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Shock wave propagation in nonlinear microstructured wool felt
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Abstract. On the basis of experimental data from the piano hammers study a one-dimensional constitutive equation of wool
felt material is proposed and used to study compression pulse propagation in microstructured felt. One-dimensional strain wave
propagation in wool felt is considered. It is revealed that stiffness of microstructured wool felt is a nonlinear function of the felt
compression, and it is strongly determined by the rate of the felt loading. This means that the speed of the compression wave that
propagates in such medium depends on the form of the wave and its amplitude. It is shown that a pulse of a smooth form that has
no discontinuity on its front propagates with a constant speed up to the moment when the accumulation of nonlinear effects results
in the eventual continuous wave breaking. After that moment, a shock wave will be formed, and the velocity of the shock wave
propagation depends on the value of its amplitude jump discontinuity across the wave front. It is shown that the front velocity of
the shock wave is greater than the velocity of sound in a linear medium.
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1. INTRODUCTION

The problem considered in this paper was originated by a piano hammer study. There are many papers
devoted to the process of piano string excitation by the hammer impact. Here we can recollect the remarkable
historical reviews by Hall [1], Suzuki and Nakamura [2], and Fletcher and Rossing [3].

It is well known [4] that the mode energy spectrum of a vibrating string may be expressed entirely
through the contact time duration t0 and the acting force F(t) according to

An + jBn = j
[

2sin(nπν)
nπcµ

]∫ t0

−∞
F(t)e jωntdt. (1)

Here An and Bn are Fourier amplitudes, µ is the string density, c is the speed of transverse waves, ν denotes
the position of the striking point, ωn are the normal mode frequencies, and the force history F(t) can
be determined from the hammer compression. This result gives the basis for a statement that the sound
generated by excited string strictly depends on the interaction time between the hammer and the string, and
therefore, the contact time duration t0 is one of the most important characteristics of sound formation.

The problem of the contact time duration between the hammer and the string, as well as the discussion
what can cause the hammer to rebound, is a central point of many papers (e.g. [4,5]). This problem is
clarified in [6], where using the nonlinear hysteretic hammer model it was shown [7,8] that the bulk bass
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hammer, which is relatively light compared to the string mass, may lose the contact with a string due to only
the hammer elasticity and without the assistance of waves travelling along the string.

In this paper we will show that the hammer made of felt can leave the string due to the process of the
felt unloading, which is caused by compression waves travelling inside the hammer body. According to a
nonlinear hysteretic piano hammer model and in reality [9], the duration of contact between the hammer
and the string decreases with the increasing of the striking velocity of the hammer. It is due to the fact that
the speed of waves travelling through the hammer body increases with the growth of its amplitude.

2. PIANO HAMMER PROPERTIES AND THE FELT MODEL

Felt has been used in manufacturing piano hammers for almost two hundred years. The felt made of wool is
a unique and indispensable coating matter of piano hammers. The first experimental study of compression
characteristics of piano hammers was reported in [10]. Further experimental testing of piano hammers
presented in [9] confirmed the main dynamical features of piano hammers: (a) the nonlinearity of the force-
compression characteristics of the hammer, (b) the strong effect of the hammer velocity on the slope of the
loading curve, and (c) the significant influence of hysteresis, i.e. the loading and unloading processes of
piano hammer are not alike. The first dynamical model of the piano hammer that took into consideration
both the hysteresis of the force-compression characteristics and their dependence on the rate of the hammer
loading was presented in [7]. The derived model is based on the assumption that the hammer felt (made of
wool) is a microstructured material possessing history-dependent properties, or, in other words, a material
with memory.

