
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of the piano depends mostly on the detailed motion of
strings excited by the impact of the hammers and, there-
fore, the spectrum of the string vibrations is strongly deter-
mined by its elastic features.

The purpose of this paper is to provide a guideline for
deployment of a physics-based method for piano scale
design. This can be divided into two stages. Firstly, math-
ematical modelling of the hammer–string interaction
allows prediction of the spectrum of the piano string
motion. Secondly, this knowledge is used for appropriate
altering or ‘‘improving’’ of initial scales to increase the effi-
ciency and quality of the sound production of the
instrument.

The first performance criterion which is proposed here
for the string scale optimization, or improvement of its effi-
ciency, is the simple and reasonable physical assumption of
the similarity of spectra of neighbouring notes over the
compass of the piano. The analysis of the numerically sim-
ulated force vs. time dependencies of the hammer–string
interaction is the second factor of the scale to be examined.
This analysis provides the possibility of choosing and opti-
mizing the mass and tension of bass strings in order to
avoid negative phenomena such as multiple contacts
between the hammer and string.

The numerical simulation of the hammer–string interac-
tion is based on the physical models of a piano hammer
described in [8,9]. These models are based on the assump-
tion that the woollen hammer felt is a microstructural
material possessing history-dependent properties.

The elastic and hereditary parameters of piano hammers
were obtained experimentally using a special piano ham-
mer testing device that was developed and built in the Insti-
tute of Cybernetics at Tallinn University of Technology
[10,11].

In this paper a number of simplifying assumptions
regarding the string and string supports are introduced.
Thus, the piano string is assumed to be an ideal flexible
string, but the coupling of strings at the end supports is
neglected, and the bridge motion is also ignored. Never-
theless, it is hoped that the application of the proposed
procedure in piano scale design can improve the tone
and the acoustical performance of grand pianos. In what
follows, the first stage of procedures describes how the
basic parameters are calculated. The second stage,
divided into four subsections, describes how these param-
eters can be enhanced in order to get a better design of
piano scale.

2. First stage

2.1. Piano string scale and basic formulae

Usually the total number of notes of a grand piano is
equal to 88. The number of strings is much larger, because
the number of strings per note changes from one and two
strings for the bass notes to three strings for the treble
notes.
The relationships connecting the velocity c of a trans-
verse nondispersive wave travelling along the string, the
string vibration frequency f, the string length L, the string
tension T, and the linear mass density of string l are the
following:

c ¼ 2fL; T ¼ lc2: ð1Þ

The fundamental frequencies of piano notes are exactly
predetermined by equal temperament according to the
relationship

fnþ1 ¼ fn

ffiffiffi
2

12
p
¼ 1:05946f n; n ¼ 1 . . . 88: ð2Þ

Thus the standard frequency for note A4 (n = 49) is equal
to f49 = 440 Hz, and the note frequencies over the compass
of the piano are exactly stated from f1 = 27.5 Hz for the
first note A0 to f88 = 4186 Hz for the last note C8.

The distribution of the string tension must be a more or
less smooth function across the compass of the piano to
provide a uniform loading of the iron frame. The string
tension is calculated as

T ¼ ð2fLÞ2l ¼ ð2f Þ2LM ¼ pqsðLfdÞ2; ð3Þ

where M is the entire string mass, d is the diameter of the
steel string core, and qs is the density of the steel core
(7860 kg/m3). The last equality in (3) is valid and used only
for plain strings.

Generally, it is considered that for a good instrument
the value of Lfd should be a constant. However, it is very
difficult to achieve such a distribution of the tension. Fre-
quently, for treble notes the strings are adjusted to have
the same tension, while for the bass strings the linear or
parabolic law of tension distribution is usual.

Since the stiffness of a string increases sharply with its
diameter (proportionally to d4), the inharmonicity is espe-
cially noticeable in the case of the bass strings. As wrapped
strings are more flexible than plain strings of the same
diameter, the inharmonicity of bass strings is reduced sub-
stantially by using wrapped, rather than plain, strings of
the same weight.

