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Summary. Experimental testing of piano hammers, which consist of a wood core covered with several

layers of compressed wool felt demonstrates, that all hammers have the hysteretic type of the force-

compression characteristics. It is shown, that different mathematical hysteretic models can describe the

dynamic behavior of the hammer felt. In addition to the four-parameter nonlinear hysteretic felt model,

another new three-parameter hysteretic model is presented. Both models are based on the assumption that

the hammer felt made of wool is a microstructured material possessing history-dependent properties. The

equivalence of these models is proved for all realistic values of hammer velocity.

1 Introduction

The felt made of wool is a miraculous material indeed. Almost two hundred years this material

is used for piano hammer manufacturing. In spite of the endless attempts to match a more

suitable material for the piano hammer, the felt is a unique coating matter of wooden mallets

used up to the present. The modern hammers have a wood core covered with one or two layers

of compressed wool felt, whose stiffness increases from heavy bass hammers to light treble

hammers to produce a good tone [1]. One of the most important features of the hammer felt is

the ability to provide much brighter sound for strong impact than it does for weak impact

forces. It means that the felt stiffness increases also with the rate of loading.

First constitutive framework proposed to mathematical model of the hammer felt was made

by Ghosh [2], who considered the force-compression characteristic of the felt obeying the

power law form

F ¼ Kup; ð1Þ

where F is the acting force, u is felt compression, and constant K has units of N=mp. Exper-

imental static testing of different hammers by Hall and Askenfelt [3] demonstrate that for

hammers taken from pianos the values of p ranging from 2.2 to 3.5 give a good approximation

of dependence (1).

According to Hertz’s Law the force acting on two connected locally Hookean bodies gives

p ¼ 1:5. The values of p different from 1.5 indicate the non–Hooke or the nonlocal felt

properties. Just like these properties of the felt were confirmed experimentally by Yanagisawa,

Nakamura and Aiko [4], and by Yanagisawa and Nakamura [5], [6]. Their dynamic experi-

ments demonstrate very important properties of the felt: the nonlinear force-compression

characteristic, strong dependence of the slope of the loading curve on the rate of loading, and
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significant influence of hysteresis, i.e., the loading and unloading of the felt are not alike. These

phenomena require that the felt made of wool is a microstructural material possessing history-

dependent properties. The dynamic behavior of such solid matter is highly sensitive to char-

acteristic frequency and rate of loading, and for this reason the concept of an almost unique

force-compression curve for a given material does not exist.

Following Rabotnov [7], in [8] the new hysteretic model of the felt is proposed by replacing

of the constant parameter K in expression (1) by a time-dependent operator F0½1� RðtÞ��,
where � denotes the convolution, and the relaxation function given by

RðtÞ ¼ ðe=s0Þ expð�t=s0Þ: ð2Þ

Thus, instead of the simple relation (1) we have the four-parameter hereditary model of the felt

in the form [8],

FðuðtÞÞ ¼ F0 upðtÞ � e
s0

Z t

0

upðnÞ exp
n� t

s0

� �
dn

� �
: ð3Þ

Here the instantaneous stiffness F0 and compliance nonlinearity exponent p are the elastic

parameters of the felt, and hysteresis amplitude e and relaxation time s0 are the hereditary

parameters. According to this model, a real piano hammer felt possesses history-dependent

properties, or in other words, is a material with memory.

In [8], it was shown that this constitutive model of felt clarifies the dynamic features of piano

hammers fairly well, and is consistent also with experiments [4]–[6].

2 Experimental results

For the experimental study of the dynamic felt features the piano hammer testing device

described in [9] was used. This device permits to measure the force-time and compression-

time dependencies, and investigate the force-compression characteristics of the felt under the

rates of loading ranging from 0:3m/s to 1:5m/s. The precision of the felt compression

determination is equal to �10 lm; the acting force up to 60N is measured with the accuracy

of 6%; the time sampling rate is equal to 7 ls (the precision of the signal processor time scale

is �0:1 ls).
In Fig. 1, the experimental results of the felt examining at the rate of loading 1:32m/s,

0:99m/s, and 0:72m/s are displayed. Of course, these velocities do not cover the real range,

which is up to 5m/s in grand pianos. But, as the hammer strikes the flexible string in grand

piano, the value of the acting force exceeds 60N very seldom. In our case, the hammer strikes

the rigid immovable object, thus the acting force and felt compression achieve the maximum

values at smaller velocity. In Fig. 1, we can see the really hard blow (felt compression up to

0:9mm) for the hammer velocity of 1:32m/s.