Experimental results of the piano hammer examination at different rates of loading are displayed in
Fig. 1 [9]. The numerical simulation of the piano hammer impact was provided by the dynamical hysteretic
model of the piano hammer, which relates the nonlinear force F(t) exerted by the hammer and the felt
compression u(t) in the form [7]

F(u(t)) = F0

[
up(t)− γ

τ0

∫ t

0
up(ξ )exp

(
ξ − t

τ0

)
dξ

]
, 0 6 γ < 1. (2)

Here the instantaneous stiffness F0 and the parameter of nonlinearity p are the elastic parameters of the felt,
and the hereditary amplitude γ and the relaxation time τ0 are the hereditary parameters.

Figure 1 demonstrates the real features of the piano hammer: with the increasing loading the contact
time diminishes and the felt stiffness increases.

To consider wave propagation in the felt material and using the results of the piano hammers study, we
proposed in [11] a one-dimensional constitutive equation of the wool felt material in the form

σ(ε) = Ed

[
ε p(t)− γ

τ0

∫ t

−∞
ε p(ξ )exp

(
ξ − t

τ0

)
dξ

]
, 0 6 γ < 1. (3)

Here σ is the stress, ε = ∂u/∂x is the strain, u is the displacement, the constant Ed is the dynamic Young’s
modulus of the felt, and p, γ , and τ0 are the same parameters of the felt that were mentioned above. Because
this approach is based on the piano hammer model, we are limited to describing only the compression wave
propagation (ε(x, t)> 0).

From Eq. (3) we may obtain the constitutive equation for very fast felt deformation, when t ≪ τ0,

σ(ε) = Edε p(t), (4)

and for very slow deformation, when t ≫ τ0,

σ(ε) = Esε p(t). (5)

Here the constant Es = Ed(1−γ) is the static Young’s modulus, and in each of these two cases the unloading
of the felt occurs in the same way as the loading.
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Fig. 1. Comparison of measured data and numerical simulations of piano hammers showing (a) force histories and (b) force–
compression characteristics. The arrows show the directions of the compression and decompression branches. The diamonds
denote measured data for hammer striking velocities 1.31 m/s (contact time t0 = 1.7 ms), triangles for 1.00 m/s (t0 = 2.0 ms) and
bullets for 0.74 m/s (t0 = 2.5 ms). The solid lines are the numerically simulated curves.

3. COMPRESSION WAVES IN FELT

The one-dimensional strain wave propagation in wool felt is considered in [11,12]. By using the classical
equation of motion

ρ
∂ 2u
∂ t2 =

∂σ
∂x

, (6)

where ρ is the felt density, and the constitutive equation (3), a nonlinear partial differential equation with
third-order terms is derived in the following form [11]:

ρ
∂ 2u
∂ t2 +ρτ0

∂ 3u
∂ t3 −Ed

{
(1− γ)

∂
∂x

[(
∂u
∂x

)p]
+ τ0

∂ 2

∂x∂ t

[(
∂u
∂x

)p]}
= 0. (7)

The dimensionless form of this equation is obtained by using the non-dimensional variables that are
introduced by the relations

u ⇒ u/l0, x ⇒ x/l0, t ⇒ t/α0, (8)

where
α0 = τ0/δ , l0 = cdα0

√
δ , cd =

√
Ed/ρ , cs = cd

√
δ , 0 < δ = 1− γ 6 1. (9)

In terms of non-dimensional strain variable ε(x, t) Eq. (7) reads

(ε p)xx − εtt +(ε p)xxt −δεttt = 0. (10)

Several samples of felt pads were subjected to static stress–strain tests. For numerical simulation the
reasonable value of the static Young’s modulus of felt was chosen to be Es = 0.1 MPa. The value of the felt
density was determined as ρ ≈ 103 kg/m3. By using the realistic values of hereditary parameters γ = 0.99
and τ0 = 5 µs presented in [9], we obtain

δ = 0.01, Ed = 10 MPa, cs = 10 m/s, cd = 100 m/s. (11)
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Fig. 2. Nonlinear evolution of a pulse (tm = 1/2) for time moments t = 2, t = 3, and t = 4. Pulses of an initial amplitude A = 0.1
are shown by the solid lines, A = 0.06 by dashed lines, A = 0.02 by dotted lines. Bullets show the position of the pulse maximum.
The results have been normalized relative to the largest amplitude (A = 0.1).

