
J. Engelbrecht and M. Kutser: Legacy of Nikolai Alumäe: theory of shells 139

Proceedings of the Estonian Academy of Sciences,  
2015, 64, 2, 139–145 

doi: 10.3176/proc.2015.2.02 
Available online at www.eap.ee/proceedings 

 
 
 
 
 
 
 
 

Legacy  of  Nikolai  Alumäe:  theory  of  shells 
 

Jüri Engelbrecht* and Mati Kutser 
 

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia 
 
Received 17 September 2014, accepted 11 December 2014, available online 22 May 2015 
 
Abstract. A short overview on the research of Nikolai Alumäe (1915–1992) in the field of the theory of shells is presented. His 
brilliant analytical results explaining the stability and transient processes in shells have not lost their importance although obtained 
in the 1950s and 1960s. 
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1. INTRODUCTION 

* 
The progress in naval and 
aeronautical engineering 
and technology produced 
growing interest in the 
theory of thin elastic 
shells in the middle of the 
20th century. Shells are 
elements of constructions 
that are bounded by two 
curved surfaces the dis-
tance between which is 
small in comparison with 
their other dimensions. 
The governing equations 
of the shell theory are 
complicated and their 

analysis needs deep knowledge in the theory of dif-
ferential equations. 

Such an interest in the problems of thin-walled shell 
constructions is reverberated in many papers and mono-
graphs published in the 1930s and 1940s [1–5]. The 
fundamental ideas of the shell theory were formulated 
by Reissner [6] and Donnell [2] in the USA; Golden-
veiser [7–9], Vlasov [10], and Novozhilov [11] in the 
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USSR; and by others. The ‘golden age’ in the develop-
ment of the theory of thin elastic shells, especially in 
studying their stability and dynamics, was in the 1950s 
and 1960s. However, as then the computing capacity 
was not sufficient for solving such complicated 
problems, attention was directed to simplified theories 
(in comparison to the 3D model of elasticity) and 
analytical methods. 

Shell theories have been experiencing some 
renaissance in recent years. The renewed interest in 
shell theories is on the one hand due to the potentials of 
smart materials, the challenges of adaptive structures, 
and the demands of thin-film technologies, and on the 
other hand, the availability of newly developed 
mathematical tools, the tremendous increase in 
computer capacity, and the improvement of commercial 
software packages. Several textbooks and research 
papers on shell theory were published at the end of the 
previous and at the beginning of this century [12,13]. 

In the 1950s and 1960s the shell theory was studied 
extensively also in Tallinn by Nikolai Alumäe and his 
co-workers. Their results were published mostly in 
Russian and are not widely known to the international 
community. For example, an overview on the buckling 
of thin shells by Teng from 1966 [14] does not include 
any results from the former Soviet Union because of the 
language barrier. However, in many cases Alumäe was 
able to solve very complicated problems. The aim of the 
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present overview is to bring his excellent ideas and 
results again into the focus just before his 100th birth 
anniversary in 2015. A brief review of Alumäe’s main 
results in the shell theory follows. His studies and 
results may be divided into three main groups: 
(i) stability of thin elastic shells, (ii) vibrations of shells 
together with the analysis of their stress states, and 
(iii) transient processes in shells. 

 
 

2. STABILITY  OF  THIN  ELASTIC  SHELLS 
 

In one of his first papers, Alumäe presented fundamental 
equations of an approximate nonlinear shell theory for 
thin elastic shells and conditions that reflected the limit-
ing use of this theory for studying the behaviour of shells 
in the post-critical state [15]. These equations were based 
on the assumptions that (i) deformations of the shell are 
small despite the finite displacements in the post-critical 
state, (ii) the Kirchhoff–Love hypothesis is valid, and 
(iii) the governing stress state is of membrane type. The 
order of neglected terms was analysed qualitatively. The 
critical stress in the case of a membrane stress state for 
thin elastic shells may be presented by a similar formula 
in many cases: of a closed spherical shell under uniformly 
distributed normal pressure, of a circular cylindrical shell 
under central axial loading, and of a conical shell of 
revolution under central axial loading. The initial stress 
states for an arbitrary shell when similar formulae for 
critical stress may be obtained were described [16]. A 
specific form of the generalized Castigliano variation 
principle for the case of equilibrium of thin elastic shells 
in the post-critical state was presented [17]. An important 
result was derivation of a functional that has a stationary 
value if the normal component of the displacement vector 
of the middle surface of the shell   and stress function 
  satisfy the basic equations. At the same time boundary 
conditions should be satisfied for the boundary problem 
of equilibrium of a thin elastic shell in a post-critical 
state [18]. The proposed method may often be used 
instead of the Galerkin method in the case of approximate 
determination of the equilibrium state in the post-critical 
state, recommended by Vlasov in his monograph [19]. 

