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Abstract

Waves with the negative group velocity (NGV) are known to exist in optics
(Sommerfeld and Brillouin) and in some mechanical cases like layered media,
cylindrical shells and cylinders. In this paper the effects of the NGV on the
evolution of the wave profiles are studied in the context of a Mindlin type
continuum model with two microstructures in the 1D setting. Based on
dispersion analysis, the range of parameters when the NGV region exists is
determined. Numerical analysis is used to establish effects of the NGV in
the evolution of wave profiles in time. The results can be used in material
science.

Keywords: Negative group velocity, Spectral analysis, Dispersion,
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1. Introduction

The negative group velocity (NGV) is an interesting phenomenon usually
attributed to optics [1, 2, 3]. As far as this phenomenon is related to wave
propagation, it is not surprising that the NGV can also exist for deformation
waves in solids. It was shown already by H. Lamb [4] for transverse vibrations
of strings even earlier than famous studies in optics [3]. In physical terms,
the NGV appears for Lamb waves in layered media (solid-liquid-solid) [5],
for plates both experimentally (see [6, 7] and references therein) and theo-
retically (see [8, 9] and references therein), for waves in cylindrical shells [10]
or cylinders [11], for waves in metamaterials [12, 13], etc. We noticed the
appearance of the NGV for longitudinal waves in microstructured materials
with multiple scales (a scale within a scale) [14, 15]. In this case the dis-
persion analysis shows the existence of three dispersion curves: one acoustic
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branch and two optical branches. For some sets of material parameters two
optical branches are close to each other. As far as optical branches describe
non-propagating oscillations, it was conjectured in [15] that at such a pre-
resonant situation these non-propagating oscillations are coupled resulting
in the NGV. Clearly further studies are needed for understanding this in-
teresting phenomenon in order to establish the dependence of the NGV on
physical parameters of the microstructure and the influence of the NGV on
wave profiles. The latter effect is interesting because in optics usually the
NGV is space-dependent, but the NGV in microstructured solids depends on
wavenumbers (frequencies).

In this paper further analysis is presented for Mindlin-type models de-
scribing the microstructured solids [14, 16, 17, 18]. The attention is focused
(i) to establishing the regions of parameters where the NGV can exist and
(ii) to describing the changes of wave profiles in regions where the NGV ex-
ists. In Section 2 the governing equations are presented together with sets of
material parameters used in the further analysis. Section 3 is devoted to the
dispersion analysis. The detailed study of group and phase velocities permits
to reveal the changes in dispersion characteristics due to changes in mate-
rial parameters and establish the basis for numerical analysis. In Section 4
the ideas of the pseudospectral method used in numerics are described. The
main results of the analysis are presented in Section 5 while in Section 6 final
remarks are given.

2. Governing equations

In the present paper a mathematical model for microstructured solids is
considered which can have the NGV regions in their dispersion curves under
some parameter combinations. The derivation of the governing equations is
briefly the following. We start with Lagrangian L = K −W , where K is the
kinetic and W is the potential energy and derive the governing equations by
using Euler-Lagrange equations after determining the K and W . For two
microstructures with different scales one of the simplest potentials W which
accounts for nonlinear and dispersive terms can be taken as (see [19, 20] and
references therein)
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where u is the macrodisplacement, ϕi are microdeformations and capital let-
ters denote material coefficients. Subscript x denotes the spatial, and t the
time derivative, respectively. If we take A12 = 0 then we get a double mi-
crostructure model where concurrent microstructures do not interact. Taking
A2 = 0, results in a hierarchical microstructure model where the second mi-
crostructure is embedded into the first one. In the following we deal with the
case A2 = 0. Following the Euler-Lagrange formalism (see [14, 15, 20] for
details), the system of governing equations in the dimensionless normalised
form is

UTT = UXX + α1Φ1X + α2Φ2X + α3UXUXX ,

Φ1TT = β1Φ1XX + β2Φ2X − β3Φ1 + β4Φ1XΦ1XX − β5UX ,

Φ2TT = ζ1Φ2XX − ζ2Φ1X − ζ3Φ2 + ζ4Φ2XΦ2XX − ζ5UX ,

(2)

where coefficients in terms of material and geometrical parameters are ex-
pressed as

α1 =
A1L

2

l1UoY
, α2 =

A2L
2

l2UoY
, α3 =

NUo

LY
,

β1 =
C1ρ

I1Y
, β2 =

A12l1Lρ

I1l2Y
, β3 =

B1L
2ρ

I1Y
, β4 =

M1ρ

I1l1Y
, β5 =

A1l1Uoρ

I1Y
,

ζ1 =
C2ρ

I2Y
, ζ2 =

A12l2Lρ

I2l1Y
, ζ3 =

B2L
2ρ

I2Y
, ζ4 =

M2ρ

I2l2Y
, ζ5 =

A2l2Uoρ

I2Y
.

