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Scaling and hierarchies of wave motion in solids
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The concept of wave hierarchies in the Whitham’s sense is generalized tohierarchies of second order wave operators.
Based on Mindlin’s model of microstructured solids, the scaling procedure is described and the corresponding hierarchical
equation derived which includes two wave operators. It is shown that waves in the Cosserat’ medium are described by a
similar hierarchical equation. These results are generalized to a multiscalecase (a scale within a scale) and to nonlinear
media. It is shown also how to construct hierarchies for waves in elastic ferroelectrics. The results obtained by Scott for
hierarchies in thermoelasticity are presented in the similar framework. Finally, the cases with first order wave operators
are described.
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1 Introduction

Solids are interpreted in classical theories as homogeneous media although we know that there are many scales in solids
starting from scales of their crystal structure to scales characteristic in structural mechanics. In many practical applications
(statics, slow dynamical loading) the assumption of the material homogeneity works well. However, the wave motion in
solids should always take scales against wavelengths (frequencies) into account. As attempting as it sounds, it is impossible
to construct an overwhelming theory of wave motion over the many scales. Nevertheless, all the theories which are more or
less satisfactory at certain scales must form a whole with some areas of usage overlapping and some areas not overlapping.

Intuitively it is clear that scales form a certain hierarchyfrom smaller to larger. This idea is used by Whitham [1] who
formulated the principles of wave hierarchies. If it is possible to determine wave operators which govern the wave motion at
a certain scale then by using a proper scaling it is possible to construct mathematical models which involve many wave ope-
rators together with scaling parameters. Beside general ideas on hierarchies, Whitham [1] has analysed respective models
of traffic flows and bores in channels and rivers. In mathematical terms, the one-wave operatorsLi = ∂/∂t + ai∂/∂x have
been used. Note that every operator has its own velocityai. Recently the interest to hierarchies of waves has been increased
because the problems of wave motion in fluidized bed [2], in bubbly liquids [3], in granular media [4], in oceans [5], in
microstructured solids [6], in thermoelasticity [7], etc.

In this paper an attempt is presented to generalize these results into a systematic description of wave hierarchies where
the proper scaling plays an important role. Our general description is based on the Mindlin-type theory of microstructured
solids which after the seminal Mindlin’s paper [8] has recently got more attention because of wide interest to contemporary
materials [9]– [13]. As a result, an efficient conceptual tool is described to construct the backbone of governing equations
for wave motion in materials with internal structures.

The paper is organized as follows. In Section 2 the basic model of the micromorphic continua is briefly described in a
general form and then governing equations are presented. After explaining the scaling procedure, the hierarchical equation
is derived and analysed. This result is then generalized in Section 3 to a multiscale case. The hierarchies in the presence of
nonlinearities are demonstrated in Section 4. Further the influence of other fields is studied. First in Section 5 for elastic
ferroelectrics and second, in Section 6 for thermoelasticity. Then in Section 7 a brief summary is presented for hierarchies
of evolution (one-wave) equations. Finally, in Section 8 the discussion and final remarks are given.
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2 Basic model – microstructured material

2.1 Theoretical considerations

The continuum approach for microstructured solids is elaborated by incorporating the intrinsic microstructural effects into
governing equations (Mindlin, [8]; Eringen and Suhubi, [14]). Leaving aside the regular structures, we focus here on
irregular microstructures like polycrystalline solids orfunctionally graded materials. A leading concept is to separate the
macro- and microstructure (or microstructures) and to formulate the balance laws for both structures separately [8]. Another
possibility is to introduce the microstructural quantities into one set of balance laws [15] which gives an explicit description
of interaction forces between macro- and microstructure. Following Maugin [15], the balance of the canonical (material)
momentum on the material manifoldM3 reads

∂P

∂t

∣∣∣∣
X

− DivRb = f
int + f

ext + f
inh. (1)

The corresponding dissipation inequality is

Sθ̇ + S · ∇Rθ ≤ hint + ∇R(θK). (2)

Here the following notation is used:P is the material momentum (pseudomomentum),b is the material Eshelby stress,
f
inh, f

ext, f
int, are the material inhomogeneity force, the material external (body) force and the material internal force,

respectively;S is the entropy density per unit reference volume,S is the entropy flux,θ is the absolute temperature,hint –
the source term (if any) andK – the extra entropy flux (if any).

