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Abstract

Boussinesq-type equations arise in many areas of fluid and solid mechanics where nonlinearities and dispersion are taken into
account. In this paper the analysis of two Boussinesq-type models is presented. One model describes propagation of waves in
microstructured solids and another one - waves in biomembranes. The main difference between these equations is the structure of
the nonlinearities - in case of the microstructure model these are in terms of displacement gradients and in case of the biomembrane
- in terms of displacements. Numerical analysis is carried out and differences in the solutions are discussed. Due to the nonlinear
character of biomembranes made of lipids, the smaller solitons in biomembranes may travel faster than higher solitons.
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1. Introduction

Contemporary continuum mechanics has many avenues bril-
liantly described by G.A.Maugin [1, 2]. Among these avenues
is one entitled ‘wave motion’ with one part marked by a la-
bel ‘nonlinearity’, another one - by ‘dispersion’. As it is well-5

known, these physical properties taken into account simulta-
neously, lead to the concept of solitons and/or solitary waves.
Again, G.A.Maugin has described soliton-type waves in many
physical situations [3, 4]. The mainstream of studies on solitons
is based on evolution equations like the celebrated Korteweg-de10

Vries (KdV) equation or its modifications. Describing waves in
solids, one should pay attention also to Boussinesq-type mod-
els [4]. In this paper, based on the legacy of G.A.Maugin, the
analysis of certain Boussinesq-type equations is presented for
modelling waves in microstructured media.15

The Boussinesq-type wave equations have the following
characteristics [5]: (i) bi-directionality like in the classical wave
equations; (ii) nonlinearity of any order; (iii) terms describing
dispersion at least of the fourth order (cf. the second order main
terms). The historical background of such models is described20

by Maugin [4] and Christov et al. [5] but nevertheless some
remarks are in order.

First, the dispersion of waves may be caused either by ge-
ometrical or physical effects. The geometrical dispersion oc-
curs in waveguides due to the influence of lateral surfaces and25

depends on the transverse dimensions of wave-guides [6, 7].
The physical dispersion in solids is caused by the existence of
the microstructure of the material [3, 8, 9, - see also references
therein]. In this case, the scale effects (the scale of a microstruc-
ture) are of importance. The governing equations for describ-30

ing microstructural effects can be derived either from discrete or
continuous basis. Starting from the discrete description (atomic
structure of materials), the accuracy of governing equations de-
pends on approximations [3, 4] and may lead in some cases to
unstable models. The consistent modelling based on continuum35

theory [10, 11] gives physically realistic results involving both
the potential and kinetic energies of a microstructure [8]. In
this case, the inertia of a microstructure is explicitly accounted
for. Combined with scale effects, the result is described by a
hierarchical structure of governing equations [12]. It has been40

shown that such a modelling guarantees the stability of waves,
i.e., the discrepancy that at higher frequencies the velocities are
unbounded, is removed.

Second, the character of nonlinearities depends on properties
of materials. In solid mechanics, the nonlinearities are usually45

dependent on the displacement gradient [3, 6, 7, 13]. In biome-
chanics, it has been recently suggested that the nonlinearities
are of the displacement type [14]. This makes an essential dif-
ference in modelling of solitary waves when the dispersive and
nonlinear effects are balanced [15].50

In what follows, the analysis of two Boussinesq-type models
is presented. The first case (Section 2) deals with mechanics
of microstructured solids with a deformation-type nonlinearity
and dispersive effects. This is a typical case of a Boussinesq-
type model as stated by Christov et al. [5]. The second case55

(Section 3) is devoted to the analysis of deformation waves in
biomembranes with a displacement-type nonlinearity and dis-
persive effects. This mathematical model compared with the
model proposed by Heimburg and Jackson [14] is improved by
taking into account the inertial effects caused by the lipid mi-60

crostructure of a biomembrane [16]. Finally, in Section 4, the
discussion is presented on differences and similarities of mod-
els analysed in previous Sections. The main attention is paid to
the formation of solitons from arbitrary initial conditions.

2. Solitons in microstructured solids65

Boussinesq-type equations do not only exist in case of water
waves but can also arise in solid materials when the inherent
microstructure is taken into account. Starting from lattice the-
ory, the Boussinesq-type equation is derived by replacing the
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Figure 1: Formation of trains of solitons from pulse-type initial condition for
Eq. (3). Right- and left-going structures are plotted at every ∆T = 1750. Here
b = 0.7188, µ = 1.1394, δ = 0.09, β = 56, ν = 9.3867, λ = 1.1470. Width and
amplitude of the pulse-type (U0sech2(B0X)) initial condition are B0 = 0.01 and
U0 = 2 respectively [18].

