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1 Introduction

In the past, the use of carbon fibre reinforced polymer (CFRP) has been limited to non-
structural parts of high-tech aeronautical products. In recent times, due to the effort of weight
reduction and product lifetime enhancement, the application areas of CFRP have widened to
the load-bearing parts of the aeronautical, automotive and civil engineering products. Due to
the increased demands on the strength of the CFRP products and possible complex failure
mechanisms, the Non-Destructive Testing (NDT) methods of CFRP have been an important
applied and academic problem.

The complex failure mechanisms of CFRP include microcracking and delamination. Microc-
racking can occur at lower loads or due to aging and can be difficult to examine using ultrasonic
NDT. With increased loading, the damage can evolve to delaminations, a very fine cracking
between the layers of the CFRP. These damages are difficult to detect using ultrasonic methods
due to their small thicknesses. The damage can exhibit itself as a contact acoustical nonlin-
earity [1]. A statistical distribution of microcracks or delamination damage in the material
could also be described by hysteresis in a continuum material model [2, 3, 4]. This can also be
applicable for other materials than CFRP, for example biological tissues [5, 6].

This research report explores the possibility of using the nonlinear effects of a single small
crack, which can come into contact with itself, much like the contact acoustical nonlinearity.
Its effect on the ultrasonic wave propagation is examined using Finite Element simulations.
The goal of this research report is to describe in length the simulation code and the initial
result analysis. The simulation results are analysed using Pulse Inversion (PI) [7], spectral
analysis and delayed TR-NEWS [8] to detect the effect of the damage in simulation model, as
a source of nonlinear effects. The effectiveness of these methods have been shown by numerical
simulations and physical experiments in previous work [8]. In this work, the Finite Element
Method (FEM) model is advanced further by including absorbing boundary conditions and the
contacting crack defect in the material.

2 Experiment and simulation configuration

This section describes the physical experiment on which the simulation is based, and describes
the differences and similarities between the simulation and the experiment.
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2.1 Test object in physical experiment

The test object is a CFRP block consisting of 144 layers (Fig. 1). It is composed of fabric
woven from yarns of fibre and impregnated with epoxy. The cross-section of the yarns have
elliptical shape (Fig. 2) and the material has inclusions of pure epoxy, so a wave propagating
through the material will encounter yarns (fibres with epoxy) and areas of pure epoxy. A simple
material model for this test object is the laminate model (Fig. 3) where: i) the material consists
of homogeneous layers, ii) each layer has its own elasticity properties, and iii) dispersion arises
due to the periodical discontinuity of the material properties.

The material in the simulation was modelled as laminate of three different kind of layers with
different mechanical properties:

• pure epoxy layer as an isotropic material: E = 3.7 GPa, ν = 0.4, ρ = 1200 kg/m3,

• composite with fabric at 0/90◦ direction as transversely isotropic material: E1 = E2 =
70 GPa, G12 = 5 GPa, ν12 = 0.1, ρ = 1600 kg/m3,

• composite with fabric at 45◦/45◦ direction as transversely isotropic material: E1 = E2 =
20 GPa, G12 = 30 GPa, ν12 = 0.74, ρ = 1600 kg/m3.

Figure 1: Carbon Fibre Reinforced Poly-
mer (CFRP) block in the test configura-
tion with transmitting transducer on side
and receiving on top

Figure 2: The layered structure of the
CFRP with the fabric yarns in tight pack-
ing and epoxy filling the voids

The simulations reflect the actual physical experiments as closely as possible. In the physical
experiments, the CFRP block (Fig. 1) was studied using TR-NEWS NDT equipment and
signal processing methods. The simulations echo the physical experiments in terms of the
transducer placement, frequencies and signal processing. Conversely, the simulations differ from
the physical experiments in the sense that: i) the wave energy is introduced into the material
without losses, ii) the material is simulated in 2D instead of 3D, and iii) only the relevant part
of the object of it is modelled (region near and between the transducers). Absorbing boundary
conditions allow the wave propagation out of the region of interest.

In the physical experiment, the CFRP block was excited from its side with 20◦ shear wave
transducer. The signal was received with a plane wave transducer on the top of the block
(Fig. 3). The test equipment consisted of:

3



Preamplifier Juvitek TRA-02 (0.02 - 5 MHz) connected to a computer,

Amplifier ENI model A150 (55 dB at 0.3-35 MHz),

Shear wave transducer Technisonic ABFP-0202-70 (2.25 MHz),

Longitudinal wave transducer Panametrics V155 (5 MHz).

The roles of the transducers are not changed during the experiment: the focusing of the
ultrasonic wave relies on the TR-NEWS signal processing. This is a two-pass method where
the receiving and transmitting transducers do not change their roles. In this sense the “Time
Reversal” describes the signal processing method which accounts for internal reflections of the
material as virtual transducers, used for focusing the wave in the second pass of the wave trans-
mission. The placement of the transducers is otherwise not important: in NDT investigation
they could be placed arbitrarily and they do not have to be in line with each other, but the con-
figuration must remain fixed during the complete TR-NEWS procedure. The signal processing
steps are explained in Section 3.

2.2 The simulation model

The simulation is in time domain only, since the TR-NEWS procedure relies on transient echoes
and complex wave motion for the wave energy focusing process. Due to the heavy computational
cost of time domain simulation, a simple laminate model is used to describe CFRP. It consists of
CFRP layers with 90◦/0◦ weave, 45◦/45◦ weave and epoxy layer. The thicknesses of the layers
are given by functions of random variables which reflect the actual structure of the material.
The random variable distribution is measured from a close-up image of the CFRP test object.

2.2.1 Layered model of the material

In this work, the CFRP block is described as a laminate made of different anisotropic but
periodically occurring layers of various thicknesses. This introduces some degree of dispersion
and reverberation into the model, which also exists in the real material. If the magnitude
of the nonlinearity matches the dispersion, then solitary waves may emerge. Reverberation
in the material happens due to interfaces between different materials. Reverberations in the
undamaged material are usually considered unwanted in NDT applications, but TR-NEWS
signal processing actually relies on the internal echoes for the focusing of the pulse. The
internal echoes or “virtual transducers” [9] capture and release the transient wave energy in
different directions. Using TR-NEWS signal processing, these “virtual transducers” can be
made to reverberate so to create a wave focusing in one predetermined place and time in the
material.

