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Abstract The propagation of action potentials in
nerve fibres is usually described by models based on

the ionic hypotheses. However, this hypothesis does

not provide explanation of other experimentally verified

phenomena like the swelling of fibres and heat produc-

tion during the nerve pulse propagation. Heimburg and
Jackson (2005, 2007) have proposed a model describ-

ing the swelling of fibres like a mechanical wave related

to changes of longitudinal compressibility of the cylin-

drical membrane. In this paper the possible dispersive
effects in such microstructured cylinders are analysed

from the viewpoint of solid mechanics, particularly us-

ing the information from the analysis of the well-known

rod models. A more general governing equation is pro-

posed which satisfies the conditions imposed by the
physics of wave processes. The numerical simulations

demonstrate the influence of nonlinearities, the role of

various dispersion terms and the formation and prop-

agation of solitary waves along the wall together with
the corresponding transverse displacement. It is conjec-

tured that due to the coupling effects between longitu-

dinal and transverse displacements of a cylinder, the

transverse displacement (i.e., swelling) is related to the

derivative of the longitudinal displacement. In this way
the correspondence between theoretical and experimen-

tal (Tasaki, 1988) results can be described.
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1 Introduction

The Hodgkin-Huxley (HH) model is a widely known de-

scription for a nerve pulse propagation (Hodgkin and

Huxley 1952). This model is based on the electric cir-
cuit analogue in which ionic currents through the cylin-

drical membrane are taken into account. The changes

in the relative concentration of sodium and potassium

ions in the axoplasm core of a nerve create the trans-
membrane (action) potential carried along the nerve

fibre. There are several voltage and time dependences

which enter to the governing equation of a parabolic

(diffusive) type with a source term. The HH model is

actually based on the telegraph equations where the in-
ductivity is neglected. Such a model is able to describe

several important and experimentally checked proper-

ties, like a typical asymmetric pulse with an overshoot,

the existence of a threshold for an excitation for trig-
gering the pulse (the all-or-none phenomenon), the re-

fraction length, and the annihilation of pulses at the

head-on collision. The model proposed by Nagumo et al.

(1962) is a simpler one based on only one ionic current

and is called nowadays the FitzHugh-Nagumo (FHN)
model. Lieberstein (1967) has used the full hyperbolic

telegraph equations for describing the nerve pulse prop-

agation and Engelbrecht (1981) has derived an evolu-

tion equation (one-wave equation) on the same basis. If
the simplified ion current following the FHN model is

used then the evolution equation can be easily analysed

and its stationary form belongs to the class of Liénard

equations (Engelbrecht 1981). This evolution equation

is also able to describe an asymmetric pulse, the all-or-
none phenomenon and the refractoriness.

However, there are several phenomena which are

not described by models mentioned above. Namely it

has been shown experimentally by Iwasa et al. (1980),
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Tasaki (1988), Tasaki et al. (1989), etc. that the prop-

agation of an action potential is accompanied by the

movement of the nerve surface which is a cylindrical

biomembrane. This means that there is also a mechan-

ical wave accompanying the nerve pulse. In addition it
is found that temperature and heat have an important

role during the propagation process of an action poten-

tial (Heimburg and Jackson 2005, see also the references

therein). None of these phenomena can be described by
models based on a purely electrical description of con-

ductors.

In order to overcome this difficulty, Heimburg and

Jackson (2005, 2007) and Andersen et al. (2009) have

proposed a model for describing the propagation of me-
chanical wave in a cylindrical biomembrane which could

also be a model for the nerve pulse. Biomembranes are

made of ordered lipids (Andersen et al. 2009) and it is

difficult to apply the conventional approaches known in
mechanics of continua for deriving the governing equa-

tions for waves in such structures. In physical terms,

the compression of such a biomembrane will change its

density resulting in the transfer from its liquid state

to a gel state. This process is also associated with the
release of heat. So an action potential in a nerve fibre

causes a local compression of the biomembrane which,

as said above, means the transfer from one state to

another. And vice-versa, it is shown (Andersen et al.
2009) that the local cooling of a nerve causes a local

transition from a liquid state to a gel state and there-

fore will induce an action potential. Consequently two

processes, electrical and mechanical ones are coupled

as shown already by Gross et al. (1983). The model of
Heimburg and Jackson (2005, 2007) is written in terms

of the density change in the membrane under the influ-

ence of the action potential and takes nonlinearity and

dispersion into account. The similarity to a rod model
is noted and most of the coefficients of the governing

equation are determined by thermodynamical consid-

erations (see Heimburg and Jackson 2005). However,

the direct coupling between an action potential and the

corresponding density wave is not described in terms of
mathematical models.