Here ρ is the density, Ii are the microinertia, li are the characteristic scales
of the microstructures (i = 1, 2), U0 is the amplitude and L is the wave-
length of the initial excitation. For the sake of clarity it should be noted
that the change of variables for the dimensionless form is x = LX, t =
(LT )

√
ρ/Y , u = UoU, φi = (L/li)Φi and the ratio L/li has been introduced

to take into account the scale separation between microstructures explicitly.
The microdeformations are dimensionless to start with and the introduced
ratio maintains that property (see [14] for details).

Based on earlier research [15], we note that model (2) leads to three dis-
persion curves - one acoustic and two optical branches. We pick up the
material parameters in a way that results in three different cases for the
NGV. The first case is where there is no NGV region, the second case is
when the acoustic branch has a local minimum at zero group velocity at
a certain wavenumber and the last case is when there is a NGV region at
a certain range of wavenumbers in the acoustic branch. In addition, as a
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result of normalising the equations some additional constraints have been in-
troduced for the material parameters resulting in a situation where the first
optical branch starts from the dimensionless frequency equal to one at low
wavenumbers (i.e., ξ < 1) and the second optical branch starts from the di-
mensionless frequency equal to two. For the normalisation the dimensionless
speed of sound for the bulk medium has been taken equal to one. The NGV
condition is controlled by changing parameters A12 and C1. Parameter B2 is
kept constant.

For the potential W , (relation (1)) the chosen parameters for most cal-
culations are:
Y = 100, A1 = 5, A2 = 0, B1 = 10, B2 = 16, C2 = 8, N = M1 = M2 = 0,
while material and geometrical parameters are:
ρ = 100, I1 = 10, I2 = 4, Uo = 1, L = 1, l1 =

1

4
, l2 =

1

20
.

NGV control parameter No NGV Zero NGV NGV exists
A12 8 12.858 16
C1 5 4 3

Table 1: Table of varied parameters

The parameters A12 and C1 are given in Table 1. The “Zero NGV” case
in Table 1 is considered the reference case meaning that if C1 is varied then
parameter A12 is kept at its reference value and vice versa. Later also the
case N 6= 0, M1 6= 0 and M2 6= 0 is analysed.

3. Dispersion analysis

The system of governing Eqs (2) is expressed in its single dimensionless
linearised form in terms of the macrodisplacement suitable for dispersion
analysis demonstrating clearly the asymptotic behaviour
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and where x, t are the dimensional space and time coordinates, respectively
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[15]. For the sake of clarity it should be noted that in terms of material
coefficients the speeds ci and time constants pi are expressed as
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Alternatively Eq. (3) can be written in terms of material coefficients:
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The dispersion relation in the dimensionless form for Eq. (3) takes the form
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(5)

where η denotes the dimensionless frequency and ξ the wave number [15].
Alternatively Eq. (5) can be written in terms of material coefficients:
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(6)

Both forms (5) and (6) are equivalent but reflect the dependence either on
calculated speeds or on starting parameters in relation (1), respectively. The
dispersion curves for the reference case can be seen in Fig. 1 left.

In addition it should be noted that in previous publications [14, 15, 21]
the behaviour of the dispersion relation (5) and the emergence of the NGV
has been analysed in terms of dimensionless characteristic velocities γi < 1
which simplified the analysis. Here the analysis is carried out in terms of
the material coefficients. Moreover, we have set γ2 > 1 which simplifies
(no dispersion at high wavenumbers) the behaviour of the optical dispersion
curves while still retaining the effect of the NGV at the lower frequencies.
The non-simplified dispersion curves (γ2 < 1) can be seen in Fig. 1 (right)
where all the parameters are kept the same as in the reference case other
than parameter C2 which has been reduced.
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Figure 1: Dispersion curves for the reference case (left) and for the non-simplified case
(right, C2 = 5

2
→ γ2 = 0.625). Solid line – acoustic branch, dashed line – first optical

branch and dotted line – second optical branch.

The graphs for group velocities for the considered cases (model (2)) are
shown in Fig. 2 and for phase velocities – in Fig. 3.

A number of observations follows by taking a closer look at Figs. 2 and 3.
Starting with Fig. 2 (left, the influence of parameter A12 on group velocities)
one can conclude the following concerning the different branches:
(i) the acoustic branch – the shape of the group velocity graph remains the
same when A12 is changed; however, increasing the parameter shifts the peak
of the local minimum towards lower wave numbers. In the reference case the
local minimum touches the wavenumbers axis at ξ = 1 (γ = 0). On the other
hand, the increasing of parameter A12 tends to increase the group velocity
for the higher wave numbers (ξ = 2 . . . 6). At high wave numbers (ξ > 6)
there is no significant difference between the studied cases.
(ii) the first optical branch – increasing parameter A12 increases the minimum
group velocity value in the range where the NGV region exists in the first
optical branch and shifts the peak of the NGV region towards higher wave
numbers. However, under the used parameters the NGV region in the first
optical branch remains in the region of low wave numbers (ξ < 1) and as a
result should not affect the wave profiles presented later in the paper. At
higher wavenumbers (ξ > 2) the group velocity is one for the first optical
branch (as the first optical branch is practically a straight line at higher
wavenumbers, it means that in essence at high wave numbers there is no
dispersion due to this effect).
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Figure 2: Group velocities when parameter A12 (left) and C1 (right) is used to control the
existence of the NGV region. Solid lines – acoustic branch, dashed lines – the first optical
branch and dotted lines – the second optical branch. Different colours denote different
parameter combinations; black – reference case, red – no NGV region case and blue – the
case with existing NGV in acoustic branch

