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Abstract Prediction of the thermoelastic behavior of microstructured mate-
rials suggests a more general description of thermal processes in addition to the
generalized continuum description extending the conventional continuum me-
chanics for incorporating intrinsic microstructural effects. Double dual internal
variables are introduced in order to couple inertial microstructural effects like
microdeformation and diffusive microstructural effects like microtemperature.
The full coupled system of governing equations provides a complete extension
of the classical thermoelasticity theory onto the case of microstructured solids.
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1 Introduction

Thermoelasticity is a well-known example of coupled phenomena. The classi-
cal thermoelastic theory combines the elastic behavior of homogeneous body
with heat conduction governed by Fourier’s law [1–3, e.g.]. For more realistic
microstructured solids, the influence of a microstructure should be taken into
account both for the elastic deformation and for the temperature distribution.

The difference between elastic deformation and heat conduction is that the
former is a conservative process without dissipation whereas the latter is al-
ways a dissipative one. The theoretical description of elasticity in bodies with
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microstructure is known from 1960ties [4, 5]. At the same time, generalizations
of the description of heat conduction are aimed in a non-Fourier hyperbolic
heat propagation in homogeneous bodies [6–10, e.g.]. Only few papers are de-
voted to thermoelasticity of microstructured solids [11, 12] