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Abstract

The comparison of numerical simulations of the classical problem of the single

slit diffraction in optical, acoustic, and elastic cases are presented in the paper

in the plane strain setting. It is shown that wave fields downstream the slit are

similar in optical and acoustic cases, as expected. Corresponding wave fields

in the single slit diffraction using elastic materials become essentially different

from optical and acoustic cases. This is an effect of elastic waves propagating

inside the plate forming the slit.
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1. Introduction

Diffraction is a well studied phenomenon, especially in classical optics since

the celebrated Tomas Young double slit diffraction experiment (Young, 1804)

demonstrated the wave-like behaviour of light. In elasticity, much attention

was paid to scattering problems due to their practical application (Mow & Pao,

1971; Hellier & Hellier, 2001). Since diffraction and scattering are complemen-

tary phenomena, the same mathematical technique is used in their description,

especially in acoustics, because of identity of the wave propagation equation

in acoustics and classical optics (De Hoop, 2008). The conversion of longitu-

dinal and shear waves at boundaries in scattering and diffraction problems in
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elasticity makes the corresponding solution much more complicated.

The emerging field of metamaterials (composites with unusual macroscopic

properties due to local resonances) provides an unprecedented way for control-

ling wave propagation in a desired way by tailoring the microstructure (Deymier,

2013). Simultaneously, it demands a more precise prediction of the wave field.

The problem of wave propagation through heterogeneous materials has been

considered since the mid-nineteenth century (Rayleigh, 1887), and since then

the progress in considering ever more complicated scattering structures has been

continuous (Auld, 1973; Graff, 1975; Achenbach, 1984). Various approaches to

predicting the wave propagation through different scattering structures have

recently been reviewed by Martin (2006) and Harris (2010).

Analytical difficulties often lead to the restriction of the analysis by limit-

ing cases of very short wavelengths (ultrasound) and of very long wavelengths

(quasi-statics). It is remarkable that the elastic analogue of the Talbot effect

known in classical optics for a long time (Talbot, 1836) has been demonstrated

only recently (Berezovski et al., 2014). The reason is in the comparability of

wavelengths with the slit size of the grating in the elastic case.

The prediction of the wave field is the key element in the wave control.

The growth of computer power and the progress in numerical methods provide

a direct numerical solution of diffraction problems. The major advantage of

numerical simulation is its generality and the capability of predicting wave fields

for any composite with arbitrarily distributed scatterers.

Before the application of numerical simulations to complicated situations,

it is instructive to start with one of the basic problems - the single slit diffrac-

tion. This problem is studied in detail in classical optics both theoretically and

experimentally (Benenson et al., 2002). Classical optics is characterized by the

extremely short wavelength in comparison to the slit size, while in acoustics the

wavelength and the slit size may have the same order of magnitude. The absence

of shear waves is common for both optics and acoustics. It should be noted,

however, that traditionally the plate forming a slit is opaque (not transparent)

in optics and perfectly rigid in acoustics. The completely elastic formulation of
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the single slit diffraction suggests the elastic behavior both for the matrix and

for the plate forming the slit.

In the paper, we try to emphasize the similarity and the difference between

the single slit diffraction in optics, in acoustics, and in elasticity demonstrating

numerically calculated wave fields. The major difference of the elastic case

from the classical single slit diffraction in optics and acoustics is due to the

propagation of wave through the matrix as well as through the plate forming the

slit, which is not present in classical optics and in acoustics case. Additionally,

both longitudinal and shear waves are accounted for in the elastic case, while

in acoustics only longitudinal waves are taken into account. The variation of

the thickness of the plate forming the slit is also analysed. This will permit us

later to understand better the influence of geometrical shapes of gratings and

possible nonlinearities of materials.

The paper is organized as follows. In Section 2 we introduce the governing

equations for the plain strain elasticity and present their non-dimensional form

in Section 3. In Section 4 numerical results for various cases are presented based

on applying the modified wave-propagation algorithm (Berezovski & Maugin,

2001; Berezovski et al., 2008). The corresponding governing equations are spec-

ified with suitable scaling and assumptions. Section 5 includes conclusions and

some ideas for further studies.

2. Plane strain elasticity

Numerical simulation of elastic wave propagation is based on the solution

of equations of elasticity. Although the governing equations are well-known, we

represent here the basic forms in order to explain later the possible simplifica-

tions. Neglecting both geometrical and physical nonlinearities, we can write the

bulk equations of homogeneous linear isotropic elasticity in the absence of body

force as follows (Barber, 2009):

ρ0
∂vi

∂t
=

∂σij

∂xj

, (1)
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∂σij

∂t
= λ

∂vk

∂xk

δij + µ

(

∂vi

∂xj

+
∂vj

∂xi

)

, (2)

where t is time, xj are spatial coordinates, vi are components of the velocity

vector, σij is the Cauchy stress tensor, ρ0 is the density, λ and µ are the Lamé

coefficients.

Consider a sample that is relatively thick along x3, and where all applied

forces are uniform in the x3 direction. Since all derivatives with respect to x3

vanish, all fields can be viewed as functions of x1 and x2 only. This situa-

tion is called plane strain. The corresponding displacement component (e.g.,

the component u3 in the direction of x3) vanishes and the others (u1, u2) are

independent of that coordinate x3; that is,

u3 = 0, ui = ui(x1, x2), i = 1, 2. (3)

It follows that the strain tensor components, εij are

εi3 = 0, εij =
1

2
(ui,j + uj,i), i, j = 1, 2. (4)

The stress components follow then

σ3i = 0, σ33 =
E

1− 2ν

(

ν

1 + ν
εii

)

, i = 1, 2. (5)

σij =
E

1 + ν

(

εij +
ν

1− 2ν
εkkδij

)

, i, j, k = 1, 2, (6)

where E is the Young’s modulus, ν is the Poisson’s ratio, δij is the unit tensor.

Inversion of Eq. (6) yields an expression for the strains in terms of stresses:

εij =
1 + ν

E
(σij − νσkkδij) , i, j, k = 1, 2. (7)

System of Eqs. (1)-(2), specialized to plane strain conditions by Eqs. (3)-(7),

has the form

ρ
∂v1

∂t
=

∂σ11

∂x
+

∂σ12

∂y
, (8)

ρ
∂v2

∂t
=

∂σ21

∂x
+

∂σ22

∂y
. (9)

Accordingly, compatibility conditions are represented as

∂ε11

∂t
=

∂v1

∂x
, (10)
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∂ε12

∂t
=

1

2

(

∂v1

∂y
+

∂v2

∂x

)

, (11)

∂ε22

∂t
=

∂v2

∂y
. (12)

Stress-strain relations (the Hooke’s law) close the system of governing equations

σ11 = (λ+ 2µ)ε11 + λε22, (13)

σ12 = σ21 = 2µε12, (14)

σ22 = (λ+ 2µ)ε22 + λε11. (15)

Time derivatives of stress-strain relations accounting the compatibility condi-

tions determine
∂σ11

∂t
= (λ+ 2µ)

∂v1

∂x
+ λ

∂v2

∂y
, (16)

∂σ22

∂t
= λ

∂v1

∂x
+ (λ+ 2µ)

∂v2

∂y
, (17)

∂σ12

∂t
=

∂σ21

∂t
= µ

(

∂v1

∂y
+

∂v2

∂x

)

. (18)

These equations together with the balance of linear momentum (8)–(9) form

the system of equations, which is convenient for a numerical solution.

3. Nondimensional equations

In the single-slit problem we have three independent space scales:

• the slit size a,

• the width of the plate (the slit thickness) w,

• the wavelength L.

The time scale is determined by means of the longitudinal wave speed cp and

the reference wavelength L as follows:

t0 =
L

cp
. (19)
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Introducing dimensionless variables

X =
x

a
, Y =

y

w
, T =

t

t0
=

tcp

L
, (20)

and dimensionless unknowns

Vi =
vi

cp
, Σij =

σij

σ0

, (21)

we can re-write the governing equations in the form

ρc2p

L

∂V1

∂T
=

σ0

a

∂Σ11

∂X
+

σ0

w

∂Σ12

∂Y
, (22)

ρc2p

L

∂V2

∂T
=

σ0

a

∂Σ21

∂X
+

σ0

w

∂Σ22

∂Y
. (23)