(iii) the second optical branch – no significant changes in group velocities for
the second optical branch are visible under the used parameter combinations.
For the sake of completeness it should be noted that at wave number ξ = 2.3
there is a crossing point for group velocities where the group velocity is the
same (γ = 1.2) for all considered cases. Above wave number ξ = 1 all
considered cases for the second optical branch give the group speed greater
than one (supersonic in regards of the bulk medium). The decreasing of A12

results in the increasing of the wavenumber over which the group velocity is
marginally greater than one (supersonic) for the second optical branch.

Moving on to Fig. 2 (right, the influence of parameter C1 on group veloc-
ities) one concludes that:
(i) the acoustic branch – the shape and location of the local minimum (ξ = 1)
remain the same for the group velocity of the acoustic branch if parameter C1

is used to control the existence of NGV region. Parameter C1 influences also
the limiting velocity at higher wavenumbers (ξ > 3). At low wave numbers
(ξ < 1) the differences between the cases are negligible.
(ii) the first optical branch – parameter C1 affects the magnitude of the NGV
region and the location of the local minima shifts marginally towards higher
wave numbers with lowering of parameter C1. Overall NGV region remains
in the region of low wavenumbers (ξ < 1) where it should not affect the
evolution of the wave profiles.
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Figure 3: Phase velocities when parameter A12 (left) and C1 (right) is used to control the
existence of the NGV region. Solid lines – acoustic branch, dashed lines – the first optical
branch and dotted lines – the second optical branch. Different colours denote different
parameter combinations; black – reference case, red – no NGV region case and blue – case
with existing NGV in acoustic branch

(iii) the second optical branch – the influence of parameter C1 on the group
velocities of the second optical branch is negligible.

For phase velocities (Fig. 3) it is possible to note that qualitatively the
influence of parameters is similar like for group velocities. Starting with
Fig. 3 (right) defining the influence of parameter A12, one can conclude that:
(i) the acoustic branch – the increase of parameter A12 leads to the increase
of the phase velocity at lower wave numbers (ξ = 1 . . . 3) while at higher wave
numbers (ξ > 4) all cases tend to approach to the same limiting velocity. It
should be noted that further increasing the coupling parameter A12 can lead
further to smaller phase velocities. However, the phase velocity can not turn
negative as this would violate an assumption done during the derivation of
the model equations, namely, that the system is conservative.
(ii) the first optical branch – the main difference between phase velocities
for the first optical branch exists around wave number ξ = 1. The lower the
parameter A12, the higher the phase velocity at ξ = 1. However, at ξ = 2
and higher, any differences are negligible as the phase velocity is practically
one (which is the same as group velocity, meaning, in essence, that for all
practical purposes we have a dispersionless case for the first optical branch
at wave numbers greater than two).
(iii) the second optical branch – the increase of parameter A12 increases the
phase velocity for the second optical branch. However, overall changes are
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relatively weak when compared to the influence of parameter A12 on the
acoustic branch.

Moving on to Fig. 3 (right) with control parameter C1 we note that:
(i) the acoustic branch – as noted qualitatively the influence of parameter C1

on the phase velocities is similar to its influence on the group velocities. The
increase of parameter C1 increases the phase velocity across the considered
wave numbers.
(ii) the optical branches – the influence of parameter C1 on the phase veloc-
ities for both optical branches is negligible.

In general – from the previous analysis it is known that for the acoustic
(lowest order) dispersion branch in relation (3) the NGV exists if γ2

A12
> γ2

1

or in terms of material coefficients, equivalently if A2

12
/B2 > C1 [15]. In

terms of material coefficients is it clear that in this type of model, the second
microstructure is paramount for the existence of the NGV as parameter A12

is related to the interaction between the microstructures and parameters B2

and C1 can be respectively interpreted as microdeformation parameter of the
second microstructure and microdeformation gradient related parameter of
the first microstructure.

The condition γ2

A12
> γ2

1
could be interpreted that the NGV exists in the

acoustic branch if the velocity of wavelengths that predominantly “feel” the
interaction of the two microstructures is greater than the velocity of wave-
lengths that predominantly “feel” the influence of the first microstructure.
The existence (and even the possibility of constructing) such a metamaterial
in reality is an open question to the best of our knowledge at this time.