In this paper we examine the Heimburg-Jackson

(HJ) model from a viewpoint of dispersion analysis

known from mechanics and compare the results with

well known rod models. The HJ model is actually an
extended wave equation like those derived for waves in

microstructured solids (Berezovski et al. 2013). It is im-

portant not only to find steady solutions to such equa-

tions but also to solve initial and/or boundary value
problems in order to understand the process of emer-

gence of steady solutions. This is the main topic of this

paper. The numerical solutions of the modified non-

linear governing equation of HJ permit to analyse the

shape and velocities of solitary pulses and establish the

mechanism of their distortion.

2 Brief overview of mathematical models of

nerve pulses

The models of pulse propagation as an action potential
are based on telegraph equations neglecting the induc-

tance. The celebrated Hodgkin-Huxley model is actu-

ally a reaction-diffusion equation

∂2v

∂x2
= RCa

∂v

∂t
+

2

a
RI, (1)

where v is the potential difference across the membrane

and a is the axon radius. The constants are: Ca is the
axon self-capacitance per unit area per unite length, R

is the specific resistance and I is the ion current density.

In this model the ion current ji = 2πaI is determined

in terms of three phenomenological variables: n, m h.
These variables govern: n - the potassium conductance

(turning on); m, h - the sodium conductance (turning

on and turning off, respectively). The ion current ex-

pression according to Hodgkin and Huxley (1952) is

ji = gKn4(v−VK)+gNam
3h(v−NNa)+gL(v−VL), (2)

where gK , gNa, gL are potassium, sodium and leakage
conductances, respectively and VK , VNa, VL are corre-

sponding equilibrium potentials. For variables n, m, h

Hodgkin and Huxley (1952) proposed to use the kinetic

equations.

FitzHugh (1961) and Nagumo et al. (1962) have pro-

posed a simpler model with only one phenomenological

variable. Then the final governing equation is

∂3v

∂t∂x2
=

∂2v

∂t2
+ µ(1− v − εv2)

∂v

∂t
+ v (3)

with constants µ and ε.

Based on the full telegraph equations (Lieberstein
1967) it is possible to derive an evolution equation for

a nerve pulse. Using the simplified variant of Nagumo

et al. (1962) for the ion current, the evolution equa-

tion in a moving frame ξ = c0t − x is obtained in the
following form (Engelbrecht 1981, 1991)

∂2z

∂ξ∂x
+ f(z)

∂z

∂ξ
+ g(z) = 0, (4)

where z = v+q1, f(z) = b0+b1z+b2z
2, g(z) = b3z and

q1 is the reference level; b0, b1, b2, b3 are the constants.

The moving frame includes the velocity c0 determined

from the telegraph equation but the final velocity of the
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pulse is dictated by the ion current. Like HH and FHN

models, the evolution equation is also able to reflect

the main properties of the action potential (Engelbrecht

1991).

The propagating action potential cannot describe

all the dynamical effects in nerve fibres. Experiments

by Iwasa et al. (1980), Tasaki (1988), etc. have clearly
demonstrated the swelling of the biomembrane and the

accompanying heat. Swelling is related to the mechani-

cal wave and Heimburg and Jackson (2005, 2007) have

proposed a mathematical model governing such a wave

motion. Their model is based on the wave equation in
terms of density change ∆ρA = u. Two essential as-

sumptions are made. The starting point is a wave equa-

tion which actually is the balance of momentum

∂2u

∂t2
=

∂

∂x

(

c2
∂u

∂x

)

. (5)

The first assumption relates velocity c with the com-

pressibility of the circular biomembrane which is made

of lipids. It is assumed that

c2 = c20 + pu+ qu2, (6)

where c0 is the velocity of the small amplitude sound

and p and q are constants determined from experiments.
The second assumption is to add a higher-order term

−h∂4u/∂x4 responsible for dispersion. The governing

equation reads then

∂2u

∂t2
=

∂

∂x

[

(

c2
0
+ pu+ qu2

) ∂u

∂x

]

− h
∂4u

∂x4
. (7)

Here h is an ad hoc constant. Further this equation is

called the Heimburg-Jackson (HJ) model.