The arrows in Fig. 1c indicate the direction of the compression process. The solid lines here

represent the numerical simulation of the experiment, and will be interpreted further.

The experimental results presented in Fig. 1 are quite typical for all the hammers measured.

The relationships of dynamic force versus felt compression show the significant influence of

hysteresis characteristics, so the loading and unloading of the felt (shown by arrows) are not

alike. Moreover, the slope of the force-compression characteristics increases with the growth of

the hammer velocity, just like the model of the hysteretic hammer predicts. Figure 1c is very

similar to Fig. 7b from [5], and both are similar to Fig. 2a from [8], and thus it is evident, that

the experiments confirm fairly well the theory.
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Figure 1b demonstrates that the initial parts of the compression histories are close to linear

function. It indicates that the rate of the felt compression is equal to the initial hammer velocity

for a rather long time, and therefore the outer layers of the felt are quite smooth enough. Figure 1

illustrates also a very important dynamic feature of the felt: the maximum of the felt com-

pression follows the maximum of the acting force, and the felt is still deformed after the force is

removed. The moment, when the acting force is disappeared we denote here as t0. After this

moment the felt unloads freely by exponential law. It is following Eq. (3). In case of FðtÞ ¼ 0

for any t � t0 we have

upðtÞ ¼ e
s0

Z t

t0

upðnÞ exp
n� t

s0

� �
dn; ð4Þ

that yields

uðtÞ ¼ u0 exp �ð1� eÞðt� t0Þ
ps0

� �
; ð5Þ

where u0 ¼ uðt0Þ.
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Fig. 1. Experimental data and numerical simula-

tion; a Force-time dependencies; b Compression-
time dependencies; c Force-compression charac-

teristics. Various symbols denote the experimen-
tal data points for different rate of loading. The

solid lines are the numerically simulated curves
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Unfortunately, our experimental arrangement does not give the possibility to register the

free felt decompression. We can determine the felt compression as the difference between the

initial hammer position just before the strike (the level of the force sensor) and the current

position only. After the moment t0 the hammer loses the contact with the force sensor and

moves away. The absolute value of the rate of the felt decompression at this moment is less

than the absolute value of the hammer velocity (the velocity of decompression may be

determined using Eq. (5)), and thus the hammer does not act on the force sensor. The real

values of the hammer velocity and the rate of free decompression of the felt will be dis-

cussed also below.

During the experiments dozens of piano hammers produced by various firms were tested, and

it was found [10] that the felt of all hammers possesses the same hysteretic properties, or just as

well, the felt made of wool is of a material with memory. It seems that using such a felt material

for the hammer manufacturing during more than a hundred years is a really indispensable

substance.

3 Numerical simulation of the experiments

The felt parameters may be obtained by numerical simulation of the dynamic experiments. This

procedure was presented in [8], [9] and it is based on the mathematical model of the experiment.

The impact of the hammer can be described by the equation of motion

m
d2u

dt2
� FðuÞ ¼ 0; ð6Þ

with the initial conditions

uð0Þ ¼ 0;
du

dt
ð0Þ ¼ V0: ð7Þ

Here m and V0 are the hammer mass and velocity, respectively, and FðuÞ is defined by Eq. (3).

The initially unknown values of the elastic and hereditary felt parameters were obtained by

means of numerical simulation of the model. The force-compression characteristics FðuÞ was
numerically calculated from Eq. (6) by assuming some initial values of parameters. The model
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was run repeatedly, each time with different parameter values, until the prediction from the

model gave a good agreement with the experimental data.

At the same time we must remember that each force-compression curve is composed by using

two experimentally obtained curves – the force-time and compression-time curves. These curves

are presented in Fig. 1a and b, marked differently for each velocity. We must provide the

numerical simulation of Eq. (6) so that the good agreement with the experiment for both of the

curves is obtained simultaneously. It means that not only the similar forms of the theoretical

and experimental curves (force and compression histories together) should be obtained, but

also the duration of the theoretical contact time must be the same (or close enough to the

experimental value). The real difference between the contact times achieved by simulation does

not exceeded � 0:01ms.

