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Abstract In frame of the self-consistent mathematical model, whittiudes the
dynamics of a material and the state of its defects, thequéati qualities of acous-
tic wave propagation in the material with damages is comsitieln this study a
constitutive equation of the damaged medium is derivedila@dimilarity between
the models for damaged materials and the medium with mersamgrifirmed. The
dispersion analysis of the model s carried out, and it iswhitnat the damage of the
material gives rise to frequency-dependent attenuatidraanmalous dispersion of
phase velocity of acoustic wave propagating through thaernah This makes it
possible to estimate the damage of the material by meansarf@estructive acous-
tic method.

1 Introduction

Today, the mechanics of a damaged continuum is intensivahgldped by many
authors. The first works in this field were fundamental stsithe L. M. Kachanov,
which are summarized in his monograph [6], and the detaitgdstigations and
analysis by Yu. N. Rabotnov that are generalized in [11]. Sigaificance of these
pioneer works, which presently are recognized as classioakists in the possibil-
ity of using a unified approach for description of the damafelastic and elasto-
plastic bodies.

The damage is usually understood as a reduction of an etasfionse of the
body due to decreasing of the effective area, through whiehrternal forces are
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transmitting from one part of the body to another. This pmeeoon is caused by
the appearance and spreading of the scattered field of nefieratd (the microcracks
in the case of elasticity, the dislocations in the case dtdiy, the micropores in
the case of creep, and the surface microcracks in the caaégid) [10].

The damage, i.e. the degradation of the mechanical prepefia solid material,
cannot be measured directly in the same manner as, for ezaughbcity, force, or
temperature. The damage can be detected indirectly onlpdlyzng the response
of the elastic structure on the various external impactsofding to experimental
knowledge, the presence of a damages field inside a solidialatan be observed
also by changing of physical features of the structure. kanmgple, it may be the
decreasing of velocity of ultrasonic signal propagation [3, 16], a decrease in the
Young’s modulus (the modulus defect) [8], a decrease in n@higensity (loosen-
ing) [14], a hardness change [2], a decrease in the stred@taaepunder the cyclic
testing [9, 12], and an acceleration of the tertiary creép [1

The purpose of the present study is the modeling of the psamfescoustic wave
propagation through the damaged material, and estimafiofloence of damage
on the phase velocity and attenuation of that wave.

2 The sdlf-consistent model for damages description

In accordance with conventional assumptions, the meagua@wage under defor-
mation is taken to be a scalar damage paramgtgrt) > 0 that characterizes the
relative density of microdefects uniformly dispersed imét uolume. This parame-
ter is zero in the absence of damage and close to unity ats$temirof fracture. The
process of the damages gain in the structure under studycislated numerically
step by step by solving the kinetic equation of damage atyestage of loading.
This procedure is continued until the damage paramg(gst) reaches an initially
prescribed limiting value, which is close to unity.

Generally, in mechanics of deformed solids, the dynamiblgras and the prob-
lem of defects accumulation are considered separateliieldévelopment of such
approach, the usual practice is to postulate the relatiprstween the velocity of
elastic wave and the value of damages by some kind of depeadeadvance, and
after that, it is assumed that the constant coefficientsistrétation can be estab-
lished on the basis of experimental data.

Usually [13], the phase velocityy,(w) of propagating wave and its attenuation
o(w) are chosen in the power polynomial form as functions of feegyw, and as
a linear functions of damagg as

Vph(@) = Co(1— o — hatyeo?), (1)

a(w) = (hs+ha)w?, (2)

whereCy = /E/p is the velocity of the longitudinal elastic wave propaggtin
the material in the absence of defedEsis the Young’'s modulusp is the density
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of the material, andh;_4 are the constant coefficients, which must be determined
experimentally.
The evolution of damage is described by the kinetic equatenved in [15] in
the form
dy

- 1o, )

whereo is the stress due to the external impact.

In most cases, the functiohis approximated by a linear function, or, in some
cases, by a power polynomial dependence [15].

Although this approach has undoubted advantage such asaiyjit has also
some imperfections, which are typical for any approach thatot based on the
physical models of the processes and systems.

The other novel method of materials with damages examinat@s presented
in [3, 4]. In these papers the process of propagation of afledigal acoustic wave
along a rod is considered. It is also assumed that the rodjscted to the static or
cyclic tests, and during the process of loading the damaggsatcumulate in the
rod’s material.

This work differs significantly from previous studies. In [, the authors pro-
pose the idea that the problem under study is the self-densisroblem, and there-
fore, in addition to the damage evolution equation (3), Whian be represented in
the form

oy

W y=pES (@)
the additional equation describing the dynam|cs of the eergby
o%u 50 oy
o2 CO axz Thige =0 ®)

must be taken into account.