Heimburg and Jackson (2005) have demonstrated
that a solitary wave solution to Eq. (7) exists and

have found such an analytic solution (see Heimburg and

Jackson (2007)). This solution has the width of about

10 cm. They also gave later a possible physical expla-
nation to the constant h (Mosgaard et al. 2012).

Equation (7) is of the Boussinesq type (Christov

et al. 2007) grasping the following effects: (i) bi-directio-
nality of waves; (ii) nonlinearity (of any order), (iii)

dispersion (of any order, modelled by space and time

derivatives of the fourth order at least). There are

many Boussinesq-type equations used in solid mechan-
ics (Christov et al. 2007; Engelbrecht et al. 2011; Bere-

zovski et al. 2013) and further in our analysis we rely

upon these results.

3 Dispersion analysis

For dispersion analysis we assume a solution to the lin-

earised version of Eq. (7) in the form of a harmonic

wave

u(x, t) = û exp[i(kx− ωt)], (8)

where k and ω are the wave number and the angular

frequency, respectively. The dispersion relation then is
(Heimburg and Jackson 2005)

ω2 = k2(c20 + hk2) (9)

with the following expressions for the phase (cph = ω/k)

and the group velocity (cgr = ∂ω/∂k)

cph =
√

c2
0
+ hk2, cgr =

c2
0
+ 2hk2

√

c2
0
+ hk2

, (10)

which are plotted in Fig. 1 with the same parameters

as in Heimburg and Jackson (2005).
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Fig. 1 Phase (solid lines) and group (dashed lines) veloc-
ity curves against the wave number (top) and the frequency
(bottom) for h = 2 m4/s2 and c0 = 176.6 m/s.

It is easy to see from Eq. (10) and in Fig. 1 that

although dispersion relation (9) meets the requirement

of anomalous dispersion (Heimburg and Jackson 2005)

(i.e., higher frequencies result in higher velocities), the
velocity is unbounded when the wave number k or

the frequency ω approach the infinity. This does not

only conflict with physical considerations but also with
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Fig. 2 in Heimburg and Jackson (2005) where it can be

seen that the parameters defining the velocity remain

finite.

The infinite velocity of high frequency harmonics

is physically not plausible. One should also take into
account that pulses, in general, contain wide variety of

harmonics and the infinite velocity of high frequencies

can cause problems in causality. Moreover it has been

shown that the existence of only the fourth order spacial
derivatives can lead to instabilities in wave propagation

(see Maugin (1999), for example).

The dispersion relation (9) can be modified by con-

sidering a similarity between the nerve fibre and the

rods. Although the material properties of biomembrane
close to transition are quite different to that of rods,

the dispersion is modelled by linear terms and tak-

ing inspiration from the physically well-motivated one-

dimensional rod models seems to be justified.
As far as modelling wave propagation in rods is a

rather complex problem then there are number of ap-

proximations (Abramson et al. 1958; Achenbach 1973;

Erofeyev et al. 2002; Graff 1975). Two assumptions are

used when deriving a approximate model of wave prop-
agation in rods – the Navier-Bernoulli hypothesis which

is the assumption that the plane cross-sections remain

planar and normal to the rod axis and the Rayleigh-

Love correction which assumes that the transverse dis-
placement w along the radial axis r is related to the

longitudinal strain as in statics

w = −νr
∂u

∂x
, (11)

where ν is the Poisson coefficient. Making use of these

two assumptions we arrive to the Rayleigh-Love model

(Abramson et al. 1958)

utt − c2Ruxx − ν2r2gpuxxtt = 0 (12)

with the following dispersion relation:

ω =
cRk

√

1 + ν2r2gpk
2

. (13)

Here rgp is the polar radius of gyration, c2R = E/ρ is the
velocity of the long waves, where E is the Young mod-

ulus and ρ is the density. In case of a physical rod this

model leads to normal dispersion (cgr < cph). Anoma-

lous dispersion can be achieved if the Poisson ratio is
allowed to be negative. However, this results in com-

plex velocity when k > (νrgp)
−1 which is physically

not sound.