Alumäe used the method of power series of the 
small parameter for the analysis of the post-critical state 
of the thin elastic shells [20]. Some examples were 
analysed in more details: (i) a square plate pressed in 
one direction, (ii) a circular cylindrical pipe under axial 
pressing force, and (iii) a circular cylindrical pipe under 
torsion.  

Alumäe developed the ideas for the analysis of flat 
flexible shells that had been studied earlier with con-
siderable results by Panov [21,22] and Feodosiev 
[23,24]. Feodosiev used successfully the Papkovich 
variational method for particular problems. The essence 
of this method is that the equations of continuity for the 

fundamental system of differential equations are 
integrated exactly, but for the equations of equilibrium 
the Galerkin method is applied. If the shell is not flat, 
then, generally speaking, the Papkovich method is 
difficult to use and therefore one has to integrate also 
the equations of continuity approximately with the 
Galerkin method. 

Here, however, some additional problems had to be 
solved. Namely, the Galerkin method assumes that the 
approximation functions must satisfy all the boundary 
conditions, including geometrical ones. However, in the 
case of the approximate integration of the deformation 
equations of continuity the uniqueness of the displace-
ment field is not determined and the geometrical 
boundary conditions are not satisfied. 

Alumäe exposed the reduction of the problem to the 
variational problem of the basic system of differential 
equations of axisymmetric deformations of shells of 
revolution in the case of finite deformations [25]. 
Further this variational formula was modified to the 
form of generalized variational equations of the 
Galerkin method. The conditions that afford to use the 
integration of the system of nonlinear differential equa-
tions to the variational equations of the Galerkin method 
in its traditional form were deduced directly from those 
equations. 

In his monograph General Theory of Shells and Its 
Applications in Engineering [19] Vlasov pointed out the 
difference between shells of the revolution with a 
positive or a negative Gaussian curvature in the sense of 
materializing the membrane stress state. The solution of 
the problem of the membrane stress state in the case of a 
negative Gaussian curvature was given by Novozhilov 
[11]. He gave the conditions for the elimination of 
infinitely small bending of the middle surface of  
shells and showed that the same conditions cause the 
membrane stress state in the shell. 

Alumäe determined the critical value of the 
axisymmetric membrane stress state for a long catenoid 
shell under contour loading. This study was an essential 
continuation of the problem solved by Novozhilov. 
Actually, such a problem was first raised by Feder-
hofer [26], but his solution for the loss of stability was 
limited to the axisymmetric deformation in the case of a 
membrane stress state. Alumäe showed that his solution 
leads to higher values of critical loading [27]. This 
solution demonstrated once more the considerable 
difference between shells with a positive and a negative 
Gaussian curvature and pointed out the necessity to 
create a new version of basic equations and solution 
algorithms. The reason is that at the centre of the 
bulking of a catenoid shell the displacements of the 
middle surface are very small and deformation is similar 
to the bending of the middle surface. The calculations 
elicit the loss of accuracy due to small differences of 
large values in this situation. Alumäe presented a 
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qualitative analysis of the accuracy of the simplified 
equations in [27]. 

The non-axisymmetric state of equilibrium of a 
cylindrical shell of revolution of medium length under 
the external hydrostatic pressure and axial loading was 
studied by Alumäe in [28]. It was assumed that in the 
axisymmetric stress state forces from axisymmetric 
loading were smaller than or of the same order as from 
the external pressure (such a case exists if the loadings 
are rather small). Fundamental conditions and equations 
of nonlinear theory for the local loss of stability of the 
membrane stress state of the shell were presented. Alu-
mäe proposed simplified equations and an equivalent 
variational formula for the estimation of the critical 
loading assuming that the character of deformation 
determined for the critical loading was valid in some 
initial stage of a post-critical state. The governing equa-
tions in terms of the stress function ( , )F    and the 
displacement of the mean surface ( , )w    are nonlinear 
and should be solved asymptotically. For example, in 
order to estimate the role of boundary effects, the 
governing system reads 

 

1
0,F w w w w w

t
          

 

1 1
( ) 0.F w F w F w F w

t t
               

 

Here t  is the thickness of the shell,   is the coefficient 
characterizing material of the shell, and 

 

( ) ( ) , ( ) ( ) .            
 