4. Numerical method

In the present paper, the pseudospectral method (PSM) is used for solving
governing Eqs (2) of the double microstructure. The PSM is a well estab-
lished method, used frequently to solve differential equations under localised
as well as harmonic initial conditions. The advantages and disadvantages of
the PSM have been examined in several papers (see [22, 23, 24] and refer-
ences therein) and the method has been found to be adequately accurate and
stable at a relatively low number of grid points. The key disadvantage of the
PSM method is the need to have periodic boundary conditions.

We use the PSM based on the discrete Fourier transform (DFT) [22, 23,
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24, 25, 26]. The version of the DFT used is:

Û(k, T ) = F [U ] =
n−1∑

j=0

U(j∆X, T ) exp

(
−
2πijk

n

)
, (7)

where n is the number of space-grid points, ∆X = 2π/n is the space step,
i is the imaginary unit, k = 0,±1,±2, . . . ,±(n/2 − 1),−n/2, F denotes the
DFT and F−1 denotes the inverse DFT. Basically, the idea of the PSM is to
approximate space derivatives by making use of the DFT

∂mU

∂Xm
= F−1 [(ik)mF(U)] , (8)

and then to use standard ordinary differential equation (ODE) solvers for
integration with respect to time. The model Eqs (2) are reduced to the sys-
tem of six first-order differential equations which are solved by the standard
ODE solver without any further modifications.

Two distinctly different initial conditions are used while boundary con-
ditions are periodic for all considered solutions of (2). First, a pulse–type
localised initial condition in the form of sech2-type profile:

U(X, 0) = Uosech
2BoX, U(X, T ) = U(X +2kmπ, T ), m = 1, 2, . . . , (9)

where k = 1, i.e., the total length of the spatial period is 2π. For the
amplitude and the width of the initial pulse we further use the values Uo = 1
and Bo = 1, 2, 3, 4, 5. The initial phase velocity is U(X, 0)T = c2oU(X, 0)X
(using the classical assumption of U(X, T ) = U(X − c2oT )). We assume that
at T = 0 the microstructures and the corresponding velocities are zero, i.e.,
Φ1(X, 0) = 0, Φ1T (X, 0) = 0 and Φ2(X, 0) = 0, Φ2T (X, 0) = 0.

Second, a harmonic initial condition:

U(X, 0) = Uo sinKX, U(X, T ) = U(X + 2kmπ, T ), m = 1, 2, . . . , (10)

where K = 1, 2, 3, 4, 5 is the wave number, i.e., the number of wavelengths
in the spatial period and k = 1. The integration interval is from zero to
Tf = 25.

The calculations are carried out with the Python package SciPy [27] with
Python interface to the ODEPACK FORTRAN code [28] for the ODE solver.
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5. Results and discussion

An attempt is made to detect the effects that the NGV region in dis-
persion curves can have on the evolution of the wave profiles, governed by
system (2). The system has been simplified as much as possible (linearised,
normalised, little dispersion at high frequencies) while retaining the existence
of the NGV region. Two different initial conditions are used – (i) a harmonic
initial condition and (ii) a localised initial condition (hyperbolic secant type
pulse). The speed of sound in the bulk medium has been normalised to
one. Three different initial velocities are used – (a) a subsonic initial velocity
c2o = 0.9, (b) c2o = 1 and (c) supersonic initial velocity c2o = 1.1. For the har-
monic initial condition five initial wave numbers are used (K = 1, 2, 3, 4, 5)
and for the localised initial condition the same numbers are used for the
width parameter Bo (increasing the width parameter makes the pulse nar-
rower and spreads the pulse spectrum over a wider range of wave numbers).
The main results are summarised in Tables 2, 3 and 4 for the three width
parameters (Bo = 1, 3, 5) and for the three different initial speeds for all
considered parameter combinations. The bold text marks the reference cases
(the zero NGV case). Following characteristics are presented in Tables: (1)
measured c is the velocity of the main pulse peak. Exact maximum of the
pulse is calculated making use of the signal spectrum (see [24] and references
therein) from the full spectrum of the pulse at each time step and then aver-
age velocity of the pulse is found between T = 0.85 and T = 1.85 making use
of the classical relationship ∆X/∆T ; (2) the pulse maximum amplitude at
T = 18.85 (as the spatial period is 2π then after that time interval the wave-
profile has propagated three full spatial periods); (3) the absolute maximum
of wave profile over the whole integration interval; (4) the absolute minimum
of the wave profile over the whole integration interval.

The typical solutions of system (2) for localised initial condition are shown
in Fig. 4. If the initial speed is subsonic then the initial pulse emits a pulse
with positive amplitude propagating in opposite direction (the main pulse
itself is reshaped in the process) and proceeds with a velocity close to the
speed of sound in the bulk medium. If the initial speed is supersonic then the
emitted pulse propagating in opposite direction is with a negative amplitude
and the waveprofile proceeds with velocity close to the speed of sound in bulk
medium. During interactions the initial amplitude is more or less restored
(the waveprofile is reshaped due to the dispersive effects).