The thicknesses of the layers of the model reflect the actual structure with tightly packed
carbon fibre yarns and epoxy. It is assumed that the yarn ellipse semi-axis dimensions follow
the normal distribution. Therefore the yarn size distribution can be measured from the close-up
image of the CFRP block, results of which are given in the Table 1. The transformation of
pixels to millimetres in the image is 48.27 ± 14 px/mm, making the standard uncertainty of
measuring length by pixels 8.1 px/mm. With confidence of 95% the width of the average yarn
is 1.50± 0.26 mm and the height is 0.261± 0.051 mm.

We have the following procedure for creating the model of the CFRP with stochastic layer
thicknesses (Fig. 3), reflecting the randomness of the thicknesses of pure yarn and epoxy en-
countered by a wave propagating through the block. In creating the model we “freeze” the
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Table 1: Dimensions of yarns measured from image

No. width, px height, px
1 72 14
2 69 14
3 70 13
4 72 13
5 78 12
6 75 13
7 70 13
8 75 11
9 71 10

Mean 72.4 12.6
Std dev 2.8 1.3

dimensions of ellipses (semi-axes a and b) and pack the ellipses. Knowing the semi-axes a and b
of the ellipses and that all ellipses are identical, then the representative element in tight packing
looks like shown in Fig. 4, containing two quarters of an ellipse. The formula for ellipse is

x2

a2
+
y2

b2
= 1. (1)

If the packed ellipses have equal size, then their horizontal distance is a. Therefore the ellipses
touch at midpoint x = a/2 of the representative element and we substitute the midpoint into
the ellipse formula to find the half-height of the representative element. Therefore in tight
packing the vertical distance between the ellipses is twice the thickness of the quarter ellipse
at x = a/2 in Fig. 4, expressed by

a2

4a2
+
y2

b2
= 1 ⇒ y =

√
3

2
b. (2)

Consequently the offset between identical ellipses for maximum packing is (a,
√

3b). We can
express y(x) for a single quarter of ellipse as

y(x) =
b

a

√
a2 − x2. (3)

Due to the symmetry of top and bottom quarter-ellipse (solid and dotted lines in Fig. 4), the
vertical thickness of CFRP yarn portion in the representative element is given by

fC(x) = y(x) + y(a− x) =
b

a

(√
a2 − x2 +

√
2ax− x2

)
. (4)

Full height of the two packed quarters
√

3b minus the thickness of the CFRP portion fC(x)
gives the thickness of epoxy part between the ellipse quarters

fE(x) =
√

3b− fC(x). (5)

Semi-axes of the ellipse a = N (µa, σ
2
a) and b = N (µb, σ

2
b ) are normal random variables

found from the distribution of carbon fibre ellipses in real material (Fig. 2). Therefore the
computational model reflects the actual material due to the randomness of the layer thicknesses
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Figure 3: The laminate material model
with layers of stochastic thicknesses and
absorbing boundary conditions on bottom
and left boundaries and four fixed degrees
of freedom

a - x0 ax

Figure 4: Ellipsoidal yarns in tight packing
resulting in a representative element with
two quarters of ellipse

being in accordance with the ellipses in actual CFRP block. Uniform random variable x =
U(0, a) is a function of geometric probability which describes where along the ellipse semi-
major axis the wave passes through the ellipse (Fig. 4).

In short, the following steps are used for creating the laminate model shown in Fig. 3. It has
stochastic layer thicknesses, reflecting the randomness of the thicknesses of pure yarn and epoxy
encountered by a wave propagating through the block. Assuming that we know the random
distribution of the dimensions of yarn ellipses, we have the following procedure for each pair of
pure CFRP yarn and pure epoxy layers in a representative element (Fig. 4).

1. Find the semi-axis dimensions of an ellipse a and b as random variables of the known nor-
mal distribution (distribution is found by analysing the structure of the actual material).

2. Find a random location x ∈ [0, a], as element of uniform distribution, for the wave to
pass through the representative element.

3. Using found values of random variables a, b and x, find the thickness of pure CFRP and
pure epoxy (Eqs. (4) and (5)) encountered by the wave.

4. As a practical aspect, the thickness of the pure epoxy layer must not be too small, as it
can prohibit the generation of a good FEM mesh.

The laminate model was constructed by finding the semi-major axis length a (where mean
µa = 0.750 mm, dispersion σa = 0.130 mm) and semi-minor axis length b (where mean µb =
0.130 mm, dispersion σb = 0.025 mm) and wave traversing location x ∈ [0, a] as random
variables for a pair of layers (composite and epoxy). The physical properties of the composite
fabric direction (90◦ or 45◦) alternated for each pair (Fig. 3). The simulation model consisted
of 50 such pairs which were generated and stacked together.
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3 TR-NEWS signal processing

Figure 5 outlines the TR-NEWS signal processing steps. The simulation uses the same sig-
nal processing steps as are usually applied to physical experiments. Firstly the chirp-coded
excitation c(t) is transmitted through the medium.

c(t) = A · sin (ψ(t)) , (6)

where ψ(t) is linearly changing instantaneous phase. In this work, a sweep from 0 to 2 MHz
was used. Then the chirp-coded coda response y(t) with a time duration T is recorded

y(t, T ) = h(t) ∗ c(t) =

∫
R
h(t− t′, T )c(t′)dt′, (7)

where h(t − t′, T ) is the impulse response of the medium. The y(t, T ) is the direct response
from the receiving transducer when the chirp excitation c(t) is transmitted through medium.
Next the correlation Γ(t) between the received response y(t, T ) and chirp-coded excitation c(t)
is computed during some time period ∆t

Γ(t) =

∫
∆t

y(t− t′, T )c(t′)dt′ ' h(t) ∗ c(t) ∗ c(T − t, T ), (8)

where the h(t)∗c(t)∗c(T−t, T ) is pseudo-impulse response which is proportional to the impulse
response h(t) if using linear chirp excitation for c(t) because Γc(t) = c(t) ∗ c(T − t) = δ(t− T ).
Therefore the actual correlation Γ(t) ∼ h(t) contains information about the wave propagation
paths in complex media.

Time reversing the correlation Γ(t) from the previous step results in Γ(−t) used as a new
input signal. Re-propagating Γ(−t) in the same configuration as the initial chirp yields

yTR(t, T ) = Γ(T − t) ∗ h(t) ∼ δ(t− T ), (9)

where yTR ∼ δ(t− T ) is now the focused signal under receiving transducer where the focusing
takes place at time T . This is because Γ(t) contains information about the internal reflections
of the complex media. Transmitting its time reversed version Γ(T − t) will eliminate these
reflection delays by the time signal reaches the receiver, resulting in the focused signal yTR
(Eq. (9)). The test configuration must remain constant during all of these steps, otherwise the
focusing is lost. The steps of this focusing process in a physical experiment are shown in Fig. 6.