σ0cp

L

∂Σ11

∂T
=

(λ+ 2µ)cp
a

∂V1

∂X
+

λcp

w

∂V2

∂Y
, (24)

σ0cp

L

∂Σ22

∂T
=

λcp

a

∂V1

∂X
+

(λ+ 2µ)cp
w

∂V2

∂Y
, (25)

σ0cp

L

∂Σ12

∂T
=

σ0cp

L

∂Σ21

∂T
=

µcp

w

∂V1

∂Y
+

µcp

a

∂V2

∂X
. (26)

The natural choice of the scale for stresses follows from Eqs. (22) and (23)

σ0 = ρc2p = λ+ 2µ. (27)

Such a choice of the characteristic stress σ0 reduces the governing equations to

1

L

∂V1

∂T
=

1

a

∂Σ11

∂X
+

1

w

∂Σ12

∂Y
, (28)

1

L

∂V2

∂T
=

1

a

∂Σ21

∂X
+

1

w

∂Σ22

∂Y
. (29)

1

L

∂Σ11

∂T
=

1

a

∂V1

∂X
+

λ

w(λ + 2µ)

∂V2

∂Y
, (30)

1

L

∂Σ22

∂T
=

λ

a(λ+ 2µ)

∂V1

∂X
+

1

w

∂V2

∂Y
, (31)

1

L

∂Σ12

∂T
=

1

L

∂Σ21

∂T
=

µ

w(λ+ 2µ)

∂V1

∂Y
+

µ

a(λ+ 2µ)

∂V2

∂X
. (32)

In the absence of shear stresses (µ = 0), the normal stress components are identi-

cal (Σ11 = Σ22 = Σ) and the dimensionless governing equations are independent

of material parameters
1

L

∂V1

∂T
=

1

a

∂Σ

∂X
, (33)
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1

L

∂V2

∂T
=

1

w

∂Σ

∂Y
. (34)

1

L

∂Σ

∂T
=

1

a

∂V1

∂X
+

1

w

∂V2

∂Y
, (35)

Such equations are applicable in optics and acoustics.

4. Numerical simulations

The governing equations are solved numerically by means of the conserva-

tive finite-volume wave-propagation algorithm, which was proposed by LeVeque

(1997, 2002) and modified by Berezovski et al. (2000); Berezovski & Maugin

(2001, 2002) for the application to the propagation of discontinuities. We con-

sider the propagation of a plane wave in the computational domain 1000 × 220

space steps. The monochromatic plane wave is generated at the left boundary.

The slit placement begins from 500 spaces steps in all cases. The boundary

conditions at lateral boundaries are periodic up to the end of the slit placement.

The non-reflective boundary conditions are applied at the rest of lateral bound-

aries as well as at the right boundary. The details of boundary conditions are

presented earlier (Berezovski et al., 2015).

The results of calculations are shown for 1400 time steps in order to avoid

the influence of the reflection from the left boundary (the Courant number is

equal to 1 in all the simulations). This is why the results are shown starting

from 400 space steps.

4.1. Optics

Classical optics is characterized by the extremely short wavelength (L ≪

a, L ≪ w). In this limiting case all unknowns become time-independent. The

problem is reduced therefore to geometrical optics. Nevertheless, we can con-

sider here a hypothetical situation with L = a = w, which can be relevant to

THz region (Kampfrath et al., 2013, e.g.). However, we keep the walls of the

slit to be rigid and impenetrable.

In this case the dimensionless equations are independent of geometrical scales

(Eqs. (33)-(35)). The corresponding single-slit diffraction picture is shown in
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Figure 1: Single-slit diffraction. Slit width and thickness are equal to the wavelength.

Fig. 1. The boundaries of the plate forming the slit are opaque. This suggests

that there is no reflection from boundaries. Such a typical illustration of the

single-slit diffraction can be found elsewhere (Crowell, 2003, e.g.).

4.2. Acoustics

In acoustics, all the space scales may have the same order of magnitude.

Again, in the ”universal” case (L = a = w) the wave propagation is inde-

pendent not only of material parameters, but also of geometrical scales. The

dimensionless governing equations are remained the same as Eqs. (33)-(35).