The next step is to determine the function of free energyW which in general terms may be formulated as

W = W (F, θ,ϕ,∇Rϕ, . . .) , (3)

whereF is the deformation gradient andϕ denotes microdeformation according to Mindlin [8] or the internal variable
according to Berezovski et al. [16]. Then it is possible to determine stress tensorb and forces in balance law (1), while
the governing equation for the internal variableϕ is determined by satisfying dissipation inequality (2). Here we omit the
details (see, for example, [16]) and focus further on the 1D setting.

2.2 Governing equations

Based on principles briefly described in Section 2.1: one balance law for the canonical momentum plus the dissipation
inequality, the governing equations for wave motion are easily derived. As far as our main aim is to focus on scaling, we
restrict here ourselves to the linear case and takeθ = const, i.e. we deal with a pure elastic case. The free energy function
W is then the following:

W =
1

2
(λ + 2µ) u2

x + Aϕux +
1

2
Bϕ2 +

1

2
Cϕ2

x, (4)

whereu is the macrodisplacement,ϕ is the microdeformation (or the internal variable – see Section 2.1),λ andµ are the
Lamé parameters and A, B, C are additional material parameters.Here and further, the indices denote partial differentiation.
Bearing in mind that the kinetic energyK in this simple case is

K =
1

2
ρ0u

2
t +

1

2
Iϕ2

t , (5)

whereρ0 is the macrodensity andI - the microinertia. it is possible to derive the governing equations (for details, see
[10], [16]):

ρ0utt − (λ + 2µ)uxx − Aϕx = 0, (6)

I ϕtt − Cϕxx + Aux + Bϕ = 0. (7)

There are two wave operators in the model:

Lma(u) = ρ0utt − (λ + 2µ)uxx, (8)

Lmi(ϕ) = I ϕtt − Cϕxx. (9)

Copyright line will be provided by the publisher

Page 2 of 9

Wiley-VCH

ZAMM - Zeitschrift fuer Angewandte Mathematik und Mechanik



For Peer Review

ZAMM header will be provided by the publisher 3

Suppose the initial and boundary conditions are given

u(x, t = 0) = ut(x, t = 0) = 0, (10)

u(x = 0, t) = f(t), (11)

ϕ(x, t = 0) = 0, (12)

lim
x→∞

u(x, t) = lim
x→∞

ϕ(x, t) = 0. (13)

The wave operators are coupled in caseA 6= 0 which is of our primary interest. The question is which of thewave
operators prevails or are they competing with each other in wave motion generated by (10) – (13). In order to answer this
question we have to find a suitable scaling procedure.

2.3 Scaling procedure

On the one side, a characteristic scale of the microstructure (the size of an element) must be known, let us denote it byl.
On the other side, let the excitation be characterized by itsamplitudeU0 and wavelengthL. The dimensionless variables
are then introduced by

U = u/U0 , X = x/L , T = cot/L , (14)

wherec2
o = (λ + 2µ)/ρ0. Two nondimensional parameters are introduced by

δ = l2/L2 , ǫ = U0/L . (15)

Concerning the coefficients of Eqs (6), (7), we suppose thatI = ρ0l
2I∗ , C = l2C∗ whereI∗ is dimensionless andC∗

has the dimension of stress. It must be noted thatI is scaled againstρ0 so that the difference between the densities of the
macro- and microstructure is embedded inI∗.

We rewrite the system (6), (7) in its dimensionless form and apply the slaving principle: the variableϕ related to the
microstructure will be determined in terms ofU using a series representation. The ideas of such an approachare envisaged
by Whitham [1] and elaborated by Porubov [17], see also [18].