Here we denote the particle displacement at the rod midine(k.t), and the
constants, 3; and 3, characterize the relations between the cyclic processeof th
rod loading and the speed of the damages accumulation.

Equation (4) may be rewritten in equivalent form as

woxt) = BE [ D g)eé0mag = pERD « Nixt, (@)

where the sigri denotes the convolution sign, amt) is the relaxation function
given by
R(t)=e VT, 7)

Equation (6) describes the process of damages growth astidiiof the strain
(¢ = du/0x) history, and one can state that the constantO is the relaxation time.
Here we assume that the history of the damages appearartseasta- 0.

From Eq. (6), it follows that at the beginning of procesg, & 1, there are no
defects (0 = 0) in the rod material at all. In the opposite casd, # 1, from Eq.
(6) one can obtain the dependence describing the proceasafgks growth for the
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case of slow changing of strain in the form

7]
W=TRES . (8)

Now, using Eq. (6), Eq. (5) can be written as

d%u d (du du
Paz =Eox (E( — PP1B2R &) : 9)

Taking into account the classical equation of motion given b

d%u  do
PaZ = ox’ (10)

we can derive the constitutive equation of the media withalges in the form

t
0—E(1- pppR) 5t ~E | 52— pBp [ Sxereae|. )
Materials described by this equation for which the exertegks is determined by
the history of the deformation are "materials with memory.”

As indicated by Rabotnov [11], a model of material with meynaomay be
obtained by means of replacing constant elastic paramefesslids by time-
dependent operators. So for the case of material with dasndgeYoung’s modulus
is now not a constant, but an operator

Eo(t) = E(1— pP1BeRx), (12)

and thus the constitutive equation (11) of the media with @lg@s one can rewrite
in compact form as
o(e) =Eo(t)e. (13)

From Eq. (13), it follows that if < 1, then we obtain the constitutive equation
for the fast loading in the form

Jdu Ju
0=E— =Eg—.
ox 4 9%
Here the constarify = E is is the dynamic Young's modulus.
In the opposite case, if> 1, then we obtain the constitutive equation, which is
valid for the slow loading

(14)

Jdu Jdu ou
0=Eqy(1- TPBlﬁz)& = 5Ed& =B (15)
where the quantitfes = dE4 is the static Young’'s modulus of the material, and
parameted = 1 — 1p[B1 3, characterizes the material damages.
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Due to the evident inequalitily > Es > 0, parameter & 6 < 1. The value of
parameted = 1 denotes the absence of damages, and the value of this garame
is close to zero at the instant of fracture.

We can notice that Egs. (4) and (5) can be reduced to a singl®peliminat-
ing the damage parametgr(x,t). In terms of displacemeni(x,t), it leads to an
equation in the following form

0%u d%2u  d%u d3u

2 2
g Qe T Tar g —© (16)

Dimensionless form of the Eq. (16) is obtained by using the-disnensional
variables that are introduced by relations

U=u/1Cy, X=1+bx/1Cy, T =20t/T. (17)

Thus Eg. (16) in terms of non-dimensional displacemengtael) (X, T) takes the
following form [7]

’u WU +5(93U U
dT2 X2 ' “9T3 9X20T

and describes acoustic wave propagation in the medium &itredes.

0, (18)

3 Dispersion relations

The fundamental solution of Eq. (18) has the form of trawgliraves
U(X,T) = Ug kX-1aT, (19)

wherei is the imaginary unitk is the wavenumbety is the angular frequency, and
Up is an amplitude.
The dispersion lawb(k, w) = 0 for Eq. (18) is defined by relation
i0w® — w’ —ik?w+Kk?=0. (20)

In the case of boundary value problem the general solutidfqo{18) has the fol-
lowing form

UX,T) = %T/:e(w)éwx-mdw, 1)

where ©(w) is the Fourier-transform of the boundary value of distudeapre-
scribed aX =0

O(w) = /_ O;U(O,T)eindT. (22)

In case of Cauchy problem the general solution of Eq. (18}Hma$ollowing form
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UX,T) = %T/_ZX(K)éKX*W)TdK, 23)
wherex (k) is the Fourier-transform of initial disturbance prescdla¢T =0
X(K) = /joU(X,O)eindX. (24)

In general cas& = k(w) andw = w(kK) are the complex quantities and can be
derived from dispersion relation (20). In order to provide tlispersion analysis in
context with a boundary value problem we rewrite wavenumaijer) in the form

K(w) =k(w)+iA(w), (25)

wherek = Re(k) andA = Im(k). Using this notation, expression (19) can be rewrit-
ten as follows

U (X,T) — eri(k+i)\)X—in — e—AXUOeikX—i(A)T. (26)

Itis clear that for positive values @f we can observe the exponentially decaying
wave that propagates along the positive direction of theepais. In other words
the spectral componeritéw) = Re(k ) decay exponentially ast — oo for A (w) >

0. On the other hand, & (w) < 0, then the amplitudes of the spectral components
grow exponentially as they propagate further along thetpesilirection of thex-
axis. In the latter case the solution of equation (18) becsommstable fofl > 0.

4 Dispersion analysis

As discussed above, in order to study the wave propagataygahex-axis one
needs to solve the dispersion relation (20) against waveeurm This solution

takes the form _
Vi—iw

For real values ok andA the dispersion relation (20) can be rewritten as follows
k2 4 2ikA — A2 —ikPw+ 2kA w+iA%w — w? +idw’ = 0. (28)

In order to study real and imaginary parts separately, teeegy of equations in the
form

(29)

K—A2+2kdw—w?=0
2kA — w(k? —A?) 4+ 6w =0

is solved and analyzed. Solutions with respedt &amdA are
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K(w) = LM (\/1+ M2 — 1)71/2, (30)
)\(w):L(\/l—i—MZ—l)l/z, (31)

where
1+0w? (1-d)w

21+ w?)’ 1+dw?’ (32)

The frequency dependencikg@v) = Re(k) andA (w) = Im(k) of dispersion rela-
tion (20) are displayed in Fig. 1 for the various values ofrtiegerial parameted.
Parameted can have values on the intenal= [0, 1].
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Fig. 1 Dispersion relation&(w) and A (w) for various values of parametérin range [0.0, 1.0]
with step 0.1

If 8 =1, then from (30) and (31) one can find

k(w)=w, A(w)=0. (33)
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These relations correspond to the ideal elastic materiddont damages, and in
which the wave propagates without attenuation.

In case ofw — o it is easy to see th&{w) — wv/3 and that

Jim A(w) = ;;\/g. (34)

For large frequencies, the exponential decay condtalgpends only on the param-
etero.

The phase velocity is defined gs,(w) = w/k, and it takes the following general
form

v V2(1+ w?) (N - dw? — 1)
ph = 1-d)w ’
where

(35)

N =/(1+ @?)(1+ 822).

(36)
The frequency dependeneg,(w) for various values of parametéris shown in
Fig. 2.

Uph(w)

Fig. 2 Phase velocity as a function of frequency for various vahfethe parameted in range
[0.0, 1.0] with step 0.1

In case ofd = 1, the phase velocity becomeg,(w) = 1 (cf. relationship (33)).
For large frequencies, the phase velocity has a limit

lim vph(w) = !

Jim 75 (37)

The group velocity, which is defined &g (w) = dw/dk = (dk/dw) ! takes in
this case the following general form
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2(1+ w?)2,/2(1+ 8%62) (N — 52— 1)%/?

Vo = (1 3)[(1+ 302w’ — (2N + 20N — 332 5)w? —4(N_1)]'

(38)

whereN is defined by relation (36). The frequency dependesggev) for various
values of the parametéris presented in Fig. 3.

Vgr(w)

N WA 10 N

Fig. 3 Group velocity as a function of frequency for various valoéshe parameted in range
[0.0, 1.0] with step 0.1. Maximum ofy for & < 1 is shown bydashed line

In case ofd = 1, the group velocityy (w) = 1 (cf. relationship (33)). For large
frequencies the group velocity has the same limit as thegobalscity did

. 1
(J)anmvgr(w) = 73
The essential difference between the behavior of phase rag gelocities is that
the phase velocity is a monotonic function of frequency,levttie group velocity
has a maximum. The maximum of different valuesdadire located on the dashed
line shown in Fig. 3.

Comparison of phase and group velocities for a single valu®eis presented in
Fig. 4. In the material with damages the group velocity isaglsvgreater than the
phase velocity for any frequency. This fact means that thier@with damages is
a medium with anomalous dispersion. This is true for anyealiparameted < 1.

In case o = 1, thenvy = vyn = 1, and we have the non-dispersive case.

(39)

5 Conclusions

We have presented results for simulation of acoustic wawpagation in the
medium with damages. Based on the self-consistent modéafoages description,
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Fig. 4 Comparison of group and phase velocities for single valuh®fparameted = 0.5. The
dashed line shows the limit for the large frequencies

we have been able to demonstrate the similarity between tueis for damaged
materials and the medium with memory.

We have derived the constitutive equation of the materith damages, and ex-
amine the influence of the parameters of damage on the proio@ase propagation
in that medium.

The dispersion analysis of the model have been carried ndtfee effect of the
material damage on attenuation and phase velocity of paippagacoustic wave
have also been estimated. It has been shown that the damaggsdhe anoma-
lous dispersion and the frequency-dependent attenuatidreovave propagating
through that material.

The results obtained may be of some use for developing ofrenigge for non-
destructive acoustic detection of damages in solids andtstral elements.
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