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Abstract
This presentation is focused on the numerical simulation
of the hammer-string interaction. The main attention is
dedicated to analysis of the special cases of the piano
scale design. This study is based on the physical mod-
els of hammer and string, and gives the possibility to cal-
culate the motion of strings and hammers, the history of
the acting forces, and to simulate the spectra of the string
vibrations. The three-parameter hysteretic model, which
parameters were obtained experimentally, describes the
piano hammer. The string is assumed to be perfectly
flexible. Computer simulation of the hammer-string in-
teraction is used for determination of tension of the string
terminated on the bass and treble bridges, for optimiza-
tion of the striking point position, and for investigation of
multiple contacts.

1. Introduction

The process of string excitation by striking with a piano
hammer is a very important problem of the sound forma-
tion by a musical instrument. The mathematical model-
ing of this problem allows predicting the spectrum of the
piano string motion, which is very important for piano
design. The present paper addresses the problem of how
to make such predictions with the hysteretic models of pi-
ano hammer and the traveling-wave model of the string.

The displacementy(x, t) of the ideal (flexible) string
obeys the simple wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, (1)

wherec =
√

T/µ is the wave speed in terms of tension
and linear mass density of the string.

Similar to [1], we have the nonlinear system of equa-
tions describing the hammer-string interaction
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2T
F (t) , (3)

whereg(t) is the outgoing wave created by the hammer-
string interaction,F (t) is the acting force;m, z(t), and

V are the hammer mass, the hammer displacement, and
the hammer velocity. The hammer felt compression is
determined byu(t) = z(t) − y(0, t). Functiony(0, t)
describes the string deflection at the contact point and is
given by
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It is assumed that the string of lengthL extends from
−βL to αL with β = 1 − α. The initial conditions at
the moment when the hammer first contacts the string,
are taken to beg(0) = z(0) = 0, anddz(0)/dt = V .

The string parameters were taken from [2]. In Table
1 there is presented the piano scale for some notes used
for numerical simulation. Heref is the note frequency,
l = αL is the position of the striking point, andn is the
number of strings per note.

Table 1: Scale of Estonia Parlour Grand Piano.

N Note f(Hz) L(mm) l(mm) T (N) n

1 A0 27.5 1415 175.8 1307 1
10 F ♯

1
46.2 1263 156.5 1191 1

11 G1 49.0 1251 154.8 840 2
20 E2 82.4 1083 133.7 777 2
21 F2 87.3 1273 157.2 766 2
25 A2 110.0 1218 150.2 747 2
26 A♯

2
116.5 1201 148.1 611 3

49 A4 440.0 381 42.3 628 3

The governing equation connecting the nonlinear
forceF (t) exerted by the hammer and the felt compres-
sionu(t) for hysteretic hammer is presented in [3] in the
form

F (u(t)) = F0

[

up + α
d(up)

dt

]

. (4)

The parameters of this model were obtained experimen-
tally in [3], and for numerical simulation these values
may be approximated as the functions of the hammer
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numberN

α = 248 + 1.83N − 5.5 · 10−2N2 + 8.5 · 10−4N3 , (5)

F0 = 183 exp(0.045N) ; p = 3.7 + 0.015N , (6)

m = 11.074 − 0.074N + 0.0001N2 . (7)

Here the unit for retarded timeα is (µs), the unit forF0

is (N/mmp), and the unit for hammer massm is (g).
It is naturally of great interest to predict also the spec-

tra of the string motion. The simple method is the calcula-
tion of the mode energy spectrum directly from the force
history [4]. The general expression for the string mode
energy is

En =
Mω2

n

4
(A2

n + B2

n) , (8)

where

An =
2 sin(αnπ)

nπcµ

∫ t0

0

F (s) cos(ωns) ds ,

Bn = −
2 sin(αnπ)

nπcµ

∫ t0

0

F (s) sin(ωns) ds .

The mode energy level is determined byELn =
10 log(En/E0). HereM = µL is the total string mass;
ωn = ncπ/L = nω0 is the string mode angular fre-
quency;t0 is the contact time;E0 = mV 2/2 is the initial
energy of the hammer.

Presented data and models of string and hammer can
be used as a tool for systematical exploring of the process
of the hammer-string interaction. For example, in Fig.
1 there are displayed the spectra of the string vibrations
simulated for the different hammer velocities.

Figure 1: Spectra for A0 note.

The other characteristics of the process such as the
contact duration, the string and the hammer displacement
etc. can be found in the similar manner. However, in
our opinion, it is very practical to use this tool for the
investigation and designing of the piano scale.

