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The concept of wave hierarchies in the Whitham’s sense is generalizg@draochies of second order wave operators.
Based on Mindlin’s model of microstructured solids, the scaling praeedwescribed and the corresponding hierarchical
equation derived which includes two wave operators. It is shown thegsvia the Cosserat’ medium are described by a
similar hierarchical equation. These results are generalized to a multtssdga scale within a scale) and to nonlinear
media. It is shown also how to construct hierarchies for waves in el&stiodlectrics. The results obtained by Scott for

hierarchies in thermoelasticity are presented in the similar frameworkllyitiee cases with first order wave operators

are described.
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1 Introduction

Solids are interpreted in classical theories as homogeneadia although we know that there are many scales in solids
starting from scales of their crystal structure to scalesatteristic in structural mechanics. In many practicaliaptions
(statics, slow dynamical loading) the assumption of theemi@thomogeneity works well. However, the wave motion in
solids should always take scales against wavelengthsi@regies) into account. As attempting as it sounds, it is sajixbe

to construct an overwhelming theory of wave motion over tla@yrscales. Nevertheless, all the theories which are more or
less satisfactory at certain scales must form a whole withesareas of usage overlapping and some areas not overlapping

Intuitively it is clear that scales form a certain hierarédhym smaller to larger. This idea is used by Whitham [1] who
formulated the principles of wave hierarchies. If it is gbksto determine wave operators which govern the wave matio
a certain scale then by using a proper scaling it is posgitdenstruct mathematical models which involve many wave ope
rators together with scaling parameters. Beside genegakidn hierarchies, Whitham [1] has analysed respectivelmode
of traffic flows and bores in channels and rivers. In mathesabterms, the one-wave operatdrs= 9/0t + a;0/0x have
been used. Note that every operator has its own velegitRecently the interest to hierarchies of waves has beeeased
because the problems of wave motion in fluidized bed [2], ibbby liquids [3], in granular media [4], in oceans [5], in
microstructured solids [6], in thermoelasticity [7], etc.

In this paper an attempt is presented to generalize thesks@#o a systematic description of wave hierarchies wher
the proper scaling plays an important role. Our generalri#gm is based on the Mindlin-type theory of microstruet
solids which after the seminal Mindlin’s paper [8] has rabegot more attention because of wide interest to conteiyor
materials [9]- [13]. As a result, an efficient conceptual isalescribed to construct the backbone of governing equosti
for wave motion in materials with internal structures.

The paper is organized as follows. In Section 2 the basic imaidbe micromorphic continua is briefly described in a
general form and then governing equations are presenteel éfplaining the scaling procedure, the hierarchicabéqo
is derived and analysed. This result is then generalize@a@i@ 3 to a multiscale case. The hierarchies in the preseinc
nonlinearities are demonstrated in Section 4. Furtherrtfieence of other fields is studied. First in Section 5 for tidas
ferroelectrics and second, in Section 6 for thermoeldgtigihen in Section 7 a brief summary is presented for hidiasc
of evolution (one-wave) equations. Finally, in Section & tliscussion and final remarks are given.
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2 Basic model — microstructured material

2.1 Theoretical considerations

The continuum approach for microstructured solids is elateal by incorporating the intrinsic microstructural efteinto
governing equations (Mindlin, [8]; Eringen and Suhubi,])14Leaving aside the regular structures, we focus here on
irregular microstructures like polycrystalline solidsfanctionally graded materials. A leading concept is to safeathe
macro- and microstructure (or microstructures) and to toate the balance laws for both structures separately [8htiAer
possibility is to introduce the microstructural quanstiato one set of balance laws [15] which gives an explicitdpson
of interaction forces between macro- and microstructumdlowing Maugin [15], the balance of the canonical (matgria
momentum on the material manifalg(® reads

oP

a o DiVRb — fint + fext + finh' (1)
X

The corresponding dissipation inequality is
S0+S-Vgh < hi™ + Vi5(IK). 2)

Here the following notation is used is the material momentum (pseudomomentulm)s the material Eshelby stress,
finh - fext fint are the material inhomogeneity force, the material esefipody) force and the material internal force,
respectively;S is the entropy density per unit reference voluriés the entropy fluxd is the absolute temperaturet —
the source term (if any) arll — the extra entropy flux (if any).