3.1 Delayed TR-NEWS

Delayed TR-NEWS signal processing considers a single yTR focusing wave as a new basis which
can be used to build arbitrary wave shapes at the focusing. This is done by time-delaying and
superimposing n time-reversed correlation Γ(T − t) signals (Fig. 7 left column)

Γs(T − t) =
n∑
i=0

aiΓ(T − t+ τi) =
n∑
i=0

aiΓ(T − t+ i∆τ), (10)

where ai is the i-th amplitude coefficient and τi the i-th time delay. In case of uniform time
delay the ∆τ is the time delay between samples. Upon propagating this Γs(t− T ) through the
media according to the last step of TR-NEWS, a delayed scaled shape of signal at the focusing

7



Tx

1

t

(1)

initial pulse

1

t

(3)

time-reversed excitation

Rx

t

(2)

initial response

t

(4)

side lobes

α

β

α2+β2

αβ

α

β

Rx

focusingTx

Rx

0
z

y

medium
Tx

Tx
(2)

Figure 5: Schematic process of TR-NEWS with the virtual transducer concept. (1) The ini-
tial broadband excitation Tx(t) propagates in a medium. (2) Additional echoes coming from

interfaces and scatterers in its response Rx could be associated to a virtual source T
(2)
x . (3)

Applying reciprocity and TR process to Rx. (4) The time reversed new excitation Tx = Rx(−t)
produces a new response Rx (the TR-NEWS coda yTR(t)) with a spatio-temporal focusing at
z = 0; y = 0; t = tf and symmetric side lobes with respect to the focusing.

point can be created. The delayed TR-NEWS signal processing optimization can be used for
amplitude modulation, signal improvement and sidelobe reduction [8].

It is possible to predict what the delayed TR-NEWS focusing output would be in a linear
material (Fig. 7 right column):

ydTR(t) =

[∑
i

aiΓc (T − t+ τi)

]
∗ h(t)

linearity
======

=
∑
i

aiΓc (T − t+ τi) ∗ h(t) =
∑
i

aiyTR(t− τi). (11)

The purpose of the prediction is twofold. Firstly it can be used to figure out optimal delay and
amplitude parameters ai and τi for delayed TR-NEWS experiment, using the original focusing
peak yTR. Secondly it could be possible to analyse the differences between the measured
delayed TR-NEWS result and its prediction. The difference could indicate the magnitude of
nonlinearity, because the prediction relies on the applicability of linear superposition and is
found to be quite accurate in experiments with linear material [8].

4 Finite element model

The simulation program considers 2D wave propagation in a solid material with linear elasticity.
The nonlinearity comes from an internal defect, a crack in the computational region which can
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Figure 6: Bi-layered aluminium experimental chirp-coded TR-NEWS signal processing steps:
(1) chirp excitation, (2) output recorded at Rx, (3) cross-correlation between input and output,
(4) focusing resulting from taking time-reversed cross-correlation as new input [8].
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Figure 7: Delayed TR-NEWS signal processing steps in bi-layered aluminium, starting from
the cross-correlation step (left column) and prediction of linear superposition of waves (right
column): (1) cross-correlation(Eq. (8)), (2) delayed and scaled cross-correlation, (3) linear
superposition of two cross-correlations which becomes the new excitation, (4) focusing (Eq. (9)),
(5) delayed and scaled focusing, (6) linear superposition of the two focusing peaks.
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come into contact with itself. This contacting nonlinearity has asymmetric stiffness and is
therefore nonclassically nonlinear. Since the CFRP is a complex material, then in this work it
is modelled as a laminate with anisotropic layers arranged in a periodic manner, described in
Section 2.2.1. Because the physical experiment was conducted on the corner of a large CFRP
block, the simulation is also in a semi-infinite quarter-space. The region has two free surfaces
and two absorbing boundaries for the wave energy to escape.

The constitutive equation of the material itself is linear (although anisotropic), therefore the
logic follows Reddy [10]. The linear elastodynamics problem is solved

ρüi − σij,j = bi, (12)

where ρ is material density, ui is displacement component, σij is stress component, and bi is
body force component. Einstein summation convention is used and comma in index denotes
spatial derivative. The constitutive equation in the variational formulation is

0 =

∫
Ω

(σijδεij + ρüiδui) dxdy −
∫

Ω

biδuidxdy −
∫

Γ

tiδuids (13)

where εij is strain and ti is traction component on boundary. In our case the region Ω is a 2D
space and boundary Γ surrounding it is a 1D line. The body forces are zero in this simulation.
Strain is assumed to be small. The variational formulation in Eq. (13) is suitable for using with
FEniCS or a similar multiphysics program. For hand-programmed calculations the equations
need to be written in a matrix form, expressed using shape functions and assembled into global
matrices. The simulation programs are written using SciPy Python package [11].

The variational formulation (Eq. (13)) can be used directly to write out the FEM formulas.
Alternatively the linear elastodynamics problem (Eq. (12)) can be used to arrive to the weak
formulation by: i) writing out the equations of motion, ii) multiplying them by a weight func-
tion, iii) integrating over the element volume, and iv) integration by parts using the divergence
theorem to separate the boundary conditions and arrive at the weak form for an element [10].
Equation (12) can be written for 2D case as{

∂σxx
∂x

+ ∂σxy
∂y

+ bx = ρ∂
2ux
∂t2

∂σxy
∂x

+ ∂σyy
∂y

+ by = ρ∂
2uy
∂t2

, (14)

where σxy = σyx. Proceeding with Galerkin method by multiplying the equations with a shape
functions w1 and w2 and integrating over a volume, the equations become

∫
Ω

(
w1

∂σxx
∂x

+ w1
∂σxy
∂y

+ w1bx − w1ρ
∂2ux
∂t2

)
dxdy = 0∫

Ω

(
w2

∂σxy
∂x

+ w2
∂σyy
∂y

+ w2by − w2ρ
∂2uy
∂t2

)
dxdy = 0

. (15)