More general model can be achieved when the effect

of shear deformation is accounted for as it is in case of
the Bishop’s model (Erofeyev et al. 2002)

utt − c2Ruxx − ν2r2gp(utt − c2τuxx)xx = 0, (14)

with the following dispersion relation:

ω = k

√

c2R + c2τν
2r2gpk

2

1 + ν2r2gpk
2

, (15)

where c2τ = µ/ρ is the shear wave velocity and µ is the

Lamé parameter.
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Fig. 2 Phase (solid lines) and group (dashed lines) velocity
curves agains frequency (top panel up to 5 kHz and bottom
panel up to 5 MHz) for h2 = 10−6 m2, h1 = 2.25 m4/s2 and
cR = 176.6 m/s.

Following Porubov (Porubov 2003) we can rewrite
(14) in the following form

utt − c2Ruxx + h1uxxxx − h2uttxx = 0, (16)

with the following dispersion relation:

ω = k

√

c2R + h1k2

1 + h2k2
. (17)

Note that in (Porubov 2003) h1 = α4 and h2 = α3

where α3 = 0.5ν(ν − 1)R2 and α4 = −0.5νc2RR
2 with

R as the radius of the rod.

In case of positive ν normal dispersion follows. If

the parameters h1, h2 are treated as arbitrary ad hoc

parameters, then anomalous dispersion relation follows

if h2 < h1. Moreover, the velocity is bounded and
approaches the value c1 = (h1/h2)

−1/2 as the wave-

length approaches infinity (see Fig. 2). The parameters

in Fig. 2 are adjusted so that the velocity of the 5 MHz
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wave would have the same value as given by Heimburg

(1998). The exact value of this upper bound can be de-

termined from the experiments and can be adjusted by

choosing the appropriate value for the ratio h1/h2. The

slope of the dispersion curve can be adjusted by chang-
ing the parameter h2. In our example the parameter h2

is taken equal to 10−6 m2 in order to achieve relatively

small changes in case of low frequencies as it is the case

in Heimburg and Jackson (2005) (see Fig. 2 top panel).
Also note that the parameter h1 is similar to the pa-

rameter h in Eq. (7) and is approximately in the same

order as it is in Heimburg and Jackson (2005).

The meaning of the parameter h2 can be explained

by considering Eqs. (12) and (14) where the fourth or-

der mixed derivative is responsible for inertial effects.

A similar parameter, only for the microinertia, is also
present in the Mindlin-type microstructure model (see

Eq. (16) in Peets et al. (2008) for example). Lipids in

biomembranes also represent a certain microstructure

and therefore the parameter h2 can be related to the
inertia of the lipids. This opens also the way to find the

value of h2 from experiments. Moreover, the parameter

h1, which is related to the elasticity of the biomem-

brane, can be expressed as c21h2, thus relating param-

eters h1 and h2 to the microstructure of the biomem-
brane.

Based on these arguments we propose the modified
(cf. Eq. (7)) governing equation:

∂2u

∂t2
= (c2

0
+ pu+ qu2)

∂2u

∂x2
+ (p+ 2qu)

(

∂u

∂x

)2

− h1

∂4u

∂x4
+ h2

∂4u

∂x2∂t2

(18)

where h1 = h and h2 is a new constant. As far as

the value of h was proposed (Heimburg and Jackson

2005) without special physical considerations, we pro-

pose here to use h2 = 10−6 m2 in order to get a phys-

ically more plausible dispersion relation like Eq. (17).
With these values of h1 and h2, phase and group veloc-

ities are shown in Fig 2.