The underlying idea for using different width parameters for the localised
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Figure 5: The spectral amplitudes of localised initial conditions. Width parameters Bo = 1
(left), Bo = 3 (centre) and Bo = 5 (right).

initial condition is to vary the amount of energy present in the lowest har-
monics which should strongest “feel” the influence of the NGV region in the
dispersion curves. The spectral compositions of the initial pulses are pre-
sented in Fig. 5. From the dispersion analysis it is clear that if the NGV
region exists then it is centered around the first wave number under the
used parameter combinations. So in essence the case with the widest pulse
(Bo = 1) should be affected by the NGV region by the greatest amount as
practically all the pulse energy is concentrated into the first three harmonics
in that case (approximately half of the total pulse energy in the first harmonic
component). The greater the parameter Bo, the wider is the spectrum of the
pulse. Initial hypothesis in favour for using the harmonic initial condition
was that if one uses a harmonic signal with the wave number located in the
NGV region that harmonic signal might be affected by the NGV region in
the dispersion curves. It is shown that in this case a single harmonic will
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Figure 6: Waveprofiles (left) and phase plots (right) at T = 18.85, initial pulse width
Bo = 3 and initial velocity co = 1.0.

just propagate with the phase velocity close to one (speed of sound in the
bulk medium) in the direction of the initial velocity. The greater the initial
velocity difference compared to the actual propagation velocity of the wave-
profile, the greater the distortions to the harmonic waveprofile. However, it
should be emphasised that the spectral composition of the harmonic initial
condition remains, in fact, harmonic and the wave emitted as a result of
“incorrect” initial speed has the exact same frequency as the initial pulse.
Depending on whether the initial speed is super – or subsonic, the component
propagating in opposite direction will start either in-phase with the initial
harmonic wave or in opposite phase to the initial harmonic wave. Above
wave number K = 3 the initial velocity of c2o = 1 is practically correct and
any emissions from the harmonic initial condition are negligible. The used
spatial resolution allows up to 512 harmonic components.

In Fig. 6 wave profiles at T = 18.85 after the pulses have travelled three
spatial periods are presented. Only wave profiles with initial velocity co = 1.0
are shown because while the wave profiles are different the differences are too
small to be visible at a given scale. Between the different initial velocity cases
the main pulse part is practically the same and main differences are in the
parts that are emitted from the main pulse (the measured differences are
shown in Tables 2, 3 and 4). On the other hand the differences between the
different parameter combinations are substantially larger. The solid black
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Parameters Characteristics
Bo A12 C1 measured c ampl 18.85 max ampl min ampl
1 8.000 4 1.006291 0.6321 1.0000 -0.0192
1 12.858 3 1.006291 0.9668 1.0000 -0.0582
1 12.858 4 1.006291 0.9169 1.0000 -0.0994

1 12.858 5 1.006291 0.8255 1.0000 -0.1480
1 16.000 4 1.006291 0.9577 1.0000 -0.0361
3 8.000 4 1.000155 0.8232 1.0000 -0.1583
3 12.858 3 1.000155 0.9764 1.0000 -0.0832
3 12.858 4 1.000155 0.9515 1.0000 -0.1200

3 12.858 5 1.000155 0.9043 1.0000 -0.1683
3 16.000 4 1.000155 0.9771 1.0000 -0.0654
5 8.000 4 1.000155 0.8890 1.0000 -0.1403
5 12.858 3 1.000155 0.9840 1.0000 -0.0596
5 12.858 4 1.000155 0.9685 1.0000 -0.0816

5 12.858 5 1.000155 0.9385 1.0000 -0.1153
5 16.000 4 1.000155 0.9848 1.0000 -0.0466

Table 2: Measured characteristics for the localised initial condition in the case of subsonic
(co = 0.9) initial velocity

line in Fig. 6 is the initial condition. The cases where parameter C1 is
used to control the existence of the NGV region are denoted with dashed
lines and cases where parameter A12 is used to control the existence of the
NGV region with dash–dotted line. The red colour is used for the parameter
combinations where there is a NGV region present and blue colour is used
for the parameter combinations where there is no NGV region in the acoustic
branch of the dispersion curves. The green dotted line marks the reference
case. The wave profiles in the snapshot are propagating from the left to the
right. It can be noted that in the NGV case there is practically no difference
in the main pulse between the cases where parameter C1 is used to generate
NGV region and the cases where parameter A12 is used to generate NGV
region in the dispersion curves. There are minor differences in the wave
profile shape outside of the main pulse between the different NGV cases.
The small differences in wave profiles are easier to see in the phase plots (U
against UX , right, Fig. 6). If parameter C1 is used to control the existence of
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Parameters Characteristics
Bo A12 C1 measured c ampl 18.85 max ampl min ampl
1 8.000 4 1.000155 0.6321 1.0001 -0.0333
1 12.858 3 1.000155 0.9699 1.0001 -0.0655
1 12.858 4 1.000155 0.9216 1.0001 -0.1075

