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Abstract In frame of the self-consistent mathematical model, which includes the
dynamics of a material and the state of its defects, the particular qualities of acous-
tic wave propagation in the material with damages is considered. In this study a
constitutive equation of the damaged medium is derived, andthe similarity between
the models for damaged materials and the medium with memory is confirmed. The
dispersion analysis of the model is carried out, and it is shown that the damage of the
material gives rise to frequency-dependent attenuation and anomalous dispersion of
phase velocity of acoustic wave propagating through that material. This makes it
possible to estimate the damage of the material by means of a nondestructive acous-
tic method.

1 Introduction

Today, the mechanics of a damaged continuum is intensively developed by many
authors. The first works in this field were fundamental studies by L. M. Kachanov,
which are summarized in his monograph [6], and the detailed investigations and
analysis by Yu. N. Rabotnov that are generalized in [11]. Thesignificance of these
pioneer works, which presently are recognized as classical, consists in the possibil-
ity of using a unified approach for description of the damage of elastic and elasto-
plastic bodies.

The damage is usually understood as a reduction of an elasticresponse of the
body due to decreasing of the effective area, through which the internal forces are
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transmitting from one part of the body to another. This phenomenon is caused by
the appearance and spreading of the scattered field of microdefects (the microcracks
in the case of elasticity, the dislocations in the case of plasticity, the micropores in
the case of creep, and the surface microcracks in the case of fatigue) [10].

The damage, i.e. the degradation of the mechanical properties of a solid material,
cannot be measured directly in the same manner as, for example, velocity, force, or
temperature. The damage can be detected indirectly only by analyzing the response
of the elastic structure on the various external impacts. According to experimental
knowledge, the presence of a damages field inside a solid material can be observed
also by changing of physical features of the structure. For example, it may be the
decreasing of velocity of ultrasonic signal propagation [17, 5, 16], a decrease in the
Young’s modulus (the modulus defect) [8], a decrease in material density (loosen-
ing) [14], a hardness change [2], a decrease in the stress amplitude under the cyclic
testing [9, 12], and an acceleration of the tertiary creep [1].

The purpose of the present study is the modeling of the process of acoustic wave
propagation through the damaged material, and estimation of influence of damage
on the phase velocity and attenuation of that wave.

2 The self-consistent model for damages description

In accordance with conventional assumptions, the measure of damage under defor-
mation is taken to be a scalar damage parameterψ(x, t) > 0 that characterizes the
relative density of microdefects uniformly dispersed in a unit volume. This parame-
ter is zero in the absence of damage and close to unity at the instant of fracture. The
process of the damages gain in the structure under study is calculated numerically
step by step by solving the kinetic equation of damage at every stage of loading.
This procedure is continued until the damage parameterψ(x, t) reaches an initially
prescribed limiting value, which is close to unity.

Generally, in mechanics of deformed solids, the dynamic problems and the prob-
lem of defects accumulation are considered separately. In the development of such
approach, the usual practice is to postulate the relationship between the velocity of
elastic wave and the value of damages by some kind of dependence in advance, and
after that, it is assumed that the constant coefficients at this relation can be estab-
lished on the basis of experimental data.

Usually [13], the phase velocityVph(ω) of propagating wave and its attenuation
α(ω) are chosen in the power polynomial form as functions of frequencyω , and as
a linear functions of damageψ as

Vph(ω) =C0(1− h1ω − h2ψω2), (1)

α(ω) = (h3+ h4ψ)ω4, (2)

whereC0 =
√

E/ρ is the velocity of the longitudinal elastic wave propagating in
the material in the absence of defects,E is the Young’s modulus,ρ is the density
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of the material, andh1−4 are the constant coefficients, which must be determined
experimentally.

The evolution of damage is described by the kinetic equationderived in [15] in
the form

dψ
dt

= f (σ ,ψ), (3)

whereσ is the stress due to the external impact.
In most cases, the functionf is approximated by a linear function, or, in some

cases, by a power polynomial dependence [15].
Although this approach has undoubted advantage such as simplicity, it has also

some imperfections, which are typical for any approach thatis not based on the
physical models of the processes and systems.