There are no reliable recommendations available about
how to choose the wrapping wires for the bass notes. A
simple way is to choose the thinnest core wire to avoid
string inharmonicity. This dilemma regarding the determi-
nation of wrapping wires was considered in [7]. In the cur-
rent paper we only assume that, according to relationships
(3), the knowledge of such string parameters as length and
mass is quite enough to accomplish the design task.

2.2. String and hammer models

In this paper it is assumed that the piano string is an
ideal (flexible) string. The displacement y(x, t) of such a
string obeys the simple wave equation

o2y
ot2
¼ c2 o2y

ox2
: ð4Þ
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As in [12], the following system of equations describing the
hammer–string interaction is employed

dz
dt
¼ � 2T

cm
gðtÞ þ V ; ð5Þ

dg
dt
¼ c

2T
F ðtÞ; ð6Þ

where g(t) is the outgoing wave created by the hammer
strike, F(t) is the acting force; m, z(t), and V are the ham-
mer mass, the hammer displacement, and the hammer
velocity, respectively. The hammer felt compression is
determined by u(t) = z(t) � y(0, t). Function y(0, t) de-
scribes the string deflection at the contact point x = 0,
and is given by [13]

yð0; tÞ ¼ gðtÞ þ 2
X1
i¼1

g t � 2iL
c

� �
�
X1
i¼0

g t � 2ðiþ aÞL
c

� �

�
X1
i¼0

g t � 2ðiþ bÞL
c

� �
: ð7Þ

It is assumed that the string of length L extends from
x = � aL on the left to x = bL = (1 � a)L. Parameter
a = l/L is the fractional length of the string to striking
point. It determines the actual distance l of the striking
point from nearest string end. The initial conditions at
the moment when the hammer first contacts the string,
are taken as g(0) = z(0) = 0, and dz(0)/dt = V.

The piano hammers are not only the basic sound-gener-
ating elements of an instrument, their properties also are
among the most important factors in determining its tone
quality. The experimental testing of piano hammers that
consist of a wood core covered with several layers of com-
pressed wool felt, demonstrates that all hammers have a
hysteretic type of force–compression characteristics. A
main feature of hammers is that the slope of the force–com-
pression characteristics is strongly dependent on the rate of
loading. This feature directly affects the loudness, the
brightness, and the tone quality of the instrument.

It has been shown, that nonlinear hysteretic models can
be used to describe the dynamic behavior of the hammer
felt [8,9,11]. These models are based on the assumption that
the woollen hammer felt is a microstructural material pos-
sessing history-dependent properties. Such a physical sub-
stance is called either a hereditary material or a material
with memory.

According to a four-parameter hereditary model of the
hammer presented in [8,11], the nonlinear force F(t) exerted
by the hammer is related to the felt compression u(t) by the
following expression:

F ðuðtÞÞ ¼ F 0 upðtÞ � e
s

Z t

0

upðnÞ exp
n� t

s

� �
dn

� �
: ð8Þ

Here the instantaneous hammer stiffness F0 and compli-
ance nonlinearity exponent p are the elastic parameters of
the felt, and e and s are the hereditary parameters.

Another three-parameter hereditary model of the ham-
mer is presented in [9] in the form
F ðuðtÞÞ ¼ Q0 up þ a
dðupÞ

dt

� �
: ð9Þ

In this case the parameter Q0 is the static hammer stiffness;
compliance nonlinearity exponent p is also an elastic
parameter, and a is the retarded time parameter.

The parameters of the hammers in these models were
obtained experimentally by measuring a whole hammer
set of recently produced unvoiced Abel hammers. The
results of these experiments, and continuous variations in
the hammer parameters vs. key number, are presented in
[9,11,14]. A best match to the whole set of hammers was
approximated using

F 0 ¼ 15500 expð0:059nÞ;
Q0 ¼ 183 expð0:045nÞ;
p ¼ 3:7þ 0:015n;

e ¼ 0:9894þ 8:8� 10�5n;

s ¼ 2:72� 0:02nþ 9� 10�5n2;

a ¼ 259:5� 0:58nþ 6:6� 10�2n2 � 1:25� 10�3n3

þ 1:172� 10�5n4;

ð10Þ

for hammer number 1 6 n 6 88. Here the dimension of
parameter s is (ls), and for a is (ms). The dimension of
F0 and Q0 is (N/mmp).