1 12.858 5 1.000155 0.8305 1.0001 -0.1654
1 16.000 4 1.000155 0.9588 1.0001 -0.0420
3 8.000 4 1.000155 0.8235 1.0000 -0.1593
3 12.858 3 1.000155 0.9767 1.0000 -0.0893
3 12.858 4 1.000155 0.9521 1.0000 -0.1225

3 12.858 5 1.000155 0.9049 1.0000 -0.1742
3 16.000 4 1.000155 0.9773 1.0000 -0.0711
5 8.000 4 1.000155 0.8892 1.0000 -0.1418
5 12.858 3 1.000155 0.9842 1.0000 -0.0649
5 12.858 4 1.000155 0.9687 1.0000 -0.0840

5 12.858 5 1.000155 0.9388 1.0000 -0.1183
5 16.000 4 1.000155 0.9850 1.0000 -0.0511

Table 3: Measured characteristics for the localised initial condition in the case of the initial
velocity of equal to one

the NGV region then the part propagating before the main pulse (in direction
of propagation) has a higher amplitude and the part behind the main pulse
a lower amplitude than in the case where parameter A12 is used to control
the existence of the NGV region. Qualitatively the wave profile is similar in
the NGV cases and the reference case with the main difference in amplitudes
being evident. For the case with no NGV the main pulse shape matches
other cases well, however, in the lower parts of the profile the behaviour is
somewhat different. If parameter C1 is used to reduce the NGV region then
the part in direction of the propagation has a higher amplitude and a part
behind the pulse propagation the opposite. If parameter A12 is used to reduce
the NGV region then the part in front of the pulse has the lowest amplitude
and there is an elevation propagating behind the propagating main pulse.
Focusing on the phase plots in Fig. 6 one can see that in the NGV cases the
oscillatory tail is left practically unformed during the propagation over three
spatial periods (sharp turn but no secondary loops in the phase plot line), in
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Parameters Characteristics
Bo A12 C1 measured c ampl 18.85 max ampl min ampl
1 8.000 4 0.994020 0.6321 1.0484 -0.0474
1 12.858 3 0.994020 0.9732 1.0482 -0.1139
1 12.858 4 0.994020 0.9268 1.0483 -0.1550

1 12.858 5 0.994020 0.8360 1.0484 -0.1952
1 16.000 4 0.994020 0.9600 1.0483 -0.0934
3 8.000 4 1.000155 0.8237 1.0495 -0.1961
3 12.858 3 1.000155 0.9773 1.0494 -0.1385
3 12.858 4 1.000155 0.9527 1.0495 -0.1735

3 12.858 5 1.000155 0.9057 1.0495 -0.2221
3 16.000 4 1.000155 0.9776 1.0495 -0.1227
5 8.000 4 1.000155 0.8894 1.0497 -0.1700
5 12.858 3 1.000155 0.9844 1.0497 -0.1092
5 12.858 4 1.000155 0.9689 1.0497 -0.1341

5 12.858 5 1.000155 0.9390 1.0497 -0.1688
5 16.000 4 1.000155 0.9852 1.0497 -0.1012

Table 4: Measured characteristics for the localised initial condition in the case of supersonic
(co = 1.1) initial velocity

the reference case there is a small oscillatory structure (small secondary loop
in the phase plot) while in the cases with no NGV the emitted oscillatory
structure is relatively larger than in the NGV or reference cases (larger loops
in the phase plot).

While the main part of the present paper is dedicated to the linear case
to study the effect (if any) that NGV can have on wave profiles without dis-
tractions it should be noted that the calculations were performed also with
added nonlinearities (N = M1 = M2 = 1/10). The existence of nonlin-
earities leads to the redistribution of energy in the signal spectrum. Under
the used parameter combinations the added small nonlinearity makes the
velocity amplitude dependent and introduces following effects: (a) propagat-
ing wave profiles evolve into an asymmetric shape (peak tilted slightly in
the direction of the propagation), (b) interactions are no longer fully elastic
(small additional radiation from interaction events between the pulses) and
(c) the maximum amplitude of the emitted oscillatory structure is marginally
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Figure 7: Trajectories of waveprofile maxima, initial pulse width Bo = 3 and initial velocity
co = 1. Black “o” – reference case, red “x” – NGV introduced with C1, magneta “+”
– NGV introduced with A12, blue “.” – NGV suppressed with A12, green “*” – NGV
suppressed with C1.

smaller and the main pulse maintains its amplitude marginally better (less
than 1% difference) than in the linear case. It should be added that if the
ratio of nonlinearity versus dispersive effects is just right then the nonlinear-
ity can balance the dispersive effects so that solitons can emerge (see [20, 29]
and references therein). However, this analysis did not reveal any effects that
might arise from the interaction of the NGV region in the dispersion curves
with the nonlinear effects.