The other novel method of materials with damages examination was presented
in [3, 4]. In these papers the process of propagation of a longitudinal acoustic wave
along a rod is considered. It is also assumed that the rod is subjected to the static or
cyclic tests, and during the process of loading the damages may accumulate in the
rod’s material.

This work differs significantly from previous studies. In [3, 4], the authors pro-
pose the idea that the problem under study is the self-consistent problem, and there-
fore, in addition to the damage evolution equation (3), which can be represented in
the form

∂ψ
∂ t

+
1
τ

ψ = β2E
∂u
∂x

, (4)

the additional equation describing the dynamics of the rod given by

∂ 2u
∂ t2 −C2

0
∂ 2u
∂x2 +β1

∂ψ
∂x

= 0, (5)

must be taken into account.
Here we denote the particle displacement at the rod midline by u(x, t), and the

constantsτ,β1 andβ2 characterize the relations between the cyclic process of the
rod loading and the speed of the damages accumulation.

Equation (4) may be rewritten in equivalent form as

ψ(x, t) = β2E
∫ t

0

∂u
∂x

(x,ξ )e(ξ−t)/τ dξ = β2E R(t)∗
∂u
∂x

(x, t), (6)

where the sign∗ denotes the convolution sign, andR(t) is the relaxation function
given by

R(t) = e−t/τ . (7)

Equation (6) describes the process of damages growth as a function of the strain
(ε = ∂u/∂x) history, and one can state that the constantτ > 0 is the relaxation time.
Here we assume that the history of the damages appearance starts att = 0.

From Eq. (6), it follows that at the beginning of process, ift ≪ τ, there are no
defects (ψ = 0) in the rod material at all. In the opposite case, ift ≫ τ, from Eq.
(6) one can obtain the dependence describing the process of damages growth for the
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case of slow changing of strain in the form

ψ = τβ2E
∂u
∂x

. (8)

Now, using Eq. (6), Eq. (5) can be written as

ρ
∂ 2u
∂ t2 = E

∂
∂x

(

∂u
∂x

−ρβ1β2R∗
∂u
∂x

)

. (9)

Taking into account the classical equation of motion given by

ρ
∂ 2u
∂ t2 =

∂σ
∂x

, (10)

we can derive the constitutive equation of the media with damages in the form

σ = E(1−ρβ1β2R∗)
∂u
∂x

= E

[

∂u
∂x

−ρβ1β2

∫ t

0

∂u
∂x

(x,ξ )e(ξ−t)/τ dξ
]

. (11)

Materials described by this equation for which the exerted stress is determined by
the history of the deformation are ”materials with memory.”

As indicated by Rabotnov [11], a model of material with memory may be
obtained by means of replacing constant elastic parametersof solids by time-
dependent operators. So for the case of material with damages, the Young’s modulus
is now not a constant, but an operator

E0(t) = E(1−ρβ1β2R∗), (12)

and thus the constitutive equation (11) of the media with damages one can rewrite
in compact form as

σ(ε) = E0(t)ε. (13)

From Eq. (13), it follows that ift ≪ τ, then we obtain the constitutive equation
for the fast loading in the form

σ = E
∂u
∂x

= Ed
∂u
∂x

. (14)

Here the constantEd = E is is the dynamic Young’s modulus.
In the opposite case, ift ≫ τ, then we obtain the constitutive equation, which is

valid for the slow loading

σ = Ed(1− τρβ1β2)
∂u
∂x

= δEd
∂u
∂x

= Es
∂u
∂x

, (15)

where the quantityEs = δEd is the static Young’s modulus of the material, and
parameterδ = 1− τρβ1β2 characterizes the material damages.
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Due to the evident inequalityEd > Es > 0, parameter 0< δ ≤ 1. The value of
parameterδ = 1 denotes the absence of damages, and the value of this parameterδ
is close to zero at the instant of fracture.