The plate forming the slit is assumed rigid, i.e., normal velocities are zero at

boundaries of the plate. The diffraction picture for the ”universal” acoustic

case is represented in Fig. 2. The difference from the case of optics is the for-

mation of a wave pattern upstream the slit due to reflection. Downstream the

slit the diffraction pictures for classical optics and acoustics are similar in the

”universal” case. Comparing the stress distribution along the centerline down-

stream the slit, we observe the difference in amplitude and small shift in phase

for optical and acoustic cases (Fig. 3).

Let us consider the influence of the variation of the width of the plate forming
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Figure 2: Single-slit diffraction in acoustics. Slit width and thickness are equal to the wave-

length.
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Figure 3: Centerline stress distribution for ”universal” single-slit diffraction.
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Figure 4: Single-slit diffraction in acoustics. Slit width is equal to the wavelength. Slit

thickness is 10 times less.

the slit. If the width of the plate is much less than the slit size (w ≪ a and

w ≪ L) we arrive at large slit aperture case. The dimensionless equations

become independent of the coordinate Y inside the slit, i.e. the problem is

one-dimensional in space
1

L

∂V1

∂T
=

1

a

∂Σ

∂X
, (36)

∂Σ

∂Y
= 0. (37)

∂V2

∂Y
= 0, (38)

1

L

∂Σ

∂T
=

1

a

∂V1

∂X
. (39)

The diffraction picture shown in Fig. 4 demonstrates a big difference in the

longitudinal stress patterns upstream and downstream the slit.

Another limiting case corresponds to a ≪ w. This means that the slit is

relatively narrow. Accordingly, the obtained one-dimensional problem inside

the slit is independent of the coordinate X :

∂Σ

∂X
= 0, (40)
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Figure 5: Single-slit diffraction in acoustics. Slit width is equal to the wavelength. Slit

thickness is 5 times larger than the wavelength.

1

L

∂V2

∂T
=

1

w

∂Σ

∂Y
. (41)

∂V1

∂X
= 0, (42)

1

L

∂Σ

∂T
=

1

w

∂V2

∂Y
. (43)

Certainly, two-dimensional equations (33)-(35) are valid upstream and down-

stream the slit. The corresponding diffraction image can be seen in Fig. 5. It

looks much more similar to the ”universal” case than to the case with large slit

aperture.

In spite of the observable distinction between Figs. 2, 4 and 5, it is pos-

sible to represent the centerline stress distribution downstream the slit for all

cases reinstating the wavelength and arranging the position of the slit. Such

comparison shows the similarity in the reinstated stress distribution (Fig. 6).

The latter means that the ”universal” diffraction picture represents well all the

possible cases of the acoustic single-slit diffraction. The geometrical scales can

be harmonized by a corresponding transformation of results.

11



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 500  550  600  650  700  750  800  850  900

D
im

en
si

on
le

ss
 s

tr
es

s 
am

pl
itu

de

Space steps

Universal case
Broad slit

Narrow slit

Figure 6: Centerline stress distribution for single-slit diffraction in different cases.

4.3. Elasticity

In elastic case governing Eqs. (32)-(32) are valid. Choosing the carrier

material as Nickel and the material of the plate forming the slit as Lucite, we can

start again with the ”universal” case where all the scales are equal (L = a = w).

The properties of Nickel are chosen as follows: ρ=8900 kg/m3, cp=6040 m/s,

cs=3000 m/s, and properties of Lucite are, correspondingly: ρ=1100 kg/m3,

cp=2610 m/s, cs=1140 m/s. The corresponding distribution of the longitudinal

stress looks similarly to what we have seen in the acoustical case (Fig. 7).

The evident differences are induced by the distinct reflection and transmis-

sion conditions at elastic and rigid walls. If we turn to the large slit aperture

case (w ≪ a, w ≪ l), the result still keeps the similarity with the acoustics case

downstream the slit as it is observed in Fig. 8.

However, for the narrow slit the similarity between acoustic and elastic cases

is much less evident (Fig. 9). This is confirmed by the comparison of the center-

line distribution of the longitudinal stress for narrow, broad and ”universal” slits

shown in Fig. 10.

In order to check how the change in material properties of grating affects the
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Figure 7: Single-slit diffraction in elasticity (Ni-Lu case). Slit width and thickness are equal

to the wavelength.
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Figure 8: Single-slit diffraction in elasticity (Ni-Lu case). Slit width is equal to the wavelength.