The equations are converted to weak form by using 2D integration by parts∫
Ω

w
∂G

∂xl
dxdy =

∫
Γ

nxlwGds−
∫

Ω

∂w

∂xl
Gdxdy, (16)

where G is a scalar function defined in 2D domain Ω, l denotes the coordinate index and nl
is the normal vector component in the l coordinate direction. This reduces the order of the
derivative by moving it to the weight function and exposing the boundary conditions. So using
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Eq. (16) in Eq. (15) we get

∫
Γ
w1σxxnxds−

∫
Ω
∂w1

∂x
σxxdxdy +

∫
Γ
w1σxynyds−

∫
Ω
∂w1

∂y
σxydxdy+

+
∫

Ω
w1bxdxdy −

∫
Ω
ρw1

∂2ux
∂t2

dxdy = 0,∫
Γ
w2σxynxds−

∫
Ω
∂w2

∂x
σxydxdy +

∫
Γ
w2σyynyds−

∫
Ω
∂w2

∂y
σyydxdy+

+
∫

Ω
w2bydxdy −

∫
Ω
ρw2

∂2uy
∂t2

dxdy = 0,

(17)

which can be gathered into
∫

Ω

(
ρw1

∂2ux
∂t2

+ ∂w1

∂x
σxx + ∂w1

∂y
σxy

)
dxdy −

∫
Ω
w1bxdxdy −

∫
Γ
w1txds = 0,∫

Ω

(
ρw2

∂2uy
∂t2

+ ∂w2

∂x
σxy + ∂w2

∂y
σyy

)
dxdy −

∫
Ω
w2bydxdy −

∫
Γ
w2tyds = 0,

(18)

where tractions tx = (nxσxx + nyσxy) and ty = (nxσxy + nyσyy).
Previous system of equations needs to be written in matrix form. In case of small deformations

for plane strain problem (thick body) in 2D [10], the stress-strain relation is σ = Cε or
σxx
σyy
σxy

 =

c11 c12 0
c21 c22 0
0 0 c66


εxx
εyy
2εxy

 , (19)

and coefficients cij are for plane strain constitutive equation as follows:

c11 =
E1(1− ν12)

(1 + ν12)(1− ν12 − ν21)
, where ν21 = ν12

E2

E1

(20)

c22 =
E2(1− ν21)

(1 + ν21)(1− ν12 − ν21)
, (21)

c12 = ν12c22 and c66 = G12. (22)

Here the deformation ε can be found by using the matrix of derivatives

D =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

 , (23)

as ε = Du where the displacements u = [ux uy]
T so

εxx
εyy
2εxy

 =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

[ux
uy

]
=

 ∂ux/∂x
∂uy/∂y

∂ux/∂y + ∂uy/∂x

 . (24)

Therefore the stresses are given through displacements in matrix format as

σ = CDu. (25)

Equations (18) can therefore be written as∫
Ω


∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

{w1

w2

}
T c11 c12 0

c21 c22 0
0 0 c66

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

{u1

u2

}
dxdy+

+

∫
Ω

ρ

{
w1

w2

}T {
üx
üy

}
dxdy =

∫
Ω

{
w1

w2

}T {
bx
by

}
dxdy +

∫
Γ

{
w1

w2

}T {
tx
ty

}
ds,

(26)
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which are in compact form, by using (AB)T = BTAT

0 =

∫
Ω

wTDTCDudxdy +

∫
Ω

ρwT üdxdy −
∫

Ω

wT bdxdy −
∫

Γ

wTfds. (27)

The variables u and ü are interpolated by shape functions

ux ≈
∑
i

ψi(x, y)uix, uy ≈
∑
i

ψi(x, y)uiy. (28)

The same interpolation functions are used for weight functions wi. This allows to extract the
shape function constants uix and uiy from the integration, leaving to integrate only predetermined
functions ψi. Using three-node linear triangle element T3 with 2 degrees of freedom per node
then the shape functions and constants can be expressed as (and will be defined later on)

Ψ =

[
ψ1, 0, ψ2, 0, ψ3, 0
0, ψ1, 0, ψ2, 0, ψ3

]
, (29)

and
∆ = {u1

x, u
1
y, u

2
x, u

2
y, u

3
x, u

3
y}T , (30)

so the displacements and accelerations are{
ux
uy

}
≈ Ψ∆ and

{
üx
üy

}
≈ Ψ∆̈. (31)

These can be substituted into Eqs. (27) and also w1 and w2 substituted by shape function ψ,
since the equations must hold for every admissible weight function w.

Defining B = DΨ, we can use

ε = Du = DΨ∆ = B∆ and σ = CB∆, (32)

to express Eq. (27) as

0 =

∫
Ω

(
BTCB∆

)
dxdy +

∫
Ω

ρΨTΨ∆̈dxdy −
∫

Ω

ΨT bdxdy −
∫

Γ

ΨTfds, (33)

where the constants ∆ and ∆̈ can be taken out of the integration. Here we used the fact that

B = DΨ =


∂ψ1

∂x
0 ∂ψ2

∂x
0 ∂ψ3

∂x
0

0 ∂ψ1

∂y
0 ∂ψ2

∂y
0 ∂ψ3

∂y
∂ψ1

∂y
∂ψ1

∂x
∂ψ2

∂y
∂ψ2

∂x
∂ψ3

∂y
∂ψ3

∂x

 , (34)

which is also B = Dw.

4.1 Matrix formulation of the Finite Element problem

Equation (33) can be expressed in matrix form as

M∆̈ +K∆ = F, (35)

where M is mass matrix, K is stiffness matrix, ∆ is displacement vector and F is the force
vector. This dynamical system can be solved by various methods which are explored in the
next subsection.
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Figure 8: T3 element node numbering direction with shaded area describing area coordinate
L3 = 1/2

Regarding the body forces b = 0, the element matrices can be found as follows

Me =

∫
Ω

ρΨTΨdxdy, (36)

Ke =

∫
Ω

BTCBdxdy, (37)

F =

∫
Γ

ΨTfds. (38)

Equation (35) can be extended to include damping

M∆̈ + C∆̇ +K∆ = F, (39)

which in this work used to apply the absorbing boundary conditions. Here C is the damping
matrix. The Lysmer-Kuhlemeyer absorbing boundary conditions [12] give matrix C as diagonal
matrix, which enables to take advantage of the explicit solvers. The computation of the diagonal
matrix C from Lysmer-Kuhlemeyer boundary conditions is explained in Section 4.6.