Two steps are needed for such a procedure. Firstly we consider that

ϕ = ϕ0 + δϕ1 + . . . , (16)

and secondly, we determineϕ from Eq. (7) in its dimensionless form

ϕ = −
ǫA

B
UX −

δ

B
((λ + 2µ)I∗ϕTT − C∗ϕXX) . (17)

Then it is possible to determine

ϕ0 = −
ǫA

B
UX , (18)

ϕ1 = ǫ
A

B2
((λ + 2µ)I∗UXTT − C∗UXXX) . (19)

Inserting (18), (19) into Eq. (6) in its dimensionless form,we get finally in terms of the macrodisplacementU the equation

UTT −

(
1 −

c2
A

c2
0

)
UXX =

c2
A

c2
B

(
UTT −

c2
1

c2
0

UXX

)

XX

. (20)

Herec2
1 = C/I, c2

A = A2/ρ0B, c2
B = BL2/I. A more close look to the velocities reveals thatc2

B includes the interaction
effects between macro- and microstructure. It is possible to establish that

c2
A

c2
B

= δI∗
A2

B2
. (21)
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2.4 Hierarchies

A more compact presentation of Eq. (20) together with expression (21) reads

UTT − k2
1UXX = δm1

(
UTT − p2

1 UXX

)
XX

, (22)

where

k2
1 = 1 −

c2
A

c2
0

, m1 = I∗
A2

B2
, p2

1 =
c2
1

c2
0

. (23)

Equation (22) involves two wave operators

Lma(U) = UTT − k2
1UXX , (24)

Lmi(U) = UTT − p2
1UXX . (25)

As far as they are weighted by the scale parameterδ with other parameters being of order ofO(1), the hierarchical
nature of wave propagation is clearly revealed. Ifδ is small, then waves are governed by the properties of macrostructure.
If, however,δ is large, then waves “feel” more the properties of microstructure. It is in full accordance with the wave
hierarchy principle described by Whitham [1]. As far as Eq. (22) involves the second derivative of the wave operator
Lmi(U), the microstructural effects are of the dispersive character governed by termsUTTXX andUXXXX . Both wave
operators (24) and (25) contrary to the initial idea of Whitham [1] are of the second order and involve the velocitiesk1 and
p1, respectively like in the standard wave equation (k2

1 andp2
1).

2.5 Hierarchies in Cosserat media

The mathematical models in this case include rotation of theinternal elements. Actually the Mindlin theory [8] includes
also rotation when the cells are assumed to be rigid. Maugin [19] has derived a simple Cosserat model from the lattice
model which has the form of a chain of dumbbells that exhibitsboth transverse displacementsV and rotationsψ. His
model (see [19], Eq. (4.55)) has the form:

ρ0Vtt − (µ + κ)Vxx − κψx = 0, (26)

jψtt − αψxx + κVx + κψ = 0, (27)

wherek is the stiffness of springs,α andκ are micropolar densities andj is the microinertia density. The lattice spacing is
a and particles have massM . Then

ρ0 = M/a3, j = I/a3, µ = k/a. (28)

The similarity of systems (6), (7) and (26), (27) is obvious.Introducing the dimensionless variables(U = V/V0, ψ is
dimensionless) and parameters like in Section 2.3 and following the same idea of the slaving procedure, Eqs. (26) and (27)
yield

UTT − k̂2
1UXX = δm̂1

(
UTT − p̂2

1 UXX

)
XX

, (29)

where

k̂2
1 = 1 −

c2
1

c2
0

, p̂2
1 =

c2
2

c2
0

, m̂1 =
ǫL2

jc2
0

. (30)

and

c2
0 = (µ + κ)/ρ0, c2

1 = κ/ρ0, c2
2 = α/j. (31)

The resulting hierarchical equation (29) coincides with accuracy of coefficients with eq (22).
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3 Multiscale hierarchies

The results described in Sections 2.2–2.4 correspond to themicromorphic solid with one microstructure. It is possibleto
follow the similar approach when dealing with multiscale models. For example, Engelbrecht et al. [6] and Berezovski et
al. [20] have derived a model for a micromorphic solid if there are two scales of microstructure with scalesl1 andl2 and
second microstructure with a scalel2 ≪ l1 is embedded into the first microstructure with a scalel1. Such a situation is
sometimes called “a scale within another scale”. By introducing microdeformationϕ (as before) andψ (the microstructure
within ϕ, the governing equations following [6], [20] are:

ρ0utt − (λ + 2µ) uxx − A1ϕx = 0, (32)
I1 ϕtt − C1ϕxx + A1ux + B1ϕ − A2ψx = 0, (33)