We can notice that Eqs. (4) and (5) can be reduced to a single one by eliminat-
ing the damage parameterψ(x, t). In terms of displacementu(x, t), it leads to an
equation in the following form

∂ 2u
∂ t2 − δC2

0
∂ 2u
∂x2 + τ

∂ 3u
∂ t3 − τC2

0
∂ 3u

∂x2∂ t
= 0. (16)

Dimensionless form of the Eq. (16) is obtained by using the non-dimensional
variables that are introduced by relations

U = u/τC0, X =
√

δx/τC0, T = δ t/τ. (17)

Thus Eq. (16) in terms of non-dimensional displacement variableU(X ,T ) takes the
following form [7]

∂ 2U
∂T 2 −

∂ 2U
∂X2 + δ

∂ 3U
∂T 3 −

∂ 3U
∂X2∂T

= 0, (18)

and describes acoustic wave propagation in the medium with damages.

3 Dispersion relations

The fundamental solution of Eq. (18) has the form of traveling waves

U(X ,T ) =U0 eiκX−iωT , (19)

wherei is the imaginary unit,κ is the wavenumber,ω is the angular frequency, and
U0 is an amplitude.

The dispersion lawΦ(κ ,ω) = 0 for Eq. (18) is defined by relation

iδω3−ω2− iκ2ω +κ2 = 0. (20)

In the case of boundary value problem the general solution ofEq. (18) has the fol-
lowing form

U(X ,T ) =
1

2π

∫ ∞

−∞
Θ(ω)eiκ(ω)X−iωT dω , (21)

whereΘ(ω) is the Fourier-transform of the boundary value of disturbance pre-
scribed atX = 0

Θ(ω) =

∫ ∞

−∞
U(0,T )eiωT dT. (22)

In case of Cauchy problem the general solution of Eq. (18) hasthe following form
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U(X ,T ) =
1

2π

∫ ∞

−∞
χ(κ)eiκX−iω(κ)T dκ , (23)

whereχ(κ) is the Fourier-transform of initial disturbance prescribed atT = 0

χ(κ) =
∫ ∞

−∞
U(X ,0)eiκXdX . (24)

In general caseκ = κ(ω) andω = ω(κ) are the complex quantities and can be
derived from dispersion relation (20). In order to provide the dispersion analysis in
context with a boundary value problem we rewrite wavenumberκ(ω) in the form

κ(ω) = k(ω)+ iλ (ω), (25)

wherek =Re(κ) andλ = Im(κ). Using this notation, expression (19) can be rewrit-
ten as follows

U(X ,T ) =U0ei(k+iλ )X−iωT = e−λ XU0eikX−iωT . (26)

It is clear that for positive values ofλ we can observe the exponentially decaying
wave that propagates along the positive direction of the space axis. In other words
the spectral componentsk(ω) = Re(κ) decay exponentially asx, t → ∞ for λ (ω)>
0. On the other hand, ifλ (ω) < 0, then the amplitudes of the spectral components
grow exponentially as they propagate further along the positive direction of thex-
axis. In the latter case the solution of equation (18) becomes unstable forT ≫ 0.

4 Dispersion analysis

As discussed above, in order to study the wave propagation along thex-axis one
needs to solve the dispersion relation (20) against wavenumber κ . This solution
takes the form

κ(ω) =
ω
√

1− iδω
√

1− iω
. (27)

For real values ofk andλ the dispersion relation (20) can be rewritten as follows

k2+2ikλ −λ 2− ik2ω +2kλ ω + iλ 2ω −ω2+ iδω3 = 0. (28)

In order to study real and imaginary parts separately, the system of equations in the
form

{

k2−λ 2+2kλ ω −ω2 = 0

2kλ −ω(k2−λ 2)+ δω3 = 0
(29)

is solved and analyzed. Solutions with respect tok andλ are
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k(ω) = LM
(
√

1+M2−1
)−1/2

, (30)