The next step is to determine the function of free enéfgyhich in general terms may be formulated as

W =W (F,0,0,Vre,...), ©)

whereF is the deformation gradient and denotes microdeformation according to Mindlin [8] or théeimal variable
according to Berezovski et al. [16]. Then it is possible ttedmine stress tensdr and forces in balance law (1), while
the governing equation for the internal variakddés determined by satisfying dissipation inequality (2).rélere omit the
details (see, for example, [16]) and focus further on the éffirgy.

2.2 Governing equations

Based on principles briefly described in Section 2.1: onarixa law for the canonical momentum plus the dissipation
inequality, the governing equations for wave motion aréledsrived. As far as our main aim is to focus on scaling, we
restrict here ourselves to the linear case and fiakeconst, i.e. we deal with a pure elastic case. The free energtibn

W is then the following:

1 1 1
W= (A+2p) uZ + Apu, + 5B<p2 + 50@3, (4)
whereuw is the macrodisplacemeng,is the microdeformation (or the internal variable — seei8e@.1), A\ andy are the

Lamé parameters and A, B, C are additional material paraméterg and further, the indices denote partial differergrati
Bearing in mind that the kinetic enerdy in this simple case is

1 1
K= 5/’0“? + 5190?» %)

where pg is the macrodensity andl - the microinertia. it is possible to derive the governingi@ipns (for details, see
[10], [16]):

potsr — (A + 20)Uze — Apy = 0, (6)

There are two wave operators in the model:
Lma(u) = poUtt — ()‘ + 2/’6)uw17 (8)

Lmi(@) =1 Pttt — C(pa::r (9)
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Suppose the initial and boundary conditions are given

w(z,t =0) = uy(z,t =0) =0, (10)
u(z = 0,t) = f(t), (11)
o(x,t=0)=0, (12)
lim u(z,t) = lim (1) =0. (13)

The wave operators are coupled in caseZ 0 which is of our primary interest. The question is which of thave
operators prevails or are they competing with each otheravewnotion generated by (10) — (13). In order to answer this
question we have to find a suitable scaling procedure.

2.3 Scaling procedure

On the one side, a characteristic scale of the microstrei§tbe size of an element) must be known, let us denote it by
On the other side, let the excitation be characterized bgnitplitudel, and wavelengtil.. The dimensionless variables
are then introduced by

U=ulUy , X=z/L , T=cit/L, (14)
wherec? = (X + 2u)/ po. Two nondimensional parameters are introduced by
= , €=Up .
§=1?/1? Uo/L 15

Concerning the coefficients of Eqgs (6), (7), we suppose khat pyl2I*, C' = [2C* whereI* is dimensionless and™
has the dimension of stress. It must be noted thatscaled againsgi, so that the difference between the densities of the
macro- and microstructure is embeddedin

We rewrite the system (6), (7) in its dimensionless form applyathe slaving principle: the variable related to the
microstructure will be determined in terms@fusing a series representation. The ideas of such an approaehvisaged
by Whitham [1] and elaborated by Porubov [17], see also [18].