I2 ψtt − C2ψxx + A2ϕx + B2ψ, (34)

whereI1, I2 are the corresponding microinertia,Ai, Ci, Bi, i = 1, 2 are coefficients (see Engelbrecht et al. [6]). Note
thatA1 expresses the coupling ofu andϕ while A2 expresses the coupling ofϕ andψ. In order to carry on scaling, the
dimensionless variablesU,X, T are introduced as before (see Eqs (14)) together with parameters

δ1 = l21/L
2 , δ2 = l22/L

2 . (35)

With scaling ofIi, Ci, i = 1, 2 like in Section 2.3 and using the series representation, we obtain the following governing
equation of motion in terms of macrodisplacementU (cf. Eq. (22)):

UTT − k2
11(A1)UXX = δ1m11

(
UTT − p2

11(A2) UXX

)
XX

+ δ2
2m12

(
UTT − p2

22UXX

)
XXXX

. (36)

wherek11, p11, p22 are the corresponding velocities andm11,m12 reflect the coupling effects.
Now we have three are wave operators

Lma(U) = UTT − k2
11(A1)UXX , (37)

Lmi(1)(U) = UTT − p2
11(A2)UXX , (38)

Lmi(2)(U) = UTT − p2
22UXX , (39)

which are scaled byδ1 andδ2. In this way the operators describe the wave motion over manyscales and the influence of
each of them is regulated byδ1 andδ2.

4 Hierarchies in the presence of nonlinearities

The mathematical models of micromorphic media (Engelbrecht et al. [6] permit also to account for nonlinear effects both
at macro- and microlevel [21]. In this case, dealing with a single scale, free energy function (4) must be replaced by

W =
1

2
(λ + 2µ)u2

x + Aϕux +
1

2
Bϕ2 +

1

2
Cϕ2

x +
1

6
Nu3

x +
1

6
Mϕ3

x , (40)

whereN andM are the additional nonlinear parameters (cf. also Pastroneand Engelbrecht, [22]). Then the corresponding
system of governing equation is

ρ0utt − (λ + 2µ)uxx − Nuxx − Aϕx = 0, (41)

I ϕtt − Cϕxx − Mϕxϕxx + Aux + Bϕ = 0. (42)

Following the procedure described above, this system yields

UTT −

(
1 −

c2
A

c2
0

)
UXX −

1

2
q1

(
U2

X

)
X

=
c2
A

c2
B

(
UTT −

c2
1

c2
0

UXX

)

XX

−
1

2
q2

(
U2

XX

)
XX

, (43)

whereq1 = Nǫ/(λ + 2µ), q2 = δ3/2
(
A3M∗ǫ

)
/(λ + 2µ)B3, M = M∗l3 . Clearly, Eq. (43) permits to distinguish two

wave operators

Lma(U) = UTT − k2
1UXX −

q1

2
(U2

X)X , (44)

Lmi(U) = UTT − p2
1UXX −

q3

2
δ1/2(U2

XX). (45)

Hereq3 = q2c
2
B/c2

A. In this case Eq. (43) may lead to solitary waves due to the balance of dispersion and nonlinearity/ies
[23].
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5 Hierarchies in elastic ferroelectrics

In ferroelectrics the elastic displacements are coupled with the rotation of dipoles. The corresponding mathematicalmodel
is derived by Maugin [19] (see also the analysis in [24]):

utt − c2
Luxx = αL(cos φ)x , (46)

vtt − c2
T vxx = −αT (sin φ)x , (47)

φtt − φxx − χ sin φ = αLux sinφ + αT vx cos φ , (48)

expressed in dimensionless space – time coordinates. Hereu andv are longitudinal and transverse displacements and
φ = 2θ̂ is twice of the true anglêθ of rotation of dipoles. The constantsαL andαT are piesoelectric coefficients,χ is the
electric susceptibility andcL, cT are acoustic speeds. If the system is linearized aboutφ = φ0 = 0 then the longitudinal
and transverse displacements are decoupled and Eqs. (47) , (48) yield

utt − c2
T vxx = −αT φx , (49)

φtt − φxx − χφ = αT vx . (50)

The similarity with system (6), (7) is obvious. We supposeαT ∼ ϑ(ǫ) andχ ∼ ϑ(1). Thenφx in the first approximation is

φ0
x ∼

αT

χ
vxx (51)

and in the next

φ1
x ∼

1

χ
(φtt − φxx)x =

αT

χ2
(vtt − vxx)xx . (52)