It was shown in [9] that the two models of piano ham-
mer describing by Eqs. (8) and (9) are effectively equivalent
for practical application. A three-parameter model is used
here for simulation of the hammer–string interaction. This
model is chosen due to its simplicity, but also because it is
significantly more suitable for the numerical calculations
that follow from the large value difference of the time-
dimensional parameters s and a. For this reason we can
provide the numerical simulation of the hammer loading
described by the three-parameter model with a much larger
time sampling rate than would be the case using the four-
parameter model.

The hammer masses of this set were approximated by

m ¼ 11:074� 0:074nþ 10�4n2; 1 6 n 6 88: ð11Þ
The mass of hammer 1 (A0) is 11.0 g, and the mass of ham-
mer 88 (C8) 5.3 g. The spectrum of the string motion ex-
cited by the hammer is calculated directly from the force
history F(t) [12]. The general expression for the string mode
energy level is

Ei ¼ 10 log
2Mx2

i

mV 2
ðA2

i þ B2
i Þ

� �
; ð12Þ

where

Ai ¼
sinðaipÞ

ipcl

Z t0

0

F ðsÞcosðxisÞds;

Bi ¼ �
sinðaipÞ

ipcl

Z t0

0

F ðsÞsinðxisÞds:

Here xi = picL�1 = ix0 is the string mode angular fre-
quency; t0 is the contact time.
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The presented models of piano string and hammer are
used here as a tool for simulation of the hammer–string
interaction.

3. Second stage

3.1. Choosing strings’ tension in case of the discontinuity of

the length of strings

The process of piano string scale optimization is pre-
sented here through an example of an improvement of a
scale of Estonia-Minion piano designed by Tallinn Piano
Factory together with the Department of Mechanics and
Applied Mathematics at the Institute of Cybernetics at
Tallinn University of Technology in 1995.

The Estonia-Minion piano is a small instrument. Its total
length is only 163 cm (5 04). The maximum lengths of the
bass strings and location of the bass bridge are strongly
determined by technological conditions. The form and
location of the treble bridge is firmly determined by its
Bass strings

Line
of strike

Treble strings

1 s/n 2 s/n 3 s/n

1 10 29 88

L26

L27

L1

11
60

1410

L88

Fig. 1. Position of strings over the soundboard of the mini-sized Estonia-
Minion piano.

Table 1
Parameters of strings

Note n f (Hz) L (mm) l (mm)

A0 1 27.5 1239.2 150.2
A]2 26 116.5 831.2 99.2
B2 27 123.5 1031.0 123.0
C3 28 130.8 1007.4 120.1
C]

3 29 138.6 985.3 117.4
D3 30 146.8 964.1 114.8
A4 49 440.0 399.3 47.0
A5 61 880.0 208.3 21.9
position near the main diagonal of the soundboard. The
upper view of the soundboard of this piano with the piano
strings is presented in Fig. 1.

According to the construction of this instrument, the
first 10 notes (A0 � F ]

1) have only one string per note.
The notes from 11 to 29 (G1 � C]

3) have two strings per
note, and the other notes consist of three strings. Those
strings that structure the first twenty six notes (A0 � A]

2) ter-
minate on the bass bridge, and the other strings terminate
on the treble bridge.

As the value of frequency for each note is known, and
the lengths of the strings are also prescribed, in order to
complete the piano scaling the values of appropriate linear
mass densities and tensions of the strings must be
calculated.

For example, in Table 1 a part of the new improved
piano scale is presented for strings whose parameters are
then used in the numerical modelling of the hammer–string
interaction.

Here d1 is the diameter of the winding wire, and s/n is
the number of strings per note. The lengths of the strings
were taken from [6]. The first string is a double-wrapped
string, and for this string d1 is the sum of the diameters
of both copper wires.