Two steps are needed for such a procedure. Firstly we cartbiale

p=@o+dp1+ ..., (16)
and secondly, we determigefrom Eq. (7) in its dimensionless form

A 5
p = *%Ux*E((/\+2u)1*<pTT*C*<PXX)~ )

Then it is possible to determine

€A

$o = —§UX ) (18)
A * *

P1= €5 (A +2u)"Uxrr —C*Uxxx) - (19)

Inserting (18), (19) into Eq. (6) in its dimensionless fomg get finally in terms of the macrodisplaceménthe equation
02 02 62
Urr — (1 - ’3) Uxx = TA (UTT - % UXX) . (20)
i) ‘B € XX

Herec? = C/I, ¢% = A?/poB, ¢4 = BL?/I. Amore close look to the velocities reveals thtincludes the interaction
effects between macro- and microstructure. It is possibésstablish that

2 2
[ R
2 =0I" 55 - (21)
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2.4 Hierarchies

A more compact presentation of Eq. (20) together with exgloes(21) reads

Urr — kKUxx = 6m1 (Urr —pT Uxx) x x » (22)
where
2 2 2
2 _ Ca _ 2_ O

Equation (22) involves two wave operators

Lina(U) = Urr — kiUx x, (24)

Lii(U) = Urr — piUxx. (25)

As far as they are weighted by the scale paramétwith other parameters being of order ©f1), the hierarchical
nature of wave propagation is clearly revealedi i§ small, then waves are governed by the properties of miaaobsre.
If, however, ¢ is large, then waves “feel” more the properties of micradnee. It is in full accordance with the wave
hierarchy principle described by Whitham [1]. As far as Eg2)(Rwolves the second derivative of the wave operator
L,,;(U), the microstructural effects are of the dispersive charagbverned by term8rxx andUx xx x. Both wave
operators (24) and (25) contrary to the initial idea of Whithd] are of the second order and involve the velocitiesind
p1, respectively like in the standard wave equatibhgndp?).

2.5 Hierarchies in Cosserat media

The mathematical models in this case include rotation ofriternal elements. Actually the Mindlin theory [8] inclule
also rotation when the cells are assumed to be rigid. Mauphas derived a simple Cosserat model from the lattice
model which has the form of a chain of dumbbells that exhibath transverse displacemenfsand rotationg). His
model (see [19], Eq. (4.55)) has the form:

POVvtt - (p, + H)me - Hﬂjm - 07 (26)

jwtt - a’(/):vw +kVe + "VL/} =0, (27)

wherek is the stiffness of springsy andx are micropolar densities ands the microinertia density. The lattice spacing is
a and particles have madg. Then

pOZM/a37 j:I/GS, :U/:k/a’ (28)
The similarity of systems (6), (7) and (26), (27) is obvioustroducing the dimensionless variablgs = V/Vj, v is

dimensionless) and parameters like in Section 2.3 andaoilpthe same idea of the slaving procedure, Egs. (26) and (27
yield

Urr — k{Uxx = &1 (Urr — 53 Uxx) ¢ i - (29)
where
A 2 2 2
219 22 5 30
1 Cg y P1 Cg , T ]C% ( )
and
= (n+r)/po, ¢t =r/po, c3=alj. (31)

The resulting hierarchical equation (29) coincides witbuaacy of coefficients with eq (22).
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3 Multiscale hierarchies

The results described in Sections 2.2—-2.4 correspond toitremorphic solid with one microstructure. It is possilibe
follow the similar approach when dealing with multiscaledalts. For example, Engelbrecht et al. [6] and Berezovski et
al. [20] have derived a model for a micromorphic solid if thare two scales of microstructure with scaleandl, and
second microstructure with a scdle< [; is embedded into the first microstructure with a sdaleSuch a situation is
sometimes called “a scale within another scale”. By intadg microdeformatiornp (as before) and (the microstructure
within ¢, the governing equations following [6], [20] are:

potir — (A 4 2) Ugy — A1z = 0, (32)
I orp — Crpen + Aty + Bip — Agtp, =0, (33)
12 wtt - 0211%1 + AZQDz + 321/1, (34)

where I, I, are the corresponding microinertid,, C;, B;,© = 1,2 are coefficients (see Engelbrecht et al. [6]). Note
that A; expresses the coupling efand while A, expresses the coupling gfand«. In order to carry on scaling, the
dimensionless variabld$, X, T" are introduced as before (see Eqs (14)) together with paeasne