Then it is easy to derive

vtt −

(
c2
T −

α2
T

χ

)
vxx −

αT

χ2
(vtt − vxx)xx = 0, (53)

which is again a hierarchical equation with the operators

Lma(v) = vtt −

(
c2
T −

α2
T

χ

)
vxx , (54)

Lmi(v) = vtt − vxx (55)

and the strength of the second operator is governed byαT . Note that like in the case of the micromorphic model (Section
2.4) the influence of the microstructure (dipoles) is already in the main wave operator (54) (cfk2

1 = 1 − c2
A/c2

0 and
c2
T − α2

T /χ).

6 Hierarchies in thermoelasticity

Classical models of thermoelasticity are of the parabolic type [25] and govern the diffusive process. The modified theories
include also the thermal relaxation timeτ0 and then the resulting models are hyperbolic. The question whether it is possible
to derive also hierarchical models of thermoelastic wave propagation. Engelbrecht [26] has shown that accounting ofτ0 is
important for high-frequency processes. Thermoelasticity viewed as wave hierarchies is studied by Scott [7] and here we
represent his results in the format used in previous sections.

In order to compare the results with those described above, we use 1D setting. Then the governing equations in case of
τ0 = 0 [7] in terms of displacement U and temperatureθ are:

ρ0utt − (λ + 2µ)uxx + κθx = 0 , (56)

ρ0cEθt − k0θxx + T0κuxt = 0 , (57)

whereκ = (3λ + 2µ)αT , T0 is the reference temperature,cE - the specific heat,k0 – the conductivity coefficient andαT

– the thermal expansion coefficient. In terms of temperatureθ, Scott [7] has derived

ǫ2
(
θtt − c2

kθxx

)
+ (θt + δθx) = 0 , (58)
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wherec2
k = k0(ρ0cEǫ2). From Eq (58) forǫ → 0, δ → 0, the uncoupled equation

k0θxx − ρ0cEθt = 0 , (59)

follows. Here the wave operators are

L1 = θt + δθx , (60)

L2 = θtt − c2
kθxx . (61)

OperatorL1 is of the first order and operatorL2 is of the second order. In case ofτ0 6= 0, the governing system for an
isotropic material is

ρ0utt − (λ + 2µ)uxx + κθx = 0 , (62)

ρ0cEθt + τ0ρ0cEθtt − k0θxx + T0κuxt + τ0T0κuxtt . (63)

In this case the hierarchical system is rather complicated [7]:

τ0(∂
2
t − c2

1∂
2
x)(θtt − c2

2θxx) + (θtt − c2
3θxx)t = 0 , (64)

wherec1, c2, c3 are velocities. Note that here all the operators are of the second order.

7 One-wave hierarchies

The basic idea on hierarchies of waves introduced by Whitham [1] is related to operators of the first order. Here the models
described above involve the full second-order wave operators and enlarge the concept of such hierarchical operators. As a
matter of fact, any second-order operator describes two waves – one moving to the right, another to the left. However, the
different scaling procedures may be used in order to derive first the evolution equations for unidirectional wave motion.The
celebrated Korteweg-de Vries (KdV) equation derived by Korteweg and de Vries [27] is the best example from this class
of equations. Nowadays the methods for deriving such evolution equations are widely known, see for example, Taniuti
and Nishihara [28] and Engelbrecht [26]. If the evolution equations are first derived then as a result of proper scaling, the
hierarchies can be constructed where every operator is of the first order.

Oliveri [3] has derived such a hierarchy for nonlinear wavesin bubbly liquids. In this case the evolution equation reads

uτ + uuξ + γαuξξ + δαuξξξ + γβ (uτ + uuξ)ξ +

+δβ (uτ + uuξ)ξξ = 0 , (65)

whereτ, ξ is a moving frame as usually taken for evolution equations and α, β, γ, δ are constants [3]. Ifβ → 0 then the
classical Korteweg-de Vries-Burgers equation is recovered. In a general case the governing model is constituted by the
hierarchy of nonlinear one-wave operators(uτ + uuξ).