It is well-known that, due to the technical requirements
and the recommendations of experienced piano makers, the
tension must be approximately constant across the treble
strings. In our piano the value of string tension for notes
with n P 30 was chosen to be approximately 675 N per
string. However, in practice, it is very difficult to achieve
such a distribution of the tension exactly, because the step
of the wire diameter is equal to 0.025 mm for the steel core,
and 0.05 mm for the winding wire. Nevertheless, by choos-
ing the wire diameters carefully, an almost constant string
tension for treble notes with n P 30 was obtained in [6].
For this reason, and due to the fact that with increasing
key (note) number n the diameters of these strings decrease
smoothly and continuously, the oscillation spectra of
neighbouring strings are alike and very similar. This spec-
tral similarity characterizes also the high sound quality of
the piano.

However, there is a specific point of the piano scale,
where the smooth continuity of all functions is broken.
This is due to the transition of strings from the bass bridge
to treble bridge. In this case, the two strings of the note A]

2

T (N) l (g/m) d (mm) d1 (mm) s/n

1350 290.6 1.500 3.70 1
625 16.7 0.950 0.40 2
793 12.2 0.975 0.25 2
747 10.8 0.975 0.20 2
773 10.4 0.950 0.20 2
626 7.8 1.125 3
687 5.6 0.950 3
672 5.0 0.900 3
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(n = 26), which terminate on the bass bridge are much
shorter than the strings of note B2 (n = 27), which termi-
nate on the treble bridge (see Fig. 1) With increasing note
number n the continuity of the lengths of strings terminated
on the treble bridge then resumes. Therefore, in order to
avoid a rough discontinuity in the sound spectra of neigh-
bouring notes where strings are terminated on the different
bridges, the mass and the tension of the string n = 26 must
be chosen very accurately. The procedure for determining
the masses and tensions of the strings in this domain is
described below.

Again, the aim is to obtain similarity in the spectra of
neighbouring notes. However, the data presented in Table
1 demonstrates the appearance of two additional problems.
The first problem is the discontinuity in the number of
strings per note. This problem was considered in [7], and
the procedure of relative string tension jump minimization
in cases when the number of strings per note varies from
one to two and from two to three was discussed.

The second problem arises from the need to use
wrapped strings for notes n 6 29. It is connected by the fact
that with decreasing of key (note) number n the linear mass
density of the strings should be increased in the direction of
the bass notes. It is obtained by the increases of 0.025–
0.05 mm in string diameter. The maximum practical diam-
eter for plain strings is limited by inharmonicity, and the
largest plain string normally used is about 1.125 mm. Fur-
ther increases in the linear mass density of the strings are
provided by using wrapped strings, which, as was men-
tioned above, are more flexible than plain strings of the
same diameter. Thus, beginning from the string n = 29,
and up to the first string n = 1, the strings must be
wrapped. The linear mass density of these strings must rise
smoothly from a value of l = 7.81 g/m (the linear mass
density of the string n = 30) up to l = 290 g/m (the linear
mass density of the first string).

Unfortunately, due to technological demands, the diam-
eter d1 of the winding wire must be greater than 0.2 mm. As
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Fig. 2. Comparison of spectral envelopes. (a) All strings are terminated on tr
various tension T of string n = 26 terminated on bass bridge.
a results the combination of diameters of core and winding
wires shown in Table 1 was used. This combination pro-
vides the smoothest and most continuous dependence of
the linear mass density on the string number n, for notes
with n = 30, 29, 28, and 27. The linear mass density of these
wrapped strings is calculated according to formulae pre-
sented in [7], and is also proved by experimental testing.
Since the linear mass density of the strings n = 29, 28,
and 27 is determined, the tension of these strings is defined
by formulae (3), and displayed in Table 1. The result of the
string parameters determination is presented in Fig. 2a.