By using these values of material constants, the space scale l0 and time scale α0 that were used in (8) are

l0 = 5 mm, α0 = 0.5 ms. (12)

Numerical analysis of the strain wave propagation is considered in [11]. This calls for the solution of
the boundary value problem of Eq. (10). A boundary value of the strain prescribed at x = 0 is selected in the
following form

ε(0, t) = A
(

t
tm

)3

e3(1−t/tm), (13)

where tm defines the time coordinate corresponding to the maximum of the pulse amplitude A. This form
of a pulse is continuous and smooth, and it is very similar to the force history pulse shown in Fig. 1a. The
front of a pulse satisfies the necessary conditions ε(0,0) = εt(0,0) = εtt(0,0) = 0.

The effect of the initial pulse amplitude A on the pulse evolution is presented in Fig. 2. The material
parameters were selected as δ = 0.2 and p = 1.5. The numerical solution is presented for three sequential
time moments and for three different values of the initial amplitude A of the boundary value (13).

One can see that in this case the front velocity is a constant value Vf = cs and does not depend on the
pulse amplitude. On the other hand, it is also evident that for larger amplitudes the maximum point, or the
crest of a pulse (shown by bullets), propagates faster than its front.

Therefore a forward-facing slope of a pulse becomes steeper with a distance of propagation, and
accumulation of this effect results finally in the pulse breaking. This means that the shock wave will be
formed at the moment when the forward-facing slope of a pulse becomes vertical, and thus the value of
discontinuity across the wave front is determined by the amplitude of the pulse crest.

4. SHOCK WAVE PROPAGATION

Here we consider the propagation of a pulse with a finite jump discontinuity on the front through felt
material. For any rate of loading the felt material is defined with the aid of the nonlinear constitutive
equation (3) in the form

σ(U) = Ed

[
(Ux)

p − γ
τ0

∫ t

−∞
(Ux)

p e(ω−t)/τ0dω
]
, p > 1, 0 6 γ < 1. (14)
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Fig. 3. Shock wave parameters as functions of the value of discontinuity ε0 across the wave front. (a) Non-dimensional front
velocity υ shown for various values of parameter p. (b) Non-dimensional distance x of the shock formation shown for δ = 0.01
(diamonds), δ = 0.2 (triangles), and δ = 0.6 (bullets).

The conservation law
d
dt

∫ x2

x1

ρUtt(x, t)dx = σ(x2, t)−σ(x1, t) (15)

gives a correspondence between the shock conditions and the shock velocity Vs

[σ ] =−ρVs[Ut ], (16)

where the brackets indicate the jump in the quantity [13].
The constitutive equation (3) gives the relationship

[σ ] = Ed [Ux]
p. (17)

By using Eqs (16) and (17) and taking into account the kinematic identity [Ut ] =−Vs[Ux], one can find
the relationship between the anticipated front velocity Vs and the value of the discontinuity [Ux] across the
wave front

υ =
Vs

cd
= [Ux]

p−1
2 , [Ux] = [ε] = ε0 = const > 0. (18)

The dependence of non-dimensional front velocity on the value of discontinuity across the wave front
is shown in Fig. 3a. As it was mentioned above, in the linear case and for the continuous smooth pulse
(ε0 = 0) the front velocity is a constant value Vf = cs. In case of the shock wave propagation (ε0 > 0), the
front velocity Vs is always greater than Vf because cd > cs (see relationships (9)).

By numerical simulation of the strain wave propagation, whose initial form is given by the smooth and
continuous boundary value (13), the distances at which the shock pulse is formed were specified and the
values of discontinuity across the wave front at these points were determined. These dependences of the
distance x of the shock wave appearance as a function of the value of discontinuity ε0 across the wave front
for various values of parameter δ are presented in Fig. 3b.