discrete degree of freedom of the underlying crystal structure70

with continuous variable by using the Taylor expansion [3, 17].
In the theory of microstructured continua [8, 10] the macro-

and microcontinuum are separated and the balance laws are for-
mulated separately for the macro- and micro-scale. In terms
of macrodisplacement u and microdeformation ϕ, the simplest
free energy W function is a quadratic function

W = αu2
x + Aϕux +

1
2

Bϕ2 +
1
2

Cϕ2
x +

1
6

Nu3
x +

1
6

Mϕ3
x, (1)

where α, A, B, C, N and M denote material parameters. Here
and further the indices x, t (later X, T ) denote differentiation
with respect to these variables. The balance laws are derived
from the Euler-Lagrange equations:

ρutt = σx, Iϕtt = ηx − τ, (2)

where ρ is the density, I is the microinertia, σ = ∂W/∂ux is the
Cauchy stress, η = ∂W/∂ϕx is the microstress and τ = ∂W/ϕ is
the interactive force.

Introducing dimensionless variables X = x/L0, T = c0t/L0,
U = u/U0 where c2

0 = α/ρ and U0 and L0 are certain con-
stants (e.g. amplitude and wavelength of the initial excita-
tion), along with geometrical parameters δ = (l0/L0)2 and
ε = U0/L0, where l0 is the characteristic scale of the mi-
crostructure and making use of the slaving principle (see [8]
for details) a Boussinesq-type equation in terms of deformation
(V = UX) is obtained [18]

VTT − bVXX −
µ

2
(V2)XX

= δ

βVTT − νVXX +
λ
√
δ

2
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X
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Figure 2: A soliton train solution of Eq. (3) in terms of deformation at T =

16000 propagating to the right. Here b = 0.7188, µ = 1.1394, δ = 0.09,
β = 56, ν = 9.3867, λ = 1.1470. Width and amplitude of the pulse-type
(U0sech2(B0X)) initial condition are B0 = 0.01 and U0 = 2 respectively [18].

where b = 1 − A2/(αB), µ = NU0/(αL0), β = IA2/(ρl20B2),75

ν = CA2/(αB2l20) and λ = A3MU0/(αB3l30L0) are constants. In
case of λ = 0, Eq. (3) possesses a closed solution [7].

Due to the existence of nonlinearities and dispersion in
Eq. (3), the possible balance between the effects caused by them
may occur resulting in solitons. This can be demonstrated by80

solving Eq. (3) numerically under localised initial and periodic
boundary conditions making use of the pseudospectral method
(see [18] for details). The solution for Eq. (3) is depicted in
Fig. 1 where it can be seen that the initial pulse U0sech2(B0X),
where U0 and B0 are the initial amplitude and width of the85

pulse, splits into two counter-propagating solitary trains. In
Fig. 2 only the right-going solitary train is shown.

Due to the nonlinearities in microstructure (λ , 0) the soli-
tary wave solution of Eq. (3) is asymmetric [19] and this prop-
erty can be used for solving inverse problems of nondestructive90

evaluation of material properties [20].

3. Solitons in biomembranes

Boussinesq-type equations can also be derived for describing
the deformation waves in lipid bilayers. It has been demon-
strated by the experiments [21, 22] that a mechanical wave95

propagates along a nerve axon together with the action poten-
tial. A mathematical model describing such a wave was pro-
posed by Heimburg and Jackson [14] and later improved by
Engelbrecht et al. [16].

The starting point for a model is a wave equation in terms of
longitudinal density change (∆ρA = u)

utt = (c2
eux)x (4)

and an assumption that effective velocity in biomembrane (ce)
is dependent of the density change as

c2
e = c2

0 + pu + qu2, (5)

where c0 is the velocity if low amplitude sound and p, q are
coefficients determined from experiments. In addition an ad
hoc fourth order term explaining elasticity of the microstructure
in the biomembrane was added [14]. In order to account for
the microinertia of the biomembrane, the fourth order mixed
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Figure 3: A soliton train solution of Eq. (6) at T = 98001 propagating to the
right. Here P = −0.2186, Q = 0.004230, H1 = 72.14, H2 = 1.

derivative term has to be added [16]. The governing equation in
the dimensionless form is then

UTT = (1 + PU + QU2)UXX + (P + 2QU)U2
X

− H1UXXXX + H2UXXTT , (6)

where X = x/l, T = c0t/l, U = u/ρA and P = pρA/c2
0,

Q = qρ2
A/c

2
0, H1 = h1/(c2

0l2), H2 = h2/l2. Here l is a certain
length, for example, the fibre diameter. We also note that while
mathematically there are no restrictions for the parameters P
and Q, for the case of biomembrane the conditions P < 0 and
Q > 0 are satisfied [14, 23]. Equation (6) has a closed solution
[23]:

u(ξ) =

6(c2 − 1)

P +
√

P2 + 6Q(c2 − 1) cosh
[
ξ
√

(1 − c2)/(H1 − H2c2)
] , (7)

where ξ = X − cT and c is the velocity of the solitary wave.100

Note that in this case the solitary wave solution is symmetric
contrary to the case of similar wave in microstructured material
modelled by Eq. (3) [19].