Focusing on Tables 2, 3 and 4, following observations can be made:
(i) if parameter A12 is used to reduce the NGV region in the dispersion curves
(A12 = 8, C1 = 4) then the main pulse loses the greatest amount of amplitude
(compared to other cases) over travelling three spatial periods (max ampli-
tude 0.6321 if Bo = 1, max 0.8232 . . . 0.8237 if Bo = 3 and 0.8890 . . . 0.8894
if Bo = 5). However, this amplitude loss is not in the secondary oscillatory
structure but remains as a positive amplitude “lump” travelling at a slightly
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higher speed than the main pulse (relatively small maximum negative ampli-
tude measured over the integration interval). This case is exceptional in this
sense that increasing the initial condition speed does not affect the wave pro-
file amplitude after propagating three full spatial periods if Bo = 1. If width
parameter Bo is greater than two then the measured amplitude at T = 18.85
depends on the initial condition velocity. Increasing initial condition veloc-
ity leads to lower velocity for the main pulse and results in larger minimum
amplitude over the integration interval, i.e., in larger oscillations (this is the
same for all considered cases).
(ii) if parameter C1 is used to reduce the NGV region in the dispersion curves
(A12 = 12.858, C1 = 5) then the main pulse maintains its amplitude better
over travelling three spatial periods than if parameter A12 was used for this
purpose but not as good as other cases considered, however, the oscillatory
structure is more prominent (larger minimum amplitude over the integration
interval).
(iii) if parameter A12 is used to introduce the NGV region in the dispersion
curves (A12 = 16, C1 = 4) then the main pulse maintains its amplitude well
(less than 5% amplitude loss) over travelling three spatial periods. Increasing
the initial velocity further reduces the amplitude losses during propagation
by a small margin (amplitude 0.9577 if co = 0.9 versus amplitude 0.9600 if
co = 1.1). The emissions from the initial pulse due to the “incorrect” initial
velocity are smaller than in the case when parameter C1 is used to introduce
the NGV region into the dispersion curves.
(iv) if parameter C1 is used to introduce the NGV region in the dispersion
curves (A12 = 12.858, C1 = 3) then the main pulse maintains its amplitude
even better (about 4% to 3% amplitude loss) over travelling three spatial
periods, however, the secondary propagating wave structure is also more
prominent (larger minimum amplitude over integration interval compared to
when A12 is used to introduce the NGV region).
(v) the reference case (A12 = 12.858, C1 = 4) is maintaining its amplitude
better than the non-NGV cases but not as well as either of the considered
NGV cases. Increasing the initial velocity increases also the main pulse am-
plitude and reduces the speed for the main pulse. The oscillations are larger
than the case when parameter C1 is used to remove the NGV region but
smaller when parameter A12 is used to reduce the NGV region in the disper-
sion curves.
(vi) increasing the width parameter Bo (wider spectrum) does not affect the
speed of the main pulse, however, amplitudes after travelling three spatial
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periods and minimum amplitude over the integration interval are affected –
both are increasing with increasing Bo. It should be noted also that if Bo > 2
then the main pulse peak velocity is no longer affected by the initial velocity
and stabilises at 1.000155.

In Fig. 7 one can see trajectories of the two highest peaks for the five
different cases if Bo = 3 and c2o = 1. Two spatial periods are plotted next to
each other for making it easier to follow any wave structures that pass through
the periodic boundary conditions at 0 and 2π. The trajectories are calculated
by finding the exact local maxima of the wave profiles by making use of the
properties of the Fourier transform [24] (reconstructing the wave profile from
the Fourier spectrum to minimise inaccuracies from using the discrete grid)
for finding the exact spatial coordinates of the pulse peaks at each time
step. Two highest maxima are tracked. The trajectories for the main pulse
overlap fully (the straight lines starting from π and 3π). However, clear
differences are noted in the secondary propagating structures which travel
faster than the main pulse. As the secondary structures are of relatively low
amplitude and relatively wide (compared to the main pulse) it means they
can not be clearly separated from the main pulse, however, it is possible to
track the peak of that structure as it is done in Fig. 7. All considered cases
have some secondary structure separating from the main pulse as a result
of non-zero dispersion and under the used parameter combinations these
structures propagate at supersonic speeds compared to the bulk medium.
The NGV cases have the fastest secondary structures (marked with “x” and
“+” in Fig. 7); if parameter A12 is used to introduce NGV then the secondary
structure is propagating the fastest. The reference case is in the middle of
the pack (marked with “o”) and the cases where the NGV region is reduced
have the slowest secondary structures. If parameter A12 is used to reduce the
NGV region then the secondary structure is the slowest among the considered
parameter combinations. Using a different initial condition velocity (subsonic
or supersonic) does not affect the emergence or evolution of the secondary
structures qualitatively (however, the amplitudes are different as can be seen
in Tables 2, 3 and 4). The main significant effect in the case of sub – and
supersonic initial condition velocities is the emission of the secondary pulse
propagating in opposite direction of the main pulse which has also some
secondary wave structures separated from it.