The derivation of simplified equations was based on 
the asymptotic properties of the solution of the exact 
equations (in the sense of the theory of the local loss of 
stability of the membrane state of a shell). Therefore, 
the proposed method gives more natural results when 
the ratio of the thickness of the shell to the radius of the 
curvature of the middle surface of the shell is small. 
Alumäe demonstrated that by taking the edge effect of 
axisymmetric stress state into consideration, the method 
gives only negligible corrections to the value of the 
critical load determined by the membrane theory [28]. 

In the framework of assumptions made, a stress state 
consists of a membrane state and a mixed stress state. In 
the case of thin shells the mixed stress state occurs only 
in the boundary zone or in the zones where the thickness 
of the shell is changing gradually. A membrane stress 
state may have local character only when the external 
pressure acts in the limited zone and the axial loading is 
relatively small.  

A non-axisymmetric form of equilibrium of the shell 
possible at certain values of loading parameter was 
described concerning the existing axisymmetric form 

that may exist at these loading parameters. In the studies 
to establish non-axisymmetric forms of equilibrium of 
the shells of revolution the axisymmetric component of 
the membrane state is taken as a leading factor, but the 
initial state and edge effects are not taken into 
consideration. Such an approach is not valid in the case 
of very flat shells. 

Alumäe showed that the determination of critical 
loading for long and medium-length cylindrical shells 
under torsion is equivalent to the integration of the 
fourth order equation that satisfies two boundary con-
ditions on contours of the middle surface [29]. 

Alumäe was certainly not the only one who studied 
such complicated problems. For example, in 1945 
Goldenveiser showed that there is a simple analogy in 
the linear shell theory between static and geometric 
relations [8]. Later Goldenveiser introduced a non-
symmetric metric tensor of deformation in order to 
guarantee that components of tensors of deformation are 
the energetic components of deformation and the 
analogy between static and geometric relations is 
retained [30]. Another version showing that basic rela-
tions of linear shell theory have analogy between static 
and geometric relations and with energetic components 
was presented by Novozhilov [11] and Lurye [31]. Alu-
mäe proposed a version of basic relations of nonlinear 
shell theory that is an analogue to Novozhilov’s version 
of the linear shell theory: formal symmetrical tensors of 
tangent forces and moments and the symmetrical 
deformation tensor were introduced in such a way that 
quite a simple analogy between static and geometric 
relations existed and the components of the deformation 
tensor were also energetic components [32]. 

Alumäe presented a method for determining the 
critical pressure for an elastic thin shell of revolution with 
a boundary of a hyperboloid of one sheet, symmetrical to 
the thinnest part of the surface, with exclusive flat 
bottoms rigid in plane but flexible in bending out of its 
plane [33]. The case of uniformly distributed external 
pressure was studied and algorithms for calculations were 
proposed. 

Alumäe showed that the problem of determination of 
the critical loading of a thin elastic conical shell of 
revolution under all-round external pressure may be 
reduced to the determination of the smallest eigenvalue of 
the system of ordinary differential equations under given 
boundary conditions. The problem may be simplified and 
the asymptotical integration method was used for 
obtaining a solution in the case of a very thin shell [34]. 
This solution allowed analysis of the accuracy of the use 
of a simplified system. As an example, a shell closed in 
the apex was studied. 

A shell on a helical surface surrounded by asymptotic 
contour lines was also studied. The critical loading and 
the shell stress state after the loss of stability ‘in small’ 
were established. A simplified governing equation was 
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proposed and then integrated by the asymptotic 
method [35]. 

 
 

3. VIBRATIONS  OF  SHELLS 
 

Alumäe studied small stationary elastic axisymmetric 
vibrations of a truncated conical shell of revolution 
in [36], and noted that in some frequency range the 
equations of membrane vibrations have a branching 
point in the interval of integration. The membrane theory 
gives infinite amplitudes for displacements at this branch-
ing point. In the interval of determination of the inde-
pendent variable (a coordinate point on the middle sur-
face) there are no transition points in any frequencies of 
vibrations if the membrane vibrations have linear damp-
ing. In spite of this, there are regions near these points in 
the complex plane of arguments in some definite range of 
frequencies, and consequently the stress state changes 
rapidly. It is quite natural to suppose that in some 
neighbourhood of the branching point the membrane 
equations do not describe movements correctly and one 
has to use the general theory, which in this problem 
involves the determination of edge effects. At once a 
question arises: What result can be expected when cor-
recting the membrane solution using a general theory? It 
appears that the question is not formulated correctly 
assuming that the general theory smooths out singularities 
of the membrane theory. This assumption is not correct 
because the membrane solution is not unique in the 
complex plane of arguments. 