For the following analysis we go into dimensionless

form:

∂2U

∂T 2
= (1 + PU +QU2)

∂2U

∂X2

+ (P + 2QU)

(

∂U

∂X

)2

−H1

∂4U

∂X4
+H2

∂4U

∂X2∂T 2

(19)

with X = x/l, T = c0t/l, U = u/ρ0 and P = pρ0/c
2

0
,

Q = qρ2
0
/c2

0
, H1 = h/(c2

0
l2); l is a certain length (see

later).

The higher order terms in Eq. (19) could be inter-

preted as a wave operator

L4 = H2

∂2

∂X2

(

∂2U

∂T 2
−

H1

H2

∂2U

∂X2

)

(20)

which is characteristic to hierarchy of waves (Berezovski

et al. 2013).

Equation (19) is solved under the pulse type ini-
tial condition which is interpreted as a forcing from the

propagating action potential.

4 Numerical simulation

4.1 Numerical scheme

For the numerical integration the Discrete Fourier

Transform (DFT) based pseudospectral method (PSM)

is used. For applying the PSM the equation needs to be
in a specific form with only time derivatives on the right

hand side of the equation and only spatial derivatives

on the left hand side of the equation which is clearly

not the case with Eq. (19) which has a mixed partial
derivative present.

A new variable is introduced following Salupere

(2009)

Φ = U −H2

∂2U

∂X2
, (21)

and the variable U and its spatial derivatives are ex-

pressed in terms of the variable Φ as

U = F−1

[

F(Φ)

1 +H2k2

]

,

∂mU

∂Xm
= F−1

[

(ik)mF(Φ)

1 +H2k2

]

,

(22)

where F−1 denotes inverse Fourier transform and F the

Fourier transform. Equation (19) is rewritten in terms
of the variable Φ as

ΦTT =(1 + PU +QU2)
∂2U

∂X2

+ (P + 2QU)

(

∂U

∂X

)2

−H1

∂4U

∂X4
.

(23)

Equation (23) can be solved with the use of the PSM af-

ter reducing it to a system of two first-order differential

equations (see Salupere 2009, for details).
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4.2 Material and numerical parameters

The material parameters are taken similar to Heimburg

and Jackson (2005) i.e.,

c0 = 176.6 m/s; p = −16.6 c2
0
/ρA

0
;

q = 79.5 c2
0
/(ρA

0
)2; h1 = 2.25 m4/s2;

h2 = 10−6m2; ρ0 = 4.107 · 10−3 g/m2;

(24)

which correspond roughly to unilamellar DPPC vesicles

at T = 45oC and the value of l used for the transform-

ing into dimensionless form is 10−3 m. The parameter
h2 is not present in the Heimburg and Jackson (2005)

and is chosen so that the the limiting speed for the

high frequencies (at 5 MHz) will be 1500 m/s as in-

dicated by Heimburg (1998). The initial condition is

a sech2-type (bell shaped) pulse with zero initial speed
(U0(x) = A0 ·sech

2(B0 ·x)). The relevant parameters for

the numerical scheme and initial condition are n = 1024

(the number of grid points), B0 = 1/128 (the width pa-

rameter of the sech2-type initial pulse) and A0 = 2 (the
amplitude of the initial pulse). The governing equations

are solved and results presented in the dimensionless

form.

It should be noted that the numerical experiments

were also performed with the second set of material
parameters presented in Heimburg and Jackson (2005)

corresponding roughly to lung surfactant data at bulk

temperature of T = 37oC. The results from the second

parameter set are very similar to the one from the first
set.

4.3 Numerical results

In all cases, the leading terms of governing equations

are of the second-order. Consequently the original pulse
splits into two identical pulses both having the half of

the initial amplitude and propagating in opposite di-

rections.

In the case of the original HJ model (7) in the di-
mensionless form the single dispersive term UXXXX is

overwhelmingly dominant and destroys the propagat-

ing single waveprofile even over very short propaga-

tion distances. This situation is similar to the linearised

Korteweg-de Vries equation where the dominant dis-
persion leads to a wave described by an Airy function

(Ablowitz 2011).