λ (ω) = L
(

√

1+M2−1
)1/2

, (31)

where

L = ω

√

1+ δω2

2(1+ω2)
, M =

(1− δ )ω
1+ δω2 . (32)

The frequency dependenciesk(ω) = Re(κ) andλ (ω) = Im(κ) of dispersion rela-
tion (20) are displayed in Fig. 1 for the various values of thematerial parameterδ .
Parameterδ can have values on the intervalδ = [0,1].
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Fig. 1 Dispersion relationsk(ω) andλ (ω) for various values of parameterδ in range [0.0, 1.0]
with step 0.1

If δ = 1, then from (30) and (31) one can find

k(ω) = ω , λ (ω) = 0. (33)
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These relations correspond to the ideal elastic material without damages, and in
which the wave propagates without attenuation.

In case ofω → ∞ it is easy to see thatk(ω)→ ω
√

δ and that

lim
ω→∞

λ (ω) =
1− δ
2
√

δ
. (34)

For large frequencies, the exponential decay constantλ depends only on the param-
eterδ .

The phase velocity is defined asvph(ω) = ω/k, and it takes the following general
form

vph =

√

2(1+ω2)(N − δω2−1)
(1− δ )ω

, (35)

where

N =
√

(1+ω2)(1+ δ 2ω2). (36)

The frequency dependencevph(ω) for various values of parameterδ is shown in
Fig. 2.
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Fig. 2 Phase velocity as a function of frequency for various valuesof the parameterδ in range
[0.0, 1.0] with step 0.1

In case ofδ = 1, the phase velocity becomesvph(ω) = 1 (cf. relationship (33)).
For large frequencies, the phase velocity has a limit

lim
ω→∞

vph(ω) =
1
√

δ
. (37)

The group velocity, which is defined asvgr(ω) = dω/dk = (dk/dω)−1 takes in
this case the following general form
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vgr =
2(1+ω2)2

√

2(1+ δ 2ω2)
(

N − δω2−1
)3/2

ω(1− δ )[(1+3δ 2)ω4− (2N +2δN−3δ 2−5)ω2−4(N −1)]
, (38)

whereN is defined by relation (36). The frequency dependencevgr(ω) for various
values of the parameterδ is presented in Fig. 3.
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Fig. 3 Group velocity as a function of frequency for various valuesof the parameterδ in range
[0.0, 1.0] with step 0.1. Maximum ofvgr for δ < 1 is shown bydashed line

In case ofδ = 1, the group velocityvgr(ω) = 1 (cf. relationship (33)). For large
frequencies the group velocity has the same limit as the phase velocity did

lim
ω→∞

vgr(ω) =
1
√

δ
. (39)

The essential difference between the behavior of phase and group velocities is that
the phase velocity is a monotonic function of frequency, while the group velocity
has a maximum. The maximum of different values ofδ are located on the dashed
line shown in Fig. 3.

Comparison of phase and group velocities for a single value of δ is presented in
Fig. 4. In the material with damages the group velocity is always greater than the
phase velocity for any frequency. This fact means that the material with damages is
a medium with anomalous dispersion. This is true for any value of parameterδ < 1.
In case ofδ = 1, thenvgr = vph = 1, and we have the non-dispersive case.

5 Conclusions

We have presented results for simulation of acoustic wave propagation in the
medium with damages. Based on the self-consistent model fordamages description,
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Fig. 4 Comparison of group and phase velocities for single value ofthe parameterδ = 0.5. The
dashed line shows the limit for the large frequencies

we have been able to demonstrate the similarity between the models for damaged
materials and the medium with memory.

We have derived the constitutive equation of the material with damages, and ex-
amine the influence of the parameters of damage on the processof wave propagation
in that medium.

The dispersion analysis of the model have been carried out, and the effect of the
material damage on attenuation and phase velocity of propagating acoustic wave
have also been estimated. It has been shown that the damage causes the anoma-
lous dispersion and the frequency-dependent attenuation of the wave propagating
through that material.

The results obtained may be of some use for developing of a technique for non-
destructive acoustic detection of damages in solids and structural elements.
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