Like in Section 2, we shall solve the governing equation (6)
at an arbitrary initial input. Solution for Eq. (6) can be seen in105

Fig. 3 where like in Fig. 2 only soliton train propagating to the
right is depicted.

4. Discussion

One major difference between the solutions shown in Figs 2
and 3 is that the higher amplitude solitons travel faster in case of110

the solution of Eq. (3) while in the case of a solution of Eq. (6)
with P < 0 in Fig. 3 the faster solitons are with smaller ampli-
tudes. Another interesting fact is that the solitons with negative
amplitude are even faster under such a parameter combination
as used in Fig. 3 [23]. It should be noted that systems where115

smaller amplitude solitons travel faster are possible even in the
case of the classical Boussinesq equation under some param-
eter combinations [24]. However, such a realistic parameter
combination which would result for a smaller amplitude soli-
tons to have greater velocity than the higher amplitude ones is120

not known for Eq. (3) currently.
What is similar for the solutions of both Eqs. (3) and (6) is

that these solutions are strictly speaking not solitons but solitary

waves as far as the interactions are not fully elastic [18, 23].
If the radiation from the interactions is small, such trains are125

often still called solitons. In both systems if the parameters
of the system are suitable for solitonic solutions an arbitrary
input will be decomposed normally into a train of solitons and
a ‘tail’ of lower amplitude osccilations. However, it should be
emphasised that the wave structure (for example, the number130

of emerging solitons in the train) and even the existence of a
solitonic solution can be sensitive on some parameters of the
initial condition [18, 23]. For example, for Eq. (6) it is possible
that the amplitude of the initial condition (positive or negative)
can change between the solution types of an solitary wave train135

and the oscillatory structure [23].
In general it can be noted that as both Eqs. (3) and (6) are

of the Boussinesq type like stated by Christov et al. [5], the
solutions can qualitatively be remarkably similar. However, the
structure and type of the nonlinear and dispersive terms can add140

different nuances to the behaviour of the solutions, as demon-
strated, for example, by a solution for Eq. (6) where smaller
amplitude solitons can travel faster than the higher amplitude
ones. Note also that the soliton of Eq. (3) are in terms of defor-
mation and those of Eq. (6) are in terms of displacement.145

The dispersion analysis of linear versions of Eqs (3) and (6)
shows that when the nonlinear terms are neglected then the be-
haviour of Eqs (3) and (6) is identical with the exception of
coefficients used in the equations. The linear version of Eq. (6)
can be rewritten as [25]

UTT = UXX + H2(UTT − γ
2UXX)XX , (8)

where γ = H1/H2 is the dimensionless bounding velocity re-
lated to the front of the soliton train. This form clearly shows
that when elastic (the term H1UXXXX) and inertial (the term
H2UTT XX) properties of the underlying structure are considered
then the dispersive effects behave as an additional higher order150

wave operator. In case of microstructure (Eq. (3)) the bounding
velocity is given by ν/β which are the parameters related to the
properties of the microstructure.

In many cases the physical situation is best modelled by in-
cluding nonlinearities into the governing equations [13]. This155

is reflected above in Eqs (3) and (6) derived following certain
physical assumptions. However, in this context it would be of
interest to discuss other possible nonlinearities in such systems.
In case of microstructured solids, the modelling of martensitic-
austenitic alloys leads to quadratic and quartic nonlinearities in160

governing equations [26]. As a result, solitonic structures may
emerge. In case of seismic shear waves, the nonlinear body
force capture the effect of attenuation for small amplitudes and
amplification for higher amplitudes due to the releasing of em-
bedded energy [13, 27].165

In biomembranes, the assumption of effective velocity
(Eq. (5)) includes a polynomial up to the quadratic order which
describes displacements in a biomembrane close to the melting
transition [14]. If such a dependence is described with a poly-
nomial of a higher order then theoretically it would open more170

possibilities. The pseudopotential [23] which governs the soli-
tonic solutions of the governing equation is then also of higher

3



order. Consequently it may lead to more coexisting solution
types including oscillatory ones. However, the displacements
of biomembranes are limited to the possible phase change [14].175

If displacements are larger then the temperature effects must
also be taken into account [28]. It means that the present model
(Eq. (6)) of waves with solitonic solutions is not valid anymore
and must be changed.

In conclusion, one could say that while the Boussinesq180

paradigm, as outlined in [5] can give a good idea what to ex-
pect from the solutions, the material properties reflected in the
finer structure of the equation under consideration are capable
of influencing the behaviour of the solutions.
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