Let us start with few words about dispersion in the

physically motivated model (19). If H1 = H2 then we
have ‘dispersionless case’ as the phase (cph) and group

(cgr) speeds are equal. If these parameters are different

then we have either anomalous or normal dispersion.
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Fig. 3 Waveprofiles at T = 9999 (t = 56.7 ms). The wave-
profiles propagate from the right to left. Top – nonlinear vs.
linear at H2 = 1. Bottom – nonlinear anomalous dispersion
(H2 = 1) vs. normal dispersion (H2 = 100) case.

As modelled for the original Bishop model (14) the

physically correct dispersion type should be normal

(cph > cgr), here however, we need to get anomalous

dispersion type (cph < cgr) as this would be in agree-
ment with observations from physical experiments (He-

imburg and Jackson 2005) for the mechanical nerve im-

pulse so the relationship of the dispersion related co-

efficients is changed to the opposite compared to the
original Bishop model (14).

In Fig. 3 example solutions are presented at a cer-

tain distance X at time T . Here X = n∆x where ∆x
is the grid step size. The linear case is the one where

nonlinearity related parameters p and q are taken to be

zero. The ‘wave equation’ case is where all additional

terms (p, q, h1 and h2) in the Eq. (19) are taken to be

zero and the ‘H2 = 1’ case is where all parameters are at
their designated values. In the dimensionless form the

H1 = 72.14 corresponds to the h1 = 2.25 m4s−2 and

parameterH2 = 1 corresponds to the h2 = 10−6 m2. In

the bottom panel in Fig. 3 one can see demonstration
of the normal dispersion case (H2 = 100) which means

that on the dispersion curve the initial speed for the

long waves is c0 = 176.6 m s−1 and the limiting speed
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for the short waves is smaller than c0 at 150 m s−1. The

main visible difference is that in the case of anomalous

dispersion the oscillatory tail emerges in ‘front’ of the

propagating pulse but in the case of normal dispersion

‘behind’ the propagating pulse (where ‘front’ is defined
as the direction of propagation for the pulse). It should

be noted that parameters H1 and H2 have very simi-

lar but opposite effect on the solutions. For example, if

H2 is increased by a small amount (≈ 10%) over the
dispersionless case (where H1 = H2) the effect is al-

most the same when parameter H1 is reduced by the

same amount. What is also worth of noting is that the

solution is very sensitive towards small changes in the

dispersion related parameters. On the other hand the
effect of nonlinearity seems to be negligible compared to

the magnitude of the dispersion related effects as ‘Lin-

ear’ and ‘Full’ solutions are identical and overlapping

in Fig. 3 top panel even after long evolution (≈ 56.7
ms in real time). It seems that although the parameter

h = h1 is related to compressibility of the membrane

(Mosgaard et al. 2012), the role and values of h1 and

h2 need more explanation. Note that the existence of

small amplitude waves has been shown also for the HJ
model by (Lautrup et al. 2011). Here these waves are

directly related to the dispersion type.

In order to investigate the role and significance of
nonlinearity in Eq. (19) two approaches are used: (i)

investigation of long term evolution of the solution at

chosen material parameter values; (ii) increasing the

nonlinear terms relevance significantly by multiplying
relevant terms in governing equation by a large num-

ber (105). At this stage, these values are hypothetical

but needed for obtaining numerical results in course of

realistic time (in milliseconds). Three sets of material
parameters are considered: (a) the basic wave equation

(P = Q = H1 = H2 = 0), (b) the nonlinear wave equa-

tion without dispersive terms (H1 = H2 = 0) and (c)

the full governing equation (19) with increased nonlin-

earity.

The dispersion related parameters are taken so

that even with dispersive terms present we will have

dispersionless case. The parameter h1 is kept as it
is at 2.25 m2s−2 while parameter h2 is taken as

7.214 · 10−5 m2 so that H1 = H2. That means that

the speed for the long waves is the same as the speed

for the short waves.

Over long term evolution of solutions (t ≈ 350 ms

in physical time or T = 60000) the difference between

wave equations (a) and (b) is negligible (maximum am-
plitude difference between solutions is of the order of

10−5 with no significant phase differences). For the long

term evolution the case (c) with increased nonlinearity

is not considered as such a strong nonlinearity destroys

the numerical scheme before reaching that far.
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Fig. 4 Waveprofiles at T = 1563 (top) and corresponding
spatial derivatives (bottom). The waveprofiles propagate from
the right to left.