5. CONCLUDING REMARKS

Resuming the results presented above, we can state that the compression wave, whose shape is initially
continuous and smooth enough, propagates with a constant speed Vf = cs until the shock pulse is formed.
After that moment the pulse propagates with a velocity Vs > Vf , and this velocity depends on the value of
the discontinuity ε0 across the wave front, which, in turn, depends on the initial wave amplitude.



366 Proceedings of the Estonian Academy of Sciences, 2015, 64, 3S, 361–367

Table 1. Parameters of pulse propagation

ε0 x, 1 X , mm t1, ms Lx, mm υ , 1 Vs, m/s t2, ms t∗, ms Vav, m/s

0.05 3.20 16.0 1.600 0 0.473 47.3 0 1.600 10.00
0.075 1.75 8.75 0.875 7.25 0.523 52.3 0.139 1.014 15.78
0.10 1.13 5.65 0.565 10.35 0.562 56.2 0.184 0.749 21.36
0.15 0.74 3.70 0.370 12.30 0.622 62.2 0.198 0.568 28.17
0.20 0.60 3.00 0.30 13.00 0.669 66.9 0.194 0.494 32.39

Finally, using the data obtained, we can estimate the average velocity Vav of the compression wave
propagating through the felt material. For a numerical example we have chosen the nonlinear parameter
p = 1.5, and the distance of wave propagation L = 16 mm, which is equal approximately to the double
thickness of the first bass piano hammer. Here we chose the same felt parameters, the space scale l0, and the
time scale α0 as are presented in (11) and (12).

The non-dimensional parameters x and υ are obtained by using data from Fig. 3. The other parameters
presented in Table 1 are determined by the relations

X = xl0, Lx = L−X , Vs = υcd , t1 = X/cs, t2 = Lx/Vs, t∗ = t1 + t2, Vav = L/t∗. (19)

Here X is the distance through which the wave propagates in a felt with a ‘normal’ speed cs in the time t1,
Lx is the part of a whole distance L through which the wave propagates in the time t2 with the velocity Vs,
and t∗ is the total time of propagation.

Analysis of the data displayed in Table 1 shows that the wave with a small initial amplitude, which results
in the value of jump discontinuity across the wave front ε0 = 0.05, propagates through the whole distance
as a smooth pulse. With the increasing wave amplitude, the appearance of the shock pulse increases the
average propagation speed Vav.

We associate here the total time of propagation t∗ with the duration of contact between the hammer and
the string. The amount of time decreases with the increasing of the amplitude of the hammer impact. This
means that the speed of waves, travelling from the contact point to the hammer kernel and back, increases
with the growth of its amplitude. Here we can state that the time of propagation t∗ decreased and the average
speed of propagation increased with a rise of the wave amplitude just in the similar manner as the nonlinear
hysteretic piano hammer model predicts.
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Lööklainete levimine mittelineaarses mikrostruktuurses villases vildis

Anatoli Stulov ja Vladimir Erofeev

On uuritud ühemõõtmelist survelainete levi villases vildis. Vilti vaadeldakse mikrostruktuurse materja-
lina ja selle omadusi kirjeldav olekuvõrrand on tuletatud klaverihaamritega sooritatud eksperimentidest
saadud andmete põhjal. Selle järgi on vildi jäikuse ja (surve)deformatsiooni vahel mittelineaarne seos,
mis omakorda sõltub tugevalt koormamise kiirusest. See tähendab, et sellises keskkonnas leviva surve-
laine kiirus sõltub laine kujust ja amplituudist. Autorid näitavad, et algselt katkevusi mitteomav laine levib
jääva kiirusega kuni ajahetkeni, kui mittelineaarsete efektide mõju akumuleerumine viib lööklaine formee-
rumiseni. Tekkinud lööklaine kiirus sõltub selle amplituudist katkevuskohas ja on suurem kui heli kiirus
lineaarses keskkonnas.