The spectral envelopes are simulated using the basic for-
mulae presented above. The three-parameter hammer
model (Eq. (9)) is explored, and the values of hammer
parameters are computed by formulae (10). The results
were obtained by solving the system of Eqs. (5) and (6)
for initial hammer velocity V = 2 m/s. The string oscilla-
tion spectra were calculated in according to formula (12)
for one string per note. For this purpose the acting mass
of a hammer is defined as being the total hammer mass
defined by expression (11) divided by the number of strings
per note s/n. Visual inspection of the simulated curves
shows that it was possible to achieve a good resemblance
between all four spectra envelopes simultaneously.

The next and more complex step is to determine the ten-
sion of string n = 26 that is terminated on the bass bridge,
and which is much shorter than the neighbouring string
n = 27. A tension must be found which ensures that the
spectrum of its vibrations is similar to the spectrum of
string n = 27. The result of varying the string tension in
the numerical simulation of the string n = 26 is presented
in Fig. 2b. Visual inspection of the spectra envelopes shows
that the curve marked by circles (T = 625 N) exhibits the
closest agreement with the curve marked by diamonds,
which corresponds to the spectrum of vibrations of the
string n = 27. Thus, it seems, the best choice of tension
for the string n = 26 is approximately T = 625 N. Once
the tension has been determined, the linear mass density
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eble bridge and (b) for string n = 27 terminated on treble bridge, and for
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of the string, and the suitable diameters of core and wind-
ing wires can be found. The new optimized or improved
parameters of the string n = 26 are displayed in Table 1.

3.2. Influence of hammer parameters

In the previous section, the optimal string tension was
determined by numerical simulation of the hammer–string
interaction. This requires that the elastic properties of the
hammer be recognized and included. The effect of the ham-
mer parameters on the sound produced by a piano is evi-
dent. In the view of the authors, the design of each piano
scale should take into account all parameters of the ham-
mers (which may be different for each musical instrument).

The process of string excitation through striking with a
nonlinear nonhysteretic hammer was considered in [12].
The change in the hammer–string interaction as the elastic
hammer parameters are varied was demonstrated. The
force histories and sample spectra were calculated for var-
ious values of the hammer compliance and of the stiffness
nonlinearity exponent. Another example of the string exci-
tation by the hammer, which is described by a four-param-
eter hereditary model, was presented in [13].

In Fig. 3 we demonstrate the influence of the hereditary
hammer parameter a on the spectrum of the string vibra-
tions excited by a three-parameter hysteretic hammer.

Using the hammer model in the form (9), force–time
curves and sample spectra have been calculated for the
string n = 49. The parameters of this string are displayed
in Table 1. The initial hammer velocity is V = 1.8 m/s.
Fig. 3 illustrates the option of fixing the other parameters
and varying the retarded time parameter a. A value of
a = 310 ls corresponds to the normal value of retarded
time for this hammer. In case of a = 0 the hammer loses
its hysteretic features. Increasing a means a steeper and
faster rise of the force when the process of the hammer
compression begins, and a correspondingly faster decay
later.
0.0 0.4 0.8 0.2 1.6

time (ms)

0

5

10

fo
rc

e 
(N

)

α=310 μs
α=100 μs
α=0

a b

Fig. 3. Force histories (a) and spectral envelopes (b) for string n = 49. Varyin
p = 4.43, and static hammer stiffness Q0 = 1660 N/mmp.
3.3. First bass string case

The first bass string of the grand piano is the longest
string of the instrument. In the case of the Estonia-Minion

piano, its length is 1239.2 mm, and the note frequency is
equal to 27.5 Hz. All bass strings terminate on a bass
bridge and, as mentioned previously, the string tension dis-
tribution must be an almost linear function of key number
n to provide a uniform loading of the cast-iron frame. An
appropriate tension of 625 N for the last bass string n = 26
was determined in Section 3.1. The question of how to
choose or determine the tension of the first bass string will
now be investigated.