The simulated curves presented in Fig. 1 by solid lines were calculated by using one certain

combination of felt parameters. Only the value of hammer velocity was varied. The values of

parameters denoted here as set Ia are displayed in Table 1 in the first column. It is interesting,

that the value of the relaxation time s0 obtained is approximately a thousand times less than the

contact time of interaction, which is equal to 1:7ms for the hammer speed 1:32m/s and 2:5ms

for the hammer speed 0:72m/s.

Now, having the exact values of the felt parameters we can estimate the rate of the felt

decompression after the moment t0, when the acting force is vanished. In Fig. 2, there is

presented the resumption of compression histories shown in Fig. 1b. The solid lines here rep-

resent the free decompression curves calculated according to Eq. (5).

The initial time t0, and initial value of the felt compression u0 are also displayed for each

curve on the level, where the free decompression starts. The beginning rate of the free felt

unloading determined by the differentiation of Eq. (5) is equal to �0:56m/s, �0:47m/s, and

�0:38m/s for the initial hammer velocity 1:32m/s, 0:99m/s, and 0:72m/s, respectively. At this

moment the current hammer velocity is equal to �0:89m/s, �0:76m/s, and �0:48m/s for

corresponding curves, and remains almost constant. Thus the felt loses the contact with the

force sensor, and unloads freely. The residual felt compression achieves the level of the mea-

surement accuracy 10 lm in 6ms approximately.

The presented analytical four-parameter model (model I) defined by Eq. (3) really describes

the dynamic behavior of such a microstructural material as hammer felt, and it is suitable for

numerical simulation of the experimental data. It is also evident that in according to this model

some certain set of the felt parameters and a definite rate of loading appoints to one and only

unique force-compression curve. It seems that each force-compression curve results in a unique

combination of felt parameters and vice versa.

However not all is so simple. In spite of this almost evident supposition, the numerical

simulation of the felt impact demonstrates that very similar (by eye) force-compression curves

can be obtained using the different sets of felt parameters. For example, it was found that the

Table 1. Felt parameters

Model I Model II

Set Ia Set Ib Set II

F0 ¼ 8800 N/mmp F0 ¼ 3520 N/mmp Q0 ¼ 70:4 N/mmp

p ¼ 3:95 p ¼ 3:95 p ¼ 3:95

s0 ¼ 2 ls s0 ¼ 5 ls a ¼ 250 ls
e ¼ 0:992 e ¼ 0:98
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experimental results presented in Fig. 1 can be simulated also by using another felt parameters

denoted as set Ib, and displayed in Table 1 in the second column. A close and subtle analysis of

this phenomenon results in a new and quite another hysteretic model of the felt.

4 Three-parameter felt model

Eliminating the integral term, Eq. (6) with the function (3) may be written also in the form

m
d2u

dt2
þms0

d3u

dt3
� F0 ð1� eÞup þ s0

dðupÞ
dt

� �
¼ 0: ð8Þ

The analysis of this equation shows that the second term is much smaller than the first one, and

also the other terms. This fact corresponds to the non equality FðtÞ � s0 dF=dt; which is valid

for all values of s0 that are rather small in comparison with t0, and for any reasonable value of

the felt rate loading – up to 10 m/s. Therefore, the second term may be ignored, and introducing

the new parameters

Q0 ¼ F0ð1� eÞ; ð9Þ

and

a ¼ s0=ð1� eÞ; ð10Þ

instead of Eq. (8) we have

m
d2u

dt2
� Q0 up þ a

dðupÞ
dt

� �
¼ 0: ð11Þ

Thus, according to Eq. (6) we can determine the new model of the felt in the form

QðuðtÞÞ ¼ Q0 up þ a
dðupÞ

dt

� �
; ð12Þ

where QðuÞ is the force exerted by the hammer, Q0 is the static hammer stiffness, and a is the

retarded time parameter. Similar to model I, this model of the felt can also be simply proposed

by replacing of the constant parameter K in expression (1) by a time-dependent operator

Q0½1þ aD�, where D denotes time differentiation.

Such hysteretic model II is very similar to nonlinear Voigt model and permits a description of

the felt compression that is consistent also with experiments. For example, the simulation of the

experimental data shown in Fig. 1 may be provided for the same hammer velocities by using the

felt parameters denoted as set II, and displayed in Table 1 in the third column. It is more

important, however, that these simulated curves are not only exactly alike (by eye) as presented

above by solid lines in Fig. 1, but they are also specified by this set of felt parameters uniquely

indeed. Now it is clear the cause of existence of different sets of parameters (set Ia and set Ib)

similar describing in frame of the first model the dynamic felt behavior. It is evident that both

sets of these parameters are equally related by Eq. (9) and Eq. (10) with set II.