4.2 Shape functions

Linear triangular elements T3 (Fig. 8), also known as constant strain triangle [10], were chosen
for this problem for the following reasons. Firstly because the epoxy layers in the laminate model
can be very small, therefore small elements are needed anyway, with T3 being computationally
cheapest. Secondly linear elements are well suited for nonlinear problems: since the strain is
constant throughout the element, the computation of nonlinear constitutive relations would
also be simple. In this work the material itself is linear but future simulations might include
nonlinearity or hysteresis.

The derivation of the mass matrix is a bit more involved than the stiffness matrix, because
the shape functions (as opposed to their derivatives) are not elementwise constant. It involves
determining it by using interpolation functions and then integrating using the numerical inte-
gration techniques. The integration could alternatively be done exactly, since ρ = const and
element is linear, but numerical integration is a more general method.

The interpolation functions can be written as

ux ≈
3∑
j=1

ujxψj(ξ, η), uy ≈
3∑
j=1

ujyψj(ξ, η). (40)

For the T3 element, the shape functions can be found from a master element which is a right
angled triangle in coordinate system ξ, η as shown in Fig. 9. This master is given in the “natural
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coordinates” of the element ξ and η, and is used for numerically integrating over the element.
The coordinates Li for the triangle are the area coordinates which also coincide with the shape
functions ψi [10]. For example, L3 describes the area (shaded in Fig. 8) which is formed when
the opposite side of node 3 is moved toward the node. If the line is moved to half way, then
the area (shaded) is half of the total area of triangle and L3 = 1/2.

Figure 9: Master right triangle in element coordinate system (ξ, η)

The coordinates Li = ψi are the area coordinates and also the shape functions dependent on
the master triangle coordinates ξ and η

L1 = ψ1 = 1− ξ − η, L2 = ψ2 = ξ, L3 = ψ3 = η. (41)

Since there are only two independent coordinates (ξ,η), the same applies for Li = ψi: by
specifying two of them, the third is implicitly given.

From Eqs. (40) and (41)
x = x1(1− ξ − η) + x2ξ + x3η, (42)

y = y1(1− ξ − η) + y2ξ + y3η. (43)

Inverting these for coordinates ξ and η dependent on the coordinates of the points of the triangle

ξ =
1

2A
[(x− x1)(y3 − y1)− (y − y1)(x3 − x1)] , (44)

η =
1

2A
[(y − y1)(x2 − x1)− (x− x1)(y2 − y1)] , (45)

where A is the area of the triangle. It is simple to find the derivatives of these shape functions
by variables ξ and η, but in our formulas, we need derivatives ∂ψi

∂x
and ∂ψi

∂y
. Using the chain rule

in matrix notation we have{
∂ψi

∂ξ
∂ψi

∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]{∂ψi

∂x
∂ψi

∂y

}
= [J ]

{∂ψi

∂x
∂ψi

∂y

}
, (46)

where the Jacobian matrix [J ] describes the transformation

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (47)
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Table 2: Weights for integrating over the T3 element

Point L1 = ψ1 L2 = ψ2 L3 = ψ3 Weight WI

a 1/2 0 1/2 1/3
b 1/2 1/2 0 1/3
c 0 1/2 1/2 1/3

Figure 10: Integration points on the T3 element

A Jacobian matrix can be used for the needed transformation from the real element to the
master element. This is needed because it is much simpler to numerically integrate over the
undeformed master element.

Using Eqs. (42) and (42), the Jacobian matrix is

[J ] =

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
=

[
γ3 −β3

−γ2 β2

]
, (48)

where coefficients are in often-used notation

β1 = y2 − y3, γ1 = x3 − x2,
β2 = y3 − y1, γ2 = x1 − x3,
β3 = y1 − y2, γ3 = x2 − x1,

(49)

so the Jacobian determinant is |J | = (x2−x1)(y3−y1)− (y2−y1)(x3−x1) = β2γ3−γ2β3 = 2A.

4.3 Numerical integration

As mentioned, the master element with shape functions ψi is used for the numerical integra-
tion. After transforming integrals from (x, y) coordinate system to (ξ, η) system, the master
triangular T3 element enables numerical integration by only evaluating the field at three points
of the triangle. ∫

Ω

F (x, y)dxdy =

∫
Ω

F (ξ, η)|J |dξdη ≈
3∑
I=1

WIF (ξ, η)|J | (50)

These integration points are shown in Fig. 10, their coordinates and weights in Table 2. Here
ψ1 is linearly dependent on ψ2 = ξ and ψ3 = η (the two independent variables).

4.4 Element mass matrix

The consistent mass matrix for the T3 element can be generated from Eq. (36) by using the
shape functions to integrate over the element, supposing that the material inside the element
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is homogeneous (ρ = const.). The elements of the element mass matrix are given by

Mij =

∫
Ω

ρψiψjdxdy = ρ

∫
Ω

ψiψj|J |dL2dL3 = 2Aρ

∫
Ω

ψiψjdL2dL3

≈ Aρ
3∑
I=1

1

3
ψi(SI)ψj(SI),

(51)

where |J | = 2A is the Jacobian determinant and SI are the quadrature locations, yielding
relations for mass entries in the element matrix as

M11 = Aρ
2

12
, (52)

M12 = M13 = M23 = Aρ
1

12
. (53)

Naturally, the mass matrix is symmetrical, so if there are 2 degrees of freedom per node then
element mass matrix becomes

Me =
ρA

12


2 0 1 0 1 0

2 0 1 0 1
2 0 1 0

2 0 1
2 0

2

 . (54)

4.5 Element stiffness matrix

The shape functions of the T3 element can be expressed from Eqs. (41), (42) and (43) as

ψi =
1

2A
(αi + βix+ γiy), (55)

and their derivatives are
∂ψi
∂x

=
βi
2A

and
∂ψi
∂y

=
γi
2A

, (56)

which are used to calculate the matrix B from Eq. (34)

B =
1

2A

β1 0 β2 0 β3 0
0 γ1 0 γ2 0 γ3

γ1 β1 γ2 β2 γ3 β3

 , (57)

Since this is a constant strain triangle, integrating the element stiffness matrix is simple:
constant value of strain dependent stiffness times the area. Equation (57) can be used to find
the stiffness matrix of a single element, knowing its elasticity matrix C and dimensions, by

Ke = AeB
T
e CeBe, (58)

which is the element stiffness matrix.
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4.6 Boundary conditions

Degrees of freedom are fixed by zeroing the appropriate degrees of freedom in the (M · C)−1

matrix. In this study, four degrees of freedom are fixed (Fig. 3).
Lysmer and Kuhlemeyer absorbing boundary conditions [12] are used on the bottom and

left edges of the simulation region. At the moment, the simplest boundary conditions are used
where the wave velocity is averaged even for the left-hand boundary where the model is layered.
The Lysmer-Kuhlemeyer absorbing boundary conditions are applied as viscous stresses on the
boundaries, which means that they can be applied directly to DOF, making the damping matrix
C diagonal. The viscous stresses that are applied to boundaries are [12]

cii =

∫
Γ

aρVpds, normal motion DOF, (59)

cii =

∫
Γ

bρVsds, shear motion DOF, (60)

where Γ is the boundary portion of the element. In this work the scaling parameters are a = 1
and b = 1. The wave velocities used by these boundary conditions are [13]

• Vp = 2972 m/s,

• Vs = 1956 m/s.