S =1L, 6, =13/L7 . (35)

With scaling of/;, C;, i = 1,2 like in Section 2.3 and using the series representation bisgrothe following governing
equation of motion in terms of macrodisplacem&nfcf. Eq. (22)):

Urr — k1 (A)Uxx = dimar (Urr — pti(A2) Uxx) g + 83maz (Urr = p3Uxx) v xxx - (36)

wherek11, p11, p22 are the corresponding velocities amd; , m 1, reflect the coupling effects.
Now we have three are wave operators

Lma(U) = UTT - k%l (Al)UXX7 (37)
Lumiy(U) = Urr — p1,(A2)Uxx, (38)
Luni2)(U) = Urr — p3Ux x, (39)

which are scaled by, andd,. In this way the operators describe the wave motion over nsaales and the influence of
each of them is regulated by andd,.

4 Hierarchies in the presence of nonlinearities

The mathematical models of micromorphic media (Engeltrethl. [6] permit also to account for nonlinear effects both
at macro- and microlevel [21]. In this case, dealing withregke scale, free energy function (4) must be replaced by

1 1 1 1 1
W = §(>\ + 2u)u2 + Apu, + §B<p2 + 504,05 + éNui + 6M<pi , (40)

whereN andM are the additional nonlinear parameters (cf. also Pasandd=ngelbrecht, [22]). Then the corresponding
system of governing equation is

pottt — (A + 20)Ugy — Nty — Ap, =0, (41)
1oy —Cory — Mpypre + Aug + Bp = 0. (42)
Following the procedure described above, this systemyield
c? 1 c? c? 1
Urr — (1 - Cg) Uxx — SN (U%) = CTA (UTT - c% UXX) 5 (U%x) xx (43)
0 B 0 XX

whereq; = Ne/(A+2p), g2 = 6%/2 (A3M*e) /(A +2u)B3, M = M*13. Clearly, Eq. (43) permits to distinguish two
wave operators

Luna(U) = Upr — K2Uxx — %(Uf()x, (44)
Lni(U) = Upr — piUxx — %351/2((])2@)- (45)

Heregqs = qa2c%/c%. Inthis case Eq. (43) may lead to solitary waves due to thenisal of dispersion and nonlinearity/ies
[23].
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5 Hierarchies in elastic ferroelectrics

In ferroelectrics the elastic displacements are couplek tlie rotation of dipoles. The corresponding mathematizadel
is derived by Maugin [19] (see also the analysis in [24]):

Upp — c%um =ar(cosd), , (46)
Vgt — c%vm = —ar(sing), , 47)
GOtt — Pre — X SIN QG = QLU SIN @ + a7V, COS P (48)

expressed in dimensionless space — time coordinates. dHarelv are longitudinal and transverse displacements and
¢ = 20 is twice of the true anglé of rotation of dipoles. The constanig, anda are piesoelectric coefficientg,is the
electric susceptibility andy,, cr are acoustic speeds. If the system is linearized aboutgp, = 0 then the longitudinal
and transverse displacements are decoupled and Eqgs. 48))yi€ld

Ut — C%U;cm =—ar¢, , (49)
¢tt - ¢maz - X¢ = a7z . (50)
The similarity with system (6), (7) is obvious. We suppose~ 9¥(¢) andy ~ 9(1). Theng, in the first approximation is
X
and in the next

(0%
2

oL ~ i (61t = ds), = 8 (e = Vi) (52)

Then it is easy to derive
2
2 Q7 ar _
Uit — (CT - X) Vgpx — F (Utt - Um)m =0, (53)
which is again a hierarchical equation with the operators

OL2
Lma(v) = Vit — (C%‘ - XT> Vgx 5 (54)

Lmi(v) = Vit — Uz (55)
and the strength of the second operator is governed;byNote that like in the case of the micromorphic model (Sectio
2.4) the influence of the microstructure (dipoles) is alyeadthe main wave operator (54) (& = 1 — ¢%/c3 and

2 2
cp — ap/X).

6 Hierarchies in thermoelasticity

Classical models of thermoelasticity are of the parabgfe{25] and govern the diffusive process. The modified tiesor
include also the thermal relaxation timgand then the resulting models are hyperbolic. The questiwthver it is possible
to derive also hierarchical models of thermoelastic waepagation. Engelbrecht [26] has shown that accounting ¢f
important for high-frequency processes. Thermoelagticgéwed as wave hierarchies is studied by Scott [7] and here w
represent his results in the format used in previous sextion

In order to compare the results with those described aboseise 1D setting. Then the governing equations in case of
70 = 0 [7] in terms of displacement U and temperattrare:

potiet — (N + 2p) Uy + Kb, =0, (56)

POCEHt — koOyz + Tokug =0 ) (57)

wherex = (3X + 2u)ar, Tp is the reference temperaturg; - the specific heaty, — the conductivity coefficient andr
— the thermal expansion coefficient. In terms of temperaty&cott [7] has derived

62 (6‘“ — Cieraj) + (9,5 + 591) =0 s (58)
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wherec? = ko(pocge?). From Eq (58) for — 0, § — 0, the uncoupled equation

kobrz — poceby =0, (59)
follows. Here the wave operators are

Ly =0, + 60, , (60)

L2 = Htt — ci@m . (61)

OperatorL, is of the first order and operatdr, is of the second order. In case af # 0, the governing system for an
isotropic material is

pottr — (A + 20) Uy + KO, =0 | (62)

pocels + Topoceli — kolpe + Tokue: + ToToR UL - (63)

In this case the hierarchical system is rather complicatgd [
7'O(atz - C%aﬁ)(ott - Cgomac) + (att - C?’,a-rx)t =0, (64)

wherecy, ¢, c3 are velocities. Note that here all the operators are of thergtorder.

7 One-wave hierarchies

The basic idea on hierarchies of waves introduced by WhitHams felated to operators of the first order. Here the models
described above involve the full second-order wave opesatod enlarge the concept of such hierarchical operat@s A
matter of fact, any second-order operator describes tw@svawone moving to the right, another to the left. However, the
different scaling procedures may be used in order to derisetfie evolution equations for unidirectional wave mofidre
celebrated Korteweg-de Vries (KdV) equation derived bytBeeg and de Vries [27] is the best example from this class
of equations. Nowadays the methods for deriving such elemgquations are widely known, see for example, Taniuti
and Nishihara [28] and Engelbrecht [26]. If the evolutiomatipns are first derived then as a result of proper scalirgy, t
hierarchies can be constructed where every operator i€dirdt order.

Oliveri [3] has derived such a hierarchy for nonlinear waivelsubbly liquids. In this case the evolution equation reads

Ur + utg + Youge + daueee + 70 (ur + uug), +
+08 (ur +uug)e =0, (65)

wherer, £ is a moving frame as usually taken for evolution equatiors@rg, v, § are constants [3]. I8 — 0 then the
classical Korteweg-de Vries-Burgers equation is recalieta a general case the governing model is constituted by the
hierarchy of nonlinear one-wave operatous + wuy).

Another interesting case is described by Giovine and Qlidrfor waves in dilatant granular materials. Here the
evolution equation takes the form

Ur + utg + onugee + B8 (ur + uue + azueee) e = 0, (66)

wherea; andas are the dispersion parameters ghitivolves the ratio of the grain size and the wavelength. Eqnd66)
like Eq. (65) above is written in a moving frame¢. Here the model involves two Korteweg-de Vries (KdV) operat-
one for motion in the macrostructure, another — in the micoasure whiles regulates the weight of two operators. The
parameters depends on the ratio of kinetic and potential energies andeaeither positive or negative. The consistent
analysis of solutions to Eq. (66) is presented by llison aald@ere [29].