This problem can also be solved by the numerical simu-
lation of the string excitation by the hammer. In Fig. 4a the
force–time dependencies calculated for various string ten-
sions are presented. The initial hammer velocity was chosen
to be the rather high value of 5 m/s. It is well-known that
for a hard blow the hammer leaves the string just before
the first reflection returns from the agraffe (the nearest
string termination). Indeed, the reflection pulse may catch
up with the hammer and make a renewed contact. This
undesirable phenomenon is referred to as multiple con-
tacts. To avoid this unwanted event a value for the string
tension must be chosen so as to minimize the influence of
the reflected pulse.

The results presented in Fig. 4 demonstrate that with
increasing string tension, the second pulse appearance is
reduced. Unfortunately, it is very difficult to increase the
string tension above about 1350 N, because the relatively
short string will be very massive, and thus also too thick.
Due to technological demands the maximal diameter of
the wrapped string can be 9 mm. Therefore, the string is
chosen to be as thick as possible. As a result, for the value
of tension T = 1350 N selected for this string, the second
pulse magnitude is extremely small for all the values of
hammer velocity. Having defined a tension for the first
and the last strings, the linear law of tension distribution
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Fig. 4. Force histories computed for first bass string n = 1: (a) constant hammer velocity V = 5 m/s and (b) constant string tension T = 1350 N.
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can be applied for all bass strings and, according to rela-
tionships (1) and (3), the masses of strings are then also
defined. The parameters of this string are displayed also
in Table 1.

3.4. Choosing the striking point

As the string vibration spectrum is very sensitive to the
position of the fractional striking point a, especially for the
treble strings, the numerical simulation of the hammer–
string interaction enables the piano string scale to be cho-
sen with a more uniform spectrum.

For approximately 60 upper notes of the grand piano,
the position of the striking point determined by parameter
a gradually becomes displaced from 1/8 to 1/24 of the
whole string length in the direction of the high notes. In
Fig. 5, spectra are displayed for note A5 (n = 61) calculated
for initial hammer velocity V = 1.5 m/s.

The recommended (used in practice) value of the frac-
tional striking point for this note is close to 1/8.8
(a = 0.114). Visual inspection of Fig. 5 shows that the
odd harmonics in the spectrum corresponding to the rec-
ommended striking point are damped significantly. It is
1 5 10 15
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Fig. 5. Spectra for note A5 (n = 61) calculated for different striking point.
likely that such a spectrum was the aim of the designers
of a grand piano. However, if a more uniform spectrum
is required, another point of hammer impact can be
selected. If the criterion of optimization is the homogeneity
of the spectrum, then the value of fractional striking point
a = 0.105 is a better choice.

4. Summary

The influence of the hammer parameters on the sound
produced by a piano is obvious. For this reason, the design
of the piano scale should take into account all parameters
of the hammers that may be used by piano manufacturers.
Although, the hammers produced by various firms are sig-
nificantly different, it is assumed that elastic parameters of
hammers for the whole hammer set are experimentally
measured beforehand and known. The knowledge of piano
hammer characteristics over the compass of the piano
enables investigation of the vibrations of all piano strings
excited by the impact of the hammer.

Simple and efficient procedures, based on the numerical
simulation of the hammer–string interaction have been
described and applied for the piano string scale optimiza-
tion. The presented method is only a first step in the direc-
tion of using of mathematical models in the design of new
models of grand pianos. A number of simplifying assump-
tions concerning the string and string supports are intro-
duced. Thus, the piano string is assumed to be an ideal
flexible string, but the coupling of strings at the end sup-
ports is neglected, and the bridge motion is also ignored.
The mobility of strings support is not considered due to
of absence of practical data about the piano bridge imped-
ance. Besides, the bridge stiffness varies significantly for
different types of instruments and, moreover, it is very dif-
ficult to provide experimental testing of the string support.

Further experimental investigations of piano bridges of
the real instruments should give a possibility for creation
of more realistic models of the string vibrations in order
to get results that come closer to measurements in real pia-
nos. Nevertheless, the simplifying assumptions made in this
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paper are not regarded as a serious weakness of the proce-
dure presented. The new optimized piano scale has been
realized at Tallinn Piano Factory, and by experts estima-
tion the sound quality of new pianos is rather high.
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