2. Different number of strings per note

According to the construction of theParlour Grand Pi-
ano, the first ten notes (A0 – F ♯

1
) have only one string

per note. The notes from eleven to twenty five (G1 –
A2) have two strings per note, and other notes consist of
three strings. Let us denote the tension of strings of the
tenth and the eleven note byT10 andT11, respectively. To
obtain the minimum jump of the tension between these
notes,r12, the relative tension per string must equal to
the relative tension per note

r12 =
2(T10 − T11)

(T10 + T11)
=

2(2T11 − T10)

(T10 + 2T11)
. (9)

From this equation we have

T10 =
√

2T11 . (10)

Exactly in the same way, for the notesA2 andA♯
2

we may
write

r23 =
2(T25 − T26)

(T25 + T26)
=

2(3T26 − 2T25)

(3T26 + 2T25)
, (11)

and

T25 =

√

3

2
T26 . (12)

The relations (10) and (12) give the minimum jump of
relative tension in cases when the number of strings in
choir varies from one to two and from two to three. Just
in accordance with ratios (10) and (12) the jump of the
string tension was chosen for this instrument.

Figure 2: Spectra for F ♯
1

and G1 notes.

By numerical simulation of these strings vibrations,
we can estimate the validity of our choice. In Fig. 2 there
are displayed the calculated spectra for neighbor notesF ♯

1

andG1 shown by circles and crosses. The curve marked
by triangles is the simulated spectrum ofG1 note excited
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by a hammer having a half of a mass (5.15 g) of usual
hammerN=11 (m = 10.3 g). This spectrum is more sim-
ilar to the spectrum ofF ♯

1
note and this fact indicates a

good matching of the string tension. The same procedure
was used for determination of the string tension forA2

andA♯
2

notes as well.

3. Bridges over

The first twenty strings of the piano terminate on a bass
bridge, and the others on a treble bridge. Therefore,
where is a significant jump of the string length between
the neighbor notesE2 andF2. The simulation of the vi-
bration of these strings gives the possibility to match suit-
able tension of the strings and to choose their masses (di-
ameters) to obtain the minimum difference of the excited
spectra.

The force-time dependencies for these notes simu-
lated for the initial hammer velocityV = 2.3 m/s are
presented in Fig. 3. The curve marked by triangles is
simulated for non-hysteretic hammer (α= 0).

Figure 3: Force histories computed for E2 and F2 notes.

The course of the curves in Fig. 3 clear demonstrates
the arrival of reflected waves. For the long stringN =
20 we can see also the third reflected pulse that is the
repeated strike indeed, because it is quite separate from
the previous. It is also evident that the unloading of the
hammer felt caused by the felt elasticity begins before the
moment of the first reflected wave arrival. This time is
equal to 1.41 ms for the stringN = 21. The force history
curve for non-hysteretic hammer is more ”sharp” than the
curves describing the behavior of the hysteretic hammer.

The difference between hammers is demonstrated
also in Fig. 4, where the corresponding spectra of the

string vibration are presented.

Figure 4: Spectra for E2 and F2 notes.

4. Striking point position

The fact that string vibration spectrum is very sensitive
to the position of the fractional striking pointα is well
known. Now we have the possibility to compare the spec-
tra of the string vibrations calculated for the different val-
ues ofα.

In Fig. 5 are presented the spectra calculated forA4

note.

Figure 5: Spectra for A4 note.
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The values ofα are 0.1058, 0.1110, and 0.1163. The
corresponding values of thel = αL are displayed also in
Fig. 5. It is obvious that 5% shift of the striking point
position is quite a big shift. The analysis of the presented
results demonstrates that the valuel = 42.3 mm shown
in Table 1 is not the best quantity. The more uniform
spectrum may be obtained by using the valuel = 44.3
mm.

5. Hammer felt compression

The dynamical behavior of the hammer felt during the
hammer-string interaction is naturally of great interest.It
seems that the better way of analysis of the hammer felt
compression is the presentation of the data in the form
of the force and compression histories measured or simu-
lated for this study. The example of such data is presented
in Fig. 3.

The data in the form of the force-compression char-
acteristics of the hammer felt are useful in the case when
hammer strikes the immovable object. In case when
hammer interacts with vibrating string, due to the com-
plexity of this process we will obtain a very knotty pic-
ture. The examples of the hammer-string interaction in
the form of the force-compression characteristics calcu-
lated for hammersN =10 andN = 21 are presented in
Fig. 6. The curve marked by triangles corresponds to the
non-hysteretic model of the hammer.

Figure 6: Force-compression characteristics for various
hammers.

These are the samples of a very nice, but absolutely
useless presentation of the obtained results.

6. Conclusions

We have presented the simple and effective method for
the analysis of the piano scale. The numerical simula-
tion of the hammer-string interaction demonstrated here
makes predictions in a good agreement with experiments
and it is really useful for piano designing.
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