8 Discussion

It has been shown above that in modelling of wave motion inglersnmedia with internal scales, the hierarchical govegnin
equations involve several wave operators. While the initleh of Whitham [1] is based on the first order (one-wave)
operators, here the 1D problems involve the second ordeatspeL (U) = (9% /0t? + ¢*9*/0X?) U and their derivatives
with respect to space coordinake One of the crucial problems in this context is the stab#ibalysis. For Eq. (22) the
analysis of the corresponding dispersion relation dematest the stability of the solution in case of given initialda
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boundary conditions (10) — (13) for the initial system (&) € see Berezovski et al. [20]. In a general case, the diabili
analysis needs a special attention.

Hierarchies derived in Sections 2 — 8 are based on weaklynahtheories of mechanically structured (micromorphic)
or physically structured (ferroelectric) materials. Téégerarchies model the behaviour of 1D longitudinal wavdseein
microstructured media (internal field is either microdeifation or microrotation) or in media with other fields (ehel or
thermal fields) in action. Characteristically to all theases, the velocities of hierarchical operators are diftfrem those
of initial systems. This shows that the coupling of fields @ anly important in modelling of dispersion but influences
also the leading velocity of propagation in the macrostmect This phenomenon is demonstrated also by direct nualeric
analysis [10]. However, it must be noted that the hieraahégjuations are derived by using an asymptotic procedure
(Section 2.3) and are correct with a certain accuracy whégedds on values of physical parameters. This problem is in
detail analysed by Peets et al. [30] for the case of the Minailodel, i.e. of system (6), (7) and Eq. (22) by making use of
the dispersion analysis and by Tamm and Salupere [31] byngalde of numerical experiments.

The structure of the hierarchical equations includes theeveperator for the macrostructure followed by another aper
tor (or operators) describing the microstructure. As a,ithlis operator is included in the form of its second ordeivdgive
with respect taX. In this way, the most interesting cases when both operaterin force, the derivatives likErrx x
andUx x xx appear. If nonlinearity in the macroscale is included likemtor (44) then the result is of the Boussinesq
type [32], [33]. However, for the Maxwell-Rayleigh modeléase of anomalous dispersion, the second wave operator is
included in the form of its second derivative with respecT’t(see Maugin [34]). Then the higher order terms &ge 1
andUXXTT.

Some special cases should be mentioned within the genarakfork of hierarchies. The effect of nonlinearities
is reflected by corresponding operators like in Section 4bfath macro- and microstructures. It is possible, however,
that nonlinearity is considered only at one level like desimated by Engelbrecht and Pastrone [22] who studied the
microstructured solids with nonlinearities in microscdtés also possible that hierarchies are described by wpeeabors
of different order like in Section 6 for thermoelasticity iwh actually combines the diffusive effects with wave prog@on.

Most cases described above involve asymptotic analysiigtinguishing the separation of scales. It is also posgibl
separate waves that in 1D case means instead of two waveagaitom to the left and right to follow just one wave. This
needs a different asymptotic analysis like presented iaild®¢ Taniuti and Nishihara [28] and Engelbrecht [26]. Sach
approach is used by Oliveri [3] and Giovine and Oliveri [43uking in hierarchies of operators where the leading term i
of the first order. Here the operators describing microstmat effects enter also into the governing equation in tmenfof
their derivatives but characteristic to evolution equagiovith respect to moving coordinage

Like Whitham'’s original idea, the hierarchical equationsidid by a scaling procedure permit to understand the wave
motion in the microstructured materials and dispersioea#in a transparent way. We are tempted to paraphrase;8alen
[35] who actually analysed the virtues of the principle atwal power: the clarity of hierarchical equations helpstdr
understanding of the constructed models.
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