In the case (c) the relevance of the nonlinear term is

increased by changing the constants P and Q by multi-

plying them with 105 in order to get visible changes in
solution. It turns out that the wave profile gets asym-

metric as higher amplitudes seem to be propagating

slower than the low amplitudes (see Fig. 4). This can

be explained by the influence of the term PU . Taking

P < 0 as in HJ model, the deformation of the pulse
is backwards to the propagation direction (Fig. 4, top

panel). In addition, here |P | > |Q| that means the larger

the U the smaller the speed.

It is interesting to note that usually in Boussinesq-
type equations the nonlinear terms present are depen-

dent on UX (Christov et al. 2007) not just on plain U

like it is the case here. The emergence of waveprofile

asymmetry is a somewhat unexpected phenomenon as
usually the nonlinear effects increase the amplitude of

the solution. It is clear that the values of coefficients in

governing equations need further analysis.
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5 Discussion

Many experiments have shown that the action poten-

tial propagating in a nerve fibre is accompanied by

geometrical changes, i.e., changes of dimensions of a

fibre (Iwasa et al. 1980; Tasaki 1988; Tasaki et al.

1989). These effects are described also in (Heimburg
and Jackson 2005, 2007). The mechanical wave, called

also swelling (Iwasa et al. 1980; Tasaki 1988) is of the

asymmetrical type characterised by a positive and neg-

ative phases (see Fig. 1 in (Tasaki 1988)). For mam-
malian nerve terminals, however, the negative phase

(dip) is not so clearly evident (Kim et al. 2007).

The mathematical model proposed by Heimburg

and Jackson (2005, 2007) is an important step in order

to explain the propagation of a mechanical wave. The
governing wave equation (7) proposed by them involves

both nonlinear and dispersive terms and belongs to the

class of Boussinesq equations (Christov et al. 2007).

Here we analyse the HJ model from the viewpoint of
wave mechanics. The starting point is the excitation of a

mechanical wave. All the studies concerning mechanical

phenomena in nerve fibres agree that these are excited

by action potentials and propagate in phase with them

(Tasaki 1988). The mechanism of the electromechanical
transduction could be based either on electrostrictive or

piezoelectric effects (Gross et al. 1983). In the first case

the excited strain is proportional to the square of the

field, the second case – directly proportional. As fas
as the action potential is an asymmetric pulse with an

overshoot, it is clear that the influence of the overshoot

is smaller for the electrostrictive mechanism. We solved

the governing equations for a pulse-type initial excita-

tion that can be taken as a good approximation to the
real situation.

The governing equation (7) and the modified variant

(19) are solved numerically by using the pseudospec-

tral method (Salupere 2009) under an initial pulse-type
excitation. The aim is to understand the influence of

nonlinearity/nonlinearities and dispersive effects for the

formation of a mechanical wave in a fibre.

The nonlinearity in HJ equation (7) is based on the

changes of compressibility in the fibre wall (Heimburg
and Jackson 2005). This is motivated by the special

structure of the fibre made of lipids and proteins. The

nonlinearity is of the type F (u) where u denotes the

density changes ∆ρA in the fibre wall. The wave oper-
ator L(u) takes then the form

L(u) = utt − c2
0
(1 + F (u))uxx. (25)

Note that in mechanics of solids the operator is usually

in the form

L(u) = utt − c20(1 +G(ux))uxx. (26)

The model (25) deserves full attention in the analysis

provided it is typical for complicated biosystems.

The numerical simulation has shown that the non-
linear effects with values suggested in the HJ model are

not visible at time typical for nerve pulse propagation

and only at large time may affect the profile. Typically

to the operator (25), the nonlinear effects increase the
derivative ux backwards.