4.7 Global matrix assembly

The external force vectors are not integrated using the shape functions. The force on line
elements is simply divided between the nodes of the line.

Since each node has two degrees of freedom, then the global mass and stiffness matrices
are with dimension 2n × 2n where n is the number of nodes. For each degree of freedom of
node, the values from the element matrices are mapped to the global matrices as in the usual
way described in the literature [10, 14]. There are several lumping schemes available for mass
matrices [14]. In this work, the rows are summed into the diagonal element.

The resulting Eq. (39) can be solved by various timestepping methods.

4.8 Time stepping algorithms

The main problem (Eq. (39)) is solved using a hand-coded solver with central difference time
stepping. The verification of the time-stepping method was done using implicit Newmark
method and the solver was verified by running the non-contact problem in parallel with solution
using FEniCS.

4.8.1 Newmark algorithm

With Newmark’s method, the timestep was (∆ts = 5·10−8 s). The constant average acceleration
Newmark’s scheme has following relations{

u̇s+1 = u̇s + ∆ts
üs+üs+1

2
,

us+1 = us + ∆tsu̇s + (∆ts)
2 üs+üs+1

4
.

(61)
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yielding a relation for acceleration

üs+1 =
4

(∆t)2
(us+1 − us)−

4

∆t
u̇s − üs (62)

which is substituted into the variational Eq. (13)∫
Ω

(
ρ

4

(∆t)2
us+1

)
· δudxdy +

∫
Ω

σij · δεijdxdy (63)

=

∫
Ω

ρ

(
4

(∆t)2
us +

4

∆t
u̇s + üs

)
· δudxdy +

∫
Γ

f · δuds. (64)

More details on the application of the Newmark’s scheme for solving Eq. (39) can be found
from Reddy [10] or Zienkiewicz [14].

4.8.2 Central difference algorithm

The main advantage of the central difference algorithm over the Newmark is that it is explicit
and therefore by using lumped mass matrix gives better performance in case of small timesteps
(here ∆t = 5 · 10−10 s). Small timesteps are advantageous in case of contact problems, since
the problem can become indeterminate as to when the contact conditions are satisfied and the
friction contact needs to be computed. There is much ongoing work in how to calculate the
contact conditions in these elastodynamic cases [15, 16, 17]. The contact condition used in this
work is described in Section 4.9.

If the mass matrix is diagonal (so instead of mass spread out evenly throughout the material,
it is “lumped” into the nodes), then the solution of the problem becomes a multiplication with
an inverse of a diagonal matrix, which is trivial. Using the central difference algorithm on the
Eq. (35) with timestep ∆t, we arrive at(

M

∆t2
+

C

2∆t

)
un+1 = Fn −

(
K − 2M

∆t2

)
un −

(
M

∆t2
− C

2∆t

)
un−1. (65)

This explicit scheme is solved by dividing the equation by the term in the first parentheses,
which is simple to do if M and C are lumped (vectors instead of big, sparse matrices). In linear
material, additional simplifications come from the stiffness matrix K being constant. Therefore
the solution for each new timestep can be expressed as

un+1 = D · (Fn − A · un −B · un−1) , (66)

where we have precomputed

A = K − 2M

∆t
, (67)

B =
M

∆t2
− C

2∆t
, (68)

D =

(
M

∆t2
+

C

2∆t

)−1

. (69)

The speed advantage of this explicit method comes from the fact that D is easy to invert if it is
a diagonal matrix. Then the solution un+1 can be found by just a vector-vector or matrix-vector
multiplication.
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4.9 Contact gap modelling

There is a single source of nonlinearity in this simulation: the contacting crack fully inside the
material. If the material is at rest, then the crack is small and straight. In this work, there is
neither a preload nor an initial gap in the contacting crack. This simple material defect results
in a localised nonclassical nonlinearity, which can be analysed by various signal processing
methods.

It is known that frictional contact problems can be sensitive to timestep length and loading
path [18]. In this work, it is assumed that the small timestep length and relatively small forces
involved keep the error small. Therefore an explicit solution method scheme is utilized, similar
to [19]. A more precise solution could be expected from an implicit scheme [18], but that is left
for the future. Further refinements could include thermoelastic contribution to the constitutive
equation at the frictional contact gap [3].

The node-to-node contact model is used. This is the simplest method, as the displacements
between the contacting surfaces can be computed easily. For this simulation, the nodes on
the top surface of the crack is labelled “master” and the bottom “slave”. In this work, the
defect is horizontal, simplifying the calculation of normal gap between the nodes. With nodes
labelled as in Fig. 11, the normal contact gap gN = nsy − nmy and the tangential gap (offset) is
gT = nsx− nmx . In case of normal penetration of one surface into another, then gN > 0. If there
is no penetration, then gN ≤ 0. The coefficient of friction is µ = 0.6, and the solution aims to
satisfy the Kuhn-Tucker conditions on the crack surface:

gN ≤ 0,

λN = σ · n ≤ 0,

gN · λN = 0,

(70)

where λN is the normal force on crack, σ is stress and n is the normal vector of the surface.
The penalty plus Lagrange multiplier method [20] is used for normal contact and the penalty
method for friction.

Figure 11: Contact gap node measurement scheme for a single node pair

Figure 12 shows the flowchart of the code logic with Coulomb friction. The steps are shown
for one node-to-node contact and are applied to each node pair in contact where contact is
detected.

The different treatment paths of different nodes can be concluded as in the following steps.
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Figure 12: Logic of the contact gap code

20



• The initial contact forces are zeroed: λN = 0, λT = 0.