The study of the small stationary elastic axi-
symmetric vibrations of a truncated conical shell of 
revolution leads to the integration of the ordinary linear 
differential equation of the sixth order in terms of 
displacement :Y  

 

6 2 2
4

6 2 26 2 2

1 0

( ) ( ) ( )

( ) ( ) ( ).

d Y d Y d Y
A x A x B x

dx dx dx

dY
B x B x Y f x

dx


      
  

  


 

 

Here   is a small parameter and coefficients ( )iA x  and 
( )jB x  depend on the parameters of the shell and ( )f x  

is related to loading. 
If parameter 0,   then one has an equation of 

membrane vibrations with the branching point 0.x   In 
the neighbourhood of this point the character of the 
stress state of the shell has peculiarities that are not in 
conformity with the main assumptions of the membrane 
theory of the shells. Alumäe pointed out that in such a 
case more effective methods for the analysis of shells 
should be developed. Note that sixth-order differential 
equations with variable coefficients were practically not 
studied at that time. For the investigation of these 

problems Alumäe derived a simplified equation in the 
form 
 

4 (6) (5) (4) (2) (1)
1 0 1

0 0

{ } (2 )

( ) 0

y d y d y zu d z y

c d z y

     

  
 

 

as a ‘model equation’ in the neighbourhood of the 
branching point. Here y  and z  are used in the same 
sense as Y  and x  in the basic equation and 
 

( ) ( ) ( ) .i i iy z y z z    
 

The model equation afforded to present the solution in 
the form of contour integrals from which one should 
obtain asymptotic presentations for integrals with a 
large index of variability using the saddle point method. 
The integrals of the model equation were used for 
formal construction of integrals of the basic equation 
using known methods of asymptotic integration. 

Alumäe concluded that on the basis of detailed 
mathematical analysis it is possible to forecast basic 
features of solutions that behave somewhat unusually 
for integrals of the shell theory. Some of these integrals 
have quite a complicated character. On one hand, the 
integral of the membrane theory occurs in the formula 
for boundary effects and on the other hand, the oscillat-
ing part of the solution occurs in the formula for the 
membrane state. 
 
 
4. TRANSIENT  PROCESSES  IN  SHELLS 
 
In the case of the slowly applied axisymmetric load the 
stress state of quite a wide class of shells of revolution 
may be separated into the membrane state and the 
boundary effects [37–39]. The non-stationary wave pro-
cesses in the shells under fast loading were practically 
not studied at that time. 

To clarify the basic phenomena of vibrations during 
the starting stage of motion Alumäe studied the problem 
of non-stationary vibrations of half-infinite circular 
cylindrical shells under sinusoidal boundary loading 
[40]. As a mathematical model for describing axi-
symmetric motions of a circular cylindrical shell the 
following simple system of linear differential equations 
of hyperbolic type was used 

 

2 2

2 2
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2

2 2
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Here ,u  ,v  and w  are dimensionless deformations,   
is a dimensionless coordinate, and   is dimensionless 
time, which are defined in [40]. 
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These Timoshenko-type shell equations had been 
proposed already earlier by Herrmann and Mirsky [41]. 
However, until the 1960s they were used only for the 
determination of phase and group velocities of the 
distribution of elastic disturbances. 

It was interesting to estimate the limits of the 
application of simplified equations for vibrations in the 
case of fast processes in the shells. The calculations on 
the basis of the equations of hyperbolic type are con-
siderably more complicated than the calculations on the 
basis of theories based on the hypothesis of Kirchhoff–
Love. Alumäe presented a solution of this system of 
equations in the form of contour integrals using the 
Laplace transform technique [40]. That particular study 
elucidated the role of these integrals in the solution. 

The main conclusion presented by Alumäe was the 
following: for the solution of such a problem the separa-
tion of a general stress state into a membrane state and 
boundary effects is possible (i) if a period of the change 
of loading is longer or commensurable with the time 
during which an elastic wave passes the distance equal to 
the radius of the middle surface, and (ii) if the aim is only 
determination of maximal displacements and stresses. 
These elementary states may be determined by simplified 
computational relations using the equilibrium theory with 
added inertial terms. This situation often allows separate 
solution of mixed (with initial and boundary conditions) 
problems of axisymmetric vibrations of the shell when 
first the membrane problem is solved and then the 
boundary effects are taken into account. 

Practically there is a need to use hyperbolic equa-
tions only in case the characteristic period of loading is 
very short. In the limiting case (in the sense of shell 
theory) when the period is commensurable with the time 
when an elastic wave passes a distance equal to the 
thickness of the shell, there is no two-dimensional 
theory that describes correctly the vibrations of the shell 
at the beginning of wave motion. 