Another interesting case is described by Giovine and Oliveri [4] for waves in dilatant granular materials. Here the
evolution equation takes the form

uτ + uuξ + α1uξξξ + β (uτ + uuξ + α2uξξξ)ξξ = 0, (66)

whereα1 andα2 are the dispersion parameters andβ involves the ratio of the grain size and the wavelength. Equation (66)
like Eq. (65) above is written in a moving frameτ, ξ. Here the model involves two Korteweg-de Vries (KdV) operators –
one for motion in the macrostructure, another – in the microstructure whileβ regulates the weight of two operators. The
parameterβ depends on the ratio of kinetic and potential energies and can be either positive or negative. The consistent
analysis of solutions to Eq. (66) is presented by Ilison and Salupere [29].

8 Discussion

It has been shown above that in modelling of wave motion in complex media with internal scales, the hierarchical governing
equations involve several wave operators. While the initialidea of Whitham [1] is based on the first order (one-wave)
operators, here the 1D problems involve the second order operatorsL(U) =

(
∂2/∂t2 + c2∂2/∂X2

)
U and their derivatives

with respect to space coordinateX. One of the crucial problems in this context is the stabilityanalysis. For Eq. (22) the
analysis of the corresponding dispersion relation demonstrates the stability of the solution in case of given initial and
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boundary conditions (10) – (13) for the initial system (6), (7) – see Berezovski et al. [20]. In a general case, the stability
analysis needs a special attention.

Hierarchies derived in Sections 2 – 8 are based on weakly nonlocal theories of mechanically structured (micromorphic)
or physically structured (ferroelectric) materials. These hierarchies model the behaviour of 1D longitudinal waves either in
microstructured media (internal field is either microdeformation or microrotation) or in media with other fields (electrical or
thermal fields) in action. Characteristically to all these cases, the velocities of hierarchical operators are different from those
of initial systems. This shows that the coupling of fields is not only important in modelling of dispersion but influences
also the leading velocity of propagation in the macrostructure. This phenomenon is demonstrated also by direct numerical
analysis [10]. However, it must be noted that the hierarchical equations are derived by using an asymptotic procedure
(Section 2.3) and are correct with a certain accuracy which depends on values of physical parameters. This problem is in
detail analysed by Peets et al. [30] for the case of the Mindlin model, i.e. of system (6), (7) and Eq. (22) by making use of
the dispersion analysis and by Tamm and Salupere [31] by making use of numerical experiments.

The structure of the hierarchical equations includes the wave operator for the macrostructure followed by another opera-
tor (or operators) describing the microstructure. As a rule, this operator is included in the form of its second order derivative
with respect toX. In this way, the most interesting cases when both operatorsare in force, the derivatives likeUTTXX

andUXXXX appear. If nonlinearity in the macroscale is included like operator (44) then the result is of the Boussinesq
type [32], [33]. However, for the Maxwell-Rayleigh model incase of anomalous dispersion, the second wave operator is
included in the form of its second derivative with respect toT (see Maugin [34]). Then the higher order terms areUTTTT

andUXXTT .
Some special cases should be mentioned within the general framework of hierarchies. The effect of nonlinearities

is reflected by corresponding operators like in Section 4 forboth macro- and microstructures. It is possible, however,
that nonlinearity is considered only at one level like demonstrated by Engelbrecht and Pastrone [22] who studied the
microstructured solids with nonlinearities in microscale. It is also possible that hierarchies are described by wave operators
of different order like in Section 6 for thermoelasticity which actually combines the diffusive effects with wave propagation.

Most cases described above involve asymptotic analysis fordistinguishing the separation of scales. It is also possible to
separate waves that in 1D case means instead of two waves propagating to the left and right to follow just one wave. This
needs a different asymptotic analysis like presented in detail by Taniuti and Nishihara [28] and Engelbrecht [26]. Suchan
approach is used by Oliveri [3] and Giovine and Oliveri [4] resulting in hierarchies of operators where the leading term is
of the first order. Here the operators describing microstructural effects enter also into the governing equation in the form of
their derivatives but characteristic to evolution equations, with respect to moving coordinateξ.

Like Whitham’s original idea, the hierarchical equations derived by a scaling procedure permit to understand the wave
motion in the microstructured materials and dispersion effects in a transparent way. We are tempted to paraphrase Salençon
[35] who actually analysed the virtues of the principle of virtual power: the clarity of hierarchical equations helps a better
understanding of the constructed models.
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