• System is solved: (M/∆t2 + C/2∆t)un+1 = F n−(K − 2M/∆t2)un−(M/∆t2 − C/2∆t)un−1.

• Vector gap functions are found: gN = nsy − nmy and gT = nsx − nmx .

• Normal forcing updated λN = λN + gNb where b is some big penalty value and λN ≥ 0.

• Logic diverges to 3 paths shown in Table 3.

• The normal contact condition is verified by setting the penetration value gP = gN and
gP ≥ 0. Then the L2-norm is evaluated 〈gP |gP 〉 < ε where ε is the limiting value for the
error due to contact penetration. If the condition is not fulfilled, the iteration is repeated,
otherwise new timestep is taken.

Table 3: Three possible logic paths for contact calculation

1) 2) 3)

gN ≤ 0
gN > 0 and
upd gt = True

gN > 0 and upd gt = True

No contact

Either: a) first it-
eration with con-
tact, or b) previous
iteration had tan-
gential slip

Previous iteration had non-slip fric-
tional contact, we have valid saved gsT

upd gt = True
λT = 0

upd gt = False
gsT = gT
λT = 0

Tentative tangential slip
∆g = gT − gsT
λ′T = ∆gb
a) slipping if
|λ′T | > µ|λN | :
λT = sgn(∆t)µλN
upd gt = True

b) sticking if
|λ′T | ≤ µ|λN | :
λT = λ′T
upd gt = False

4.10 Error management

The programming errors are checked by comparison between different FEM simulation pro-
grams solving the same problem. The simplest error check is by comparison. Three cases are
compared:

• hand-programmed FEM program with explicit central difference timestep,

• hand-programmed FEM program with implicit Newmark timestep,

• FEM program using FEniCS libraries [21] with implicit Newmark timestep.
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Figure 13 shows the test case displacements in y-direction when the input has been a 30 µs
long chirp signal. The purpose of the comparisons are twofold: firstly to confirm that the
assembly of the matrices and timestepping is done correctly in the hand-programmed software
and secondly to confirm that the explicit timestepping algorithm gives a good result in this
problem. It is better to use explicit timestepping, since in conjunction with lumped mass
matrix, it is possible to get fast execution times. Also it is important because small timestep
helps solve the contact problem better by finding the time of contact more precisely.

(a) Hand-programmed, explicit
timestep

(b) Hand-programmed, implicit
timestep

(c) Using FEniCS, implicit
timestep

Figure 13: Comparison between solution programs and timesteps at the end of a 30 µs chirp
signal

In verification simulations, the fixed Dirichlet boundary conditions are used at the bottom
and left boundaries instead of absorbing boundary conditions. Later the linear problem with
contact defects and absorbing boundary conditions is solved using only the hand-coded solver.

4.10.1 Energy conservation and dissipation

Errors in physical formulation can be checked using conservation laws. The wave energy is
introduced at the transducer area. For the cracked part, we necessarily have dissipation. The
energy also “exits” the through the absorbing boundaries. The total energy inside the bound-
aries plus the fluxes on the boundaries and dissipation on the defect should yield a constant
value. This energy balance should indicate the quality of the simulation.

5 Simulation results and analysis

This section describes the signal analysis of the simulation results on the damaged and un-
damaged medium. The purpose is to list some analysis measures which could allow to detect
the presence of damage as nonlinearity in materials when only a signal from a point source
is available, like in ultrasonic NDT where transducer usually gives just a time-series of data,
measured at one discrete point. The signals are low-pass filtered to keep only the ultrasonic
component.
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5.1 Input signal and simulation configuration

Equation (6) is used for the initial input signal of the TR-NEWS signal processing (Section. 3)
into the simulation. It is a linear chirp with starting frequency f0 = 0.2 MHz, ending frequency
f1 = 2 MHz and length of t1 = 30 µs in the 60 µs long input signal,

c(t) = A · sin(ψ(t) · t), (71)

where

ψ(t) = 2π

(
f0 · t1 +

(f1 − f0) · t2

2t1

)
. (72)

The resulting output of the simulation from this chirp then used according to the TR-NEWS
signal processing to get the correlation data, which is time reveresed and resent through the
simulation. The signal is applied at the Tx region (Fig. 14) as forcing with maximum amplitude
of 50 kPa.

Figure 14: Sketch (not to scale) of the simulation geometry, location of crack, transmitter and
receiver points without the layers

The input signal is transmitted at a 70◦ angle, the output signal is saved at five locations
on the top of the simulation region (Fig. 14) marked from 1 to 5. Identical simulations are
conducted on cracked and uncracked setup. Additionally the displacement field is saved as an
image plot at each 5 · 10−8 s (each 100 timesteps).

5.2 Undamaged CFRP TR-NEWS simulation

Figure 15 shows the TR-NEWS results of the uncracked CFRP test object simulation for the
receiving transducer positions 1 to 5 (Fig. 14). It is an ordinary TR-NEWS focusing where
at the middle of the signal there is the focusing, surrounded by the sidelobes. There are
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two aspects to note about this is figure. Firstly, the sidelobes shift toward the main focusing
and comparatively decrease in amplitude as the receiving transducer position shifts toward the
transmitting transducer (from position 1 to position 5), indicating lower noise as the signal gets
stronger. Secondly, the sidelobes are symmetrical in respect to the main lobe. This does not
happen in nonlinear (damaged) material analysed later on. Additionally, PI signal processing
was applied to this linear and uncracked material simulation which verified the nonexistence of
nonlinearity (the results were identical).
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Figure 15: Unnormalized TR-NEWS focusing of undamaged CFRP simulation

5.3 Damaged CFRP TR-NEWS simulation

Figure 16 shows the TR-NEWS results of the cracked CFRP test object simulation for the
receiving transducer positions 1 to 5 (Fig. 14). Here also the PI signal processing is applied
and shows the nonlinearity as difference between 180◦ phase-shifted chirp signals, denoted as
positive and negative excitation. It can be noted that the unlike the linear, uncracked case, the
nonlinear, damaged case exhibits strong nonlinearity particularly strongly in receiving position
3 (middle of the crack). Additionally the sidelobes are unsymmetrical in respect to the main
lobe. There is considerably more randomness in the side lobe signals across the measurement
points. Figure 17 shows the envelope of this measure of nonlinearity across all of the measuring
points. The nonlinearity magnitude depends on the measuring point location in respect to the
crack: point 3 near the middle of the crack shows strongest nonlinearity, points 2 and 4 show
less, and points 1 and 5 show the least.