The question whether a membrane theory can 
determine tangential characteristics of shell deformation 
in a transient process was also of Alumäe’s interest. As a 
special case, he studied membrane stresses in a closed 
circular cylindrical shell due to sinusoidally distributed 
membrane edge forces that are suddenly applied in time 
and maintain a constant value [42]. The Timoshenko-type 
linear shell theory and the procedure of the Laplace trans-
form were used. For establishing the early behaviour the 
inverse integral was evaluated by a rational approxima-
tion, and for finding stresses for a longer time the saddle-
point method was used. An analysis indicated that 
transient membrane stresses in a thin shell at early times 
may be obtained with the aid of the dynamic membrane 
theory of shells; for longer transient times the semi-
membrane dynamic theory of shells including circum-
ferential moments and shear should be used. 

Qualitative analysis of stress states in shells was 
carried out by Goldenveiser [30] for quite a general case 
when the distortion line of the stress state tangent to the 
characteristics of the system of the differential equations 
is singular, and the perturbations evolving near the 
tangent point do not localize but propagate along the 
asymptotic lines. The static problem of the shell theory 
solved by Goldenveiser does not contain enough 
examples of that phenomenon because the general 
moment theory is of elliptic type and only its degenera-
tion, the membrane theory, is described by equations 
that have real characteristics in the case of negative or 
zero curvature. In the Timoshenko-type theory, used 
quite often for solving dynamic problems, governing 
equations are of hyperbolic type and the effects con-
nected with tangent intersections of lines of perturbation 
and characteristics must emerge quite clearly. As an 
example, Alumäe studied a one-dimensional problem of 
the behaviour of a spherical segment of the shell of 
revolution under a plane pressure wave [43]. He 
assumed that (i) the front of a pressure wave is moving 
with a constant speed in the direction of the axis of the 
shell; (ii) the pressure behind the wave front remains 
constant (interactions of the wave and the shell are  
not considered); and (iii) the value of the pressure is 
such that only small deformations are initiated. In such a 
case the lines of perturbation of a stress state are caused 
by the pressure front moving with a changing speed 
along the shell and the perturbation lines in the 
coordinate-time plane are tangent to the characteristics 
of the system of differential equations in two points. 
Physically this means that the speed of the pressure 
wave at these points on the shell surface is equal to the 
speed of the compressional wave or to the speed of the 
shear wave, respectively. Asymptotical analysis showed 
that the solution has discontinuities at the fronts of  
the propagating waves. Quite a strong discontinuity is 
generated in the normal component of acceleration. 
Study of the characteristics of discontinuities may be 
useful for composing computing algorithms using 
simple numerical methods for smooth functions [43]. 

 
 

5. FINAL  REMARKS 
 

The mathematical models derived and studied by 
Nikolai Alumäe were mostly related to high order 
partial differential equations (PDEs) or their systems, 
both linear and nonlinear, which were based on clear 
physical considerations. His ingenious ideas for the 
analysis of such complicated PDEs were at the front of 
research of his time. His results have not lost their 
importance because they included explanation of many 
specific phenomena such as the rates of changing the 
variables, the existence of possible branching points, the 
possible existence of discontinuities or the infinite 
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values of some variables, just to name a few. Such 
effects should be understood also today although 
powerful computational methods are used in solving 
many problems. For example, the buckling of thin metal 
shells got much attention recently because shell 
buckling is an important element in the design of deep-
space vehicles [44]. NASA experiments have shown 
that studies on Shell Buckling Knockdown Factor 
(SBKF) enable significant weight savings of space 
vehicles. This shows clearly that Alumäe’s ideas were 
ahead of his time. 

It is clear even from this brief overview that Alumäe 
was a brilliant researcher and his papers were written in a 
transparent way combining physics with mathematical 
analysis. Here we also tried to explain not only his results 
but described the background and studies of his 
colleagues from Moscow and Leningrad (now St. Peters-
burg). As a leader of the Estonian research community in 
mechanics, Alumäe created the Estonian National Com-
mittee for Mechanics, a member of the International 
Union of Theoretical and Applied Mechanics (IUTAM). 
Alumäe was also the founder of the Institute of 
Cybernetics (1960) – an interdisciplinary research centre 
for computer science and mechanics. 
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suurepärased analüütilised tulemused koorikute stabiilsuse ja võnkeprotsesside selgitamisel ei ole oma aktuaalsust 
kaotanud, kuigi need on pärit 20. sajandi 1950. ning 1960. aastatest. Ülevaade tähistab N. Alumäe 100. sünniaasta-
päeva. 
 