The thickness is 10 times less.
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Figure 9: Single-slit diffraction in elasticity (Ni-Lu case). Slit width is equal to the wavelength.

The thickness is 5 times larger than the wavelength.
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Figure 10: Centerline stress distribution for single-slit elastic diffraction in different cases.
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Figure 11: Single-slit diffraction in elasticity (Ni-Zn case). Slit width and thickness are equal

to the wavelength.

diffraction picture, it is sufficient to consider the ”universal” case with another

material for the grating. For such a comparison we have chosen Zinc as the

grating material. The corresponding longitudinal stress distribution is presented

in the Fig. 11.

The difference between the cases Ni-Zn and Ni-Lu is evident. The stress

distribution differs also along the centerline, as it can be observed in Fig. 12.

If the stress distribution forms beats in the case of Ni-Zn, it is slowly decreases

its magnitude in the case of Ni-Lu.

4.4. Acousto-elastic case

In the case of elastic slit in acoustic (water) medium we consider again the

”universal” geometry with equal scales. In order to manifest the acousto-elastic

effects clearly we choose silicone rubber as the material forming the slit.

The diffraction picture (Fig. 13) has no big difference from the standard

acoustic case with rigid slit walls (Fig. 2) downstream the slit. However, the

elastic slit walls start to vibrate due to the interaction with acoustic waves.

The time history of the slit edge displacement shows that there appear two

kinds of vibrations as it is observed in Fig. 14. Here the displacement of
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Figure 12: Centerline stress distribution for single-slit elastic diffraction for Ni-Zn and Ni-Lu.
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Figure 13: Single-slit diffraction in acousto-elastic case. Elastic slit width and thickness are

equal to the wavelength.
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Figure 14: Time history of slit edge displacement.

the edge is normalized by the amplitude of the incident wave. As one can

conclude, the global motion of the slit edges is influenced by small vibrations

of a higher frequency induced by the waves in the material of the elastic slit.

Similar vibrations can serve as the origin of the significant difference in the

diffraction patterns for various material compositions in the completely elastic

case (Figs. 7 and 11).

5. Conclusions

Growing interest to phononic crystals (Pennec et al., 2010; Deymier, 2013),

acoustic metamaterials (Guenneau et al., 2007; Hussein et al., 2014), acoustic

cloacking (Norris, 2008; Guenneau et al., 2011), and acoustic transmission en-

hancement (Christensen et al., 2010; Hao et al., 2012; Wang et al., 2014) is the

reason to get a more closer look on the diffraction of waves in elastic solids.

We have applied the well established finite volume wave-propagation algorithm

(LeVeque, 2002; Berezovski et al., 2008) as a tool for the computation of various

boundary value problems arising in the simplest diffraction case due to changes

in geometry and properties of media.
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In this paper we compare results of numerical calculations of plane wave

propagation through a single slit in optical, acoustic, and elastic cases. Nu-

merical simulations of the classical problem of the single slit diffraction show

the similarity between optical and acoustic cases, as expected. Both cases are

governed by the same equations (33)-(35), but the conditions at the boundaries

of the plate forming the slit are different. This difference results in the distinct

wave fields upstream of the slit. It is remarkable that results for the ”univer-

sal” or ”uniform” formulation of the single slit problem, where equality in the

incident wavelength, the slit width, and its thickness provides the independence

from geometrical scales, can represent the results for geometrically non-uniform

problems after a suitable transformation.

At the same time, the single slit diffraction using elastic materials shows

essentially different features. In this case the governing equations are more

general ((28)-(32)) and applicable both to the matrix material and to the plate

forming the slit. As a result, there is no more possibility to reduce results for

non-uniform scales to the stress distribution in the geometrically uniform case.

Moreover, the variation of material parameters changes the stress distribution

drastically. This is an effect of elastic waves propagating inside the plate forming

the slit. Such an effect is absent in classical optics and acoustics because of the

assumed opaqueness or rigidity of the plate.

The observed difference between acoustic and elastic cases is unavoidable and

should be taken into account in the topological optimization of composites for

the controlling of elastic waves. Such a control is necessary for the redistribution

of energy in a desired way in bodies under impact loading.
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