Figure 18 shows the unnormalized focusing signal for the damaged medium, which can be
compared with corresponding undamaged result in Fig. 15. The amplitudes of the focused
signals have some interesting properties:
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Figure 16: Normalized TR-NEWS focusing of damaged CFRP simulation with PI applied to
detect nonlinearities as difference between negative and positive excitations
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1. The highest amplitude comes not from the receiver position closest to the transmitter
(pos. 5), but the one closest to the crack (pos. 3).

2. Comparing the amplitudes of the positions 2 and 4, at far side and near side of the crack
end, respective to transmitter: the farther position has larger focusing amplitude than
the nearer position. Since the simulation region has two absorbing boundaries, the wave
propagation is mostly in one direction, therefore the defect between pos. 2 and 4 must
be capturing the input signal and the correlation is using that energy as a new “virtual
transducer” for the pos. 2 focusing in TR-NEWS signal processing. This could be further
analysed in future works by the correlation signals which generate these focused signals,
but is out of the scope for this paper.

3. Amplitudes of measurement positions 1 and 5 are “right way” around: the nearer mea-
surement point has larger focusing amplitude than the farther.

Figure 19 shows a snapshot of the simulation u2 displacement at a time moment t = 32.6 µs,
just after the focusing. The defect in material is acting as a source of new excitation after
TR-NEWS focusing. Wave energy is captured between the damage and outside wall of the
material and emitted as a wave. Video of the displacement fields of a TR-NEWS focusing to
point 3 of the damaged medium is available at [22].
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Figure 17: Envelopes of the PI nonlinearity measures from all of the measuring points

5.4 Spectral analysis of the focused signal

An often used indicator of nonlinear effects is the spectral analysis. While linear systems keep
the frequency content constant, the nonlinear effects modify the frequencies which are present.
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Figure 18: Unnormalized TR-NEWS focusing of damaged CFRP simulation

Figure 19: Displacement u2 field at time t = 32.6 µs with a wave emission coming from the
damaged region. Video available at [22]
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Figure 20 shows the spectral densities of the input chirp versus the output signals at point 3 of
cracked and uncracked medium simulations. A definite difference in spectrum can be seen. The
damaged medium exhibits more energy in the lower frequencies and less in higher frequencies,
probably either due to defect resonance or the “mechanical diode” effect of the contacting
nonlinearity which only allows one-sided passing of an impinging wave.

5.5 Spectral analysis of the defect motion

In addition to the data gathered at points 1 to 5 shown in Fig. 14, the simulations also saved the
data at the crack itself (master and slave surface nodes). This allows to analyse, for example,
the time series of the defect motion itself or compute the spectrum of the defect, shown in
Fig. 21. This data is unavailable in physical ultrasonic NDT measurements, but in simulation
allows to see what kind of spectrum does the defect generate and how the this translates to the
measurement at point 3 on the surface near the defect. The interesting points in the spectrum
of the defect are where it is larger than the undamaged medium signal on the surface and even
better when it has visibly affected the spectrum of the on-surface measurement of the damaged
medium. The four most prominent peaks in the spectrum of the defect are at 58, 116, 365 and
472 kHz.
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Figure 20: Spectral densities of input versus output signals of uncracked and cracked medium
at point 3

5.6 Delayed TR-NEWS analysis

Section 3 describes also the delayed TR-NEWS signal processing method which allows to create
arbitrary envelope wave at the focusing using Eq. (10), instead of the simple peak of the TR-
NEWS. Equation (11) shows that in linear material the outcome of the delayed TR-NEWS
process can be predicted. Since this method with prediction works very well in physical NDT
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Figure 21: Spectral densities of the wave motion on the surface of the defect, compared to the
nearest measurement point position 3 (damaged and undamaged)

measurements [8], it has been tested now in simulation with the nonlinearity, supposing that
any difference from the prediction shows the presence of nonlinearities or damage. Figure 22
shows the comparison between the linear superposition prediction and the simulation result of
a simple delayed TR-NEWS process where two focusing peaks are at superposition with 1 µs
time delay. The difference between the prediction and the simulation are large and obvious,
indicating the presence of nonlinearity. This measure of nonlinearity seems to be stronger than
the measure calculated from PI (Fig. 16).

The delayed TR-NEWS signal processing could also be used in simulation according to the
resonant frequency of the contacting gap, to try and excite the crack with even more wave
energy, but this is out of the scope of the current paper.

6 Conclusion

The purpose of this research report was to list in detail the simulation methods and main
results for the analysis of a defect inside a CFRP block. It describes the FEM simulations of a
damaged medium, which are conducted to simulate the physical measurements of a damaged
CFRP block using TR-NEWS ultrasonic signal processing. The mathematical and FEM models
are described, the TR-NEWS signal processing is explained for attaining the simulation results.
The results are shown for identical damaged and undamaged model, listing the differences using
various signal processing methods, like PI, spectral analysis and delayed TR-NEWS to detect
the presence of the damage as nonlinearity.

The simulation of the nonlinearity as one small crack near the receiving transducer allows
to investigate more closely the mechanics of the contacting damage. It is sufficiently simple
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Figure 22: Delayed TR-NEWS signal processing with one delay of amplitude ai = 1 and delay
value τ = 1 µs (Eq. (11)): comparison between the linear prediction and the simulation outcome

model to use for developing new signal processing methods to extract the nonlinear signature
of the material. It has been shown that the defect acts as an energy pocket, which can lead to
development of a global method to detect defects farther away from the receiving transducer.

6.1 Perspectives

A more thorough investigation is possible using a combination of the signal processing methods
shown. Also, a number of smaller ideas for detecting and analysing the damage in the material
have been listed in this work which are out of the scope, but could be investigated in the future.

• Delayed TR-NEWS could be used in simulations to activate the defect by its resonance
frequency.

• The symmetry breaking of sidelobes by the defect could be analysed, as the undamaged
material has symmetric sidelobes.

• An automatic mesh refinement could be used to study the crack propagation for this kind
of computational model.

• A 2D model consisting of elliptical yarns could be devised which keeps the complexity
lower than the laminate model if the epoxy inclusions could be controlled to be large
enough for larger elements.

• The simulation model could be made more complex and precise, for example by including
thermodynamic frictional heating of the contact.
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