Another important physical effects to be analysed

is dispersion. The ad hoc dispersive term uxxxx (He-
imburg and Jackson 2005) leads to unbounded veloc-

ities in higher frequencies. Although the propagating

wave is probably confined to lower frequencies, from

a viewpoint of wave dynamics such limits should be

avoided. That is why a more realistic dispersion mech-
anism is proposed (Eq. (18)) motivated by the anal-

ysis of rod models (Abramson et al. 1958; Erofeyev

et al. 2002, etc.). In this case the group (cgr) and phase

(cph) velocities are bounded (Fig. 2) which is physi-
cally rational. The numerical simulation shows that this

model with terms uxxxx and uttxx satisfies the condi-

tions for anomalous dispersion (cph < cgr) and is close

to physical experiments. A real challenge is to link the

coefficients h1 and h2 to the real physical situation
based on structural inhomogeneities of lipids. In gen-

eral terms, dispersion effects in biomembranes should

be related to the structural characteristics of lipids like

it is done for microstructured materials. These studies
are in progress.

It must be stressed that the compression along the

propagation direction is not directly related to the
swelling which means displacements in the transverse

direction (measured by Tasaki (1988)). Following the

ideas from the rod models where Rayleigh-Love correc-

tion is introduced (expression (11)), we propose to use

the same idea. It means that after the longitudinal wave
profile is obtained (Fig. 3 and Fig. 4 a), the transverse

displacement is related to its derivative (Fig. 4 b). The

similarity to the experiments is obvious – see Fig. 1 in

(Tasaki 1988). Whether the longitudinal and transverse
displacements in the cylindrical membrane are linked

by the Poisson coefficient (expression (11)) or not, is

an open question.

To sum up, the governing equation (18) proposed in

this study is physically consistent (involving bounding

velocity) from the viewpoint of wave dynamics, the pos-

sibility to model anomalous dispersion corresponds to
observations by Heimburg and Jackson (2005) and the

swelling of the biomembrane is properly coupled with

the density pulse.

Some remarks should still be added. In this paper

we avoided the notion of soliton while in mathematical

physics soliton is attributed to a solitary wave which in-
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teracts elastically with other solitons. The situation is

different for nerve pulse because in the interaction pro-

cess they annihilate each other (Hodgkin and Huxley

1952).

We also note that we did not analyse here the possi-
ble thermodynamical conditions for a nerve pulse prop-

agation. This analysis is in progress based on the theory

of internal variables. The general ideas were already de-

scribed in (Maugin and Engelbrecht 1994; Engelbrecht
1997) where the dissipation potentials for known HH

and FHN models were introduced. However, such an

analysis must be cast into the framework of experiments

(Tasaki 1988; Tasaki et al. 1989; Andersen et al. 2009).

Without any doubt, the structure of nonlinearities
(f(u)uxx - type) in the HJ model (7) and its modi-

fied version (18) opens a wide area for future studies in

soliton dynamics. As stressed by Eisenberg (2007), the

quest in nerve pulse dynamics also goes on.

Acknowledgements This research was supported by the
European Union through the European Regional Develop-
ment Fund, by the Estonian Ministry of Education and Re-
search (SF0140077s08) and by the Estonian Science Founda-
tion (Grants Nos. 8658 and 8702). The authors would like
to thank the reviewers whose comments have helped us to
improve the presentation of our results.

References

Ablowitz MJ (2011) Nonlinear Dispersive Waves. Asymptotic
Analysis and Solitons. Cambridge Univ Press, Cambridge

Abramson HN, Plass HJ, Ripperger EA (1958) Stress Wave
Propagation in Rods and Beams. In: Dryden H, von Kar-
man T (eds) Advances in Applied Mechanics Vol. 5. Aca-
demic Press INC., New York, pp 111–194

Achenbach JD (1973) Wave propagation in elastic solids.
North-Holland Pub. Co.; American Elsevier Pub. Co,
Amsterdam, New York

Andersen SSL, Jackson AD, Heimburg T (2009) Towards a
thermodynamic theory of nerve pulse propagation. Prog
Neurobiol 88 (2): 104–13

Berezovski A, Engelbrecht J, Salupere A, Tamm K, Peets T,
Berezovski M (2013) Dispersive waves in microstructured
solids. Int J Solids Struct 50 (11-12): 1981–1990

Christov CI, Maugin GA, Porubov AV (2007) On Boussi-
nesq’s paradigm in nonlinear wave propagation. Comptes
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