5 Two models comparison

Both of the models describe the dynamic felt behavior in a similar way. For example, in Fig. 3

there are presented three hysteretic force-compression characteristics calculated for the three
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sets of parameters displayed in Table 1. The hammer mass for this case is equal to 12 g, and the

initial hammer velocity is 2:5m/s.

Really we can see here only one hysteretic force-compression characteristic curve presented

by a mixture of various symbols. It is evident that for this hammer velocity these three different

sets of felt parameters result in the same (or very alike) force-compression characteristics.

In case of very slow compression, the loading and unloading of the felt are near the limit

curve denoted here as slow loading, and that is exactly the same curve for both models and for

each set of the hammer parameters. Equation of this limit curve may be obtained using Eq. (8)

written in the form

F þ s0
dF

dt
� F0 ð1� eÞup þ s0pup�1 du

dt

� �
¼ 0: ð13Þ

Thus, for the stationary loading the second and last terms vanish, and we have

FðuÞ ¼ F0ð1� eÞup; ð14Þ

or taking into account equality (9) for the model II we have just the same curve

QðuÞ ¼ Q0up: ð15Þ

For very fast loading these two models are quite different, however. The instantaneous force-

compression curve for the first model is given by equation

FðuÞ ¼ F0up: ð16Þ

Such two limit curves denoted here as fast loading corresponding to set Ia and set Ib are

presented also in Fig. 3, and marked Ia and IIb, respectively. With the increasing of the rate of

loading the position of these curves do not make changes, but only their amplitude is increased.

On the contrary, the limit curve for the fast loading in the frame of the model II does not

exist at all, because the acting force QðuÞ is proportional to the rate of loading and its value is

unlimited. It can be derived using constitutive equation (12). For the fast loading the second

term is greater than the first one, and also the rate of compression du=dt is equal to the hammer

velocity V0. Thus we have

QðuÞ ¼ paV0Q0up�1: ð17Þ
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For very fast compression, the loading and unloading of the felt occur near the curve which

position tends to the force axis. Two such force-compression curves marked II calculaded for

the hammer velocities 250m/s and 3000m/s are also displayed in Fig. 3.

Two models similarity can be demonstrated also by the example of the free felt decom-

pression. It is easy to show, that in frame of the model-II free decompression of the felt obeys to

the same exponential law Eq. (5), which describes the unloading of the felt in according to the

four-parameter model. When the acting force is disappeared (QðuÞ ¼ 0), using Eq. (12) we can

find

uðtÞ ¼ u0 exp �ðt� t0Þ
p

� �
; ð18Þ

and it is exactly the same dependence (5), taking into account equality (10).

As far as the models application concerned, a three-parameter model is not only the simpler

one, but also it is significantly more suitable for practical numerical calculations. It follows

from the large value difference of the time-dimensional parameters s0 and a. These values were
determined using the experimental data, and it was found that the value of parameter a is at

least hundred times greater than the value of parameter s0 (see Table 1). For this reason the

numerical simulation of the dynamic felt loading describing by the three-parameter model we

may provide applying the much larger time sampling rate than in case of using the four-

parameter model.

Using only the general consideration it is very difficult to choose which model is more

physical and reasonable by nature. To decide this problem and to prefer the correct model new

additional experiments with a very fast felt loading must be provided.

6 Conclusions

It has been shown that the dynamic behavior of the piano hammer felt compression, which is

essentially hysteretic, can be described by different mathematical models. Two models dem-

onstrated here make predictions in good agreement with experimental data for various types of

piano hammers and for the reasonable values of hammer velocities.

Both of the models are quite equivalent for the slow loading of the felt and describe the free

felt decompression equally. Quite the contrary, for the fast loading these models give the

different description of the felt behavior. However, this difference can be observed only at very

high rates of the felt loading, which never occur in case of real playing of piano. Unfortunately,

our experimental arrangement can not provide such a fast loading of the felt to decide which

model describes the felt behavior more correctly.

Nevertheless, we can use both of the models to describe the dynamic felt compression at the

rate of loading up to 10m/s. Perhaps experiments with new refined and more precise facility can

solve the problem of the felt behavior under very fast loading.
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[9] Stulov, A., Mägi, A.: Piano hammer testing device. Proc. Estonian Acad. Sci. Engng 6, 259–267

(2000).
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