All the presented observations can be summed up shortly by stating that
the existence of the NGV region in the dispersion curves for the Eqs (2)
seems not to have a significant effect on the evolution of the wave profiles in

19



time. Having a NGV region in dispersion curves is not a unique property of
the system (2), as noted in the Introduction. It might be possible that the
system (2) is simplified to such an extent that some kind of a physical effect
which might be needed for capturing the full effect which the NGV region
in the dispersion curves can have is either lost or significantly reduced. One
such physical effect might be the dissipation.

For example, a model with both dissipation and existence of the NGV
region in its dispersion curves under some parameter combinations is the
Stulov felt model [30, 31]. Main difference between the felt-type material
and the microstructured material discussed in the present paper is the fact
that the felt possesses strong frequency dependent dissipation. On the other
hand the felt is also a microstructured material.

For the Stulov model the stress–strain relation for felt is derived from the
results of an experimental study of wool felt pads and piano hammers (small
felt covered wooden mallets). The equation of motion in non-dimensional
displacement variables is then in the form

[(UX)
p]X − UTT + [(UX)

p]XT − (1− γ)UTTT = 0, (11)

where the hereditary amplitude γ has values on the interval 0 6 γ < 1
(see [30, 31, 32, 33]). The parameter p is the so called nonlinearity material
parameter (p > 1 is a real number). It should be noted that in here the
notation has been kept the same as in the references [30, 31] even if conflicting
with the notation used throughout the present paper (for example, γ, p). In
the linear case, where p = 1, the Eq. (11) takes the form UXX − UTT +
UXXT − (1 − γ)UTTT = 0. Dispersion relation of such an equation has the
form k2 − Ω2 − ik2Ω + i(1 − γ)Ω3 = 0, where Ω = Ω(k). In the general
case and in the current case, the Ω(k) is a complex quantity. One can write
Ω(k) = ω(k) + iµ(k), where ω = Re(Ω) and µ = Im(Ω). It can be shown
that for the negative values of µ(k) it acts as an exponential decay function
(frequency dependent dissipation). In other words, the spectral components
decay exponentially as t → ∞ for µ(k) < 0. The analytical expression of the
dispersion relation thus takes the form

k2 − ik2ω − ω2 + i(1− γ)aω3 + k2µ− 2iωµ−

3(1− γ)ω2µ+ µ2 − 3i(1− γ)ωµ2 + (1− γ)µ3 = 0.
(12)

As stated above, the analysis of dispersion relation (12) shows that a small
NGV region will appear for large values of the hereditary amplitude γ and
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for small values of frequency wave components (small wave numbers). The
existence of the NGV in the case of large values of γ is related to the stress–
strain relaxation model. In this case the hereditary amplitude γ is close to
its maximum, and therefore the hereditary features of the wool felt material
are expressed most fully [31]. The study of model (11) from the viewpoint
of the NGV effects on the evolution of the wave profiles is in progress.

6. Final remarks

There are regions of the NGV in the dispersion curves characteristic to
waves in materials with mechanical microstructures. This is caused by a pre-
resonant situation [15] when the first optical dispersion branch is close to the
acoustic dispersion branch (see Fig. 1). The existence of the NGV region is
controlled by parameters C1 and A12. The present analysis shows that:
(i) The existence of the NGV regions in the dispersion curves under the in-
vestigated parameter combinations has little effect on the shape of the main
pulse under the localised initial condition and the harmonic initial condi-
tion with the wavenumber sitting in the NGV region does not evolve much
differently in time from a harmonic initial condition under the parameter
combinations where the NGV region is suppressed in dispersion curves.
(ii) Nonlinear effects can help to stabilise the main pulses.
(iii) An important effect which can be related to the existence of the NGV
region in the dispersion curves is that the NGV can keep the pulse more
localised (smaller “effective” dispersion, in essence) when compared to the
cases without the NGV region in the dispersion curves.

The last conclusion (iii) can be considered to be the key result of the
present paper. In principle a group speed is an integral entity as it does
not exist for any single wavenumber but depends on collective behaviour of
a number of harmonics in relation to each other (see, for example, [34]). It
means that having a range of negative values in such an integral the value
of this integral can be reduced resulting, in essence, in a smaller “effective”
dispersion than in case where the NGV region is not present. In the case
of a localised initial condition this means that the main pulse maintains its
localised character better (the main pulse shape is closer to the initial con-
dition, the secondary structures are smaller) in time than the cases without
the NGV region present. From the present study it is not clear how uni-
versal such an effect of having the NGV region in the dispersion curves is,
especially considering that several models where the NGV can exist are not

21



conservative like the model (2). For answering that open question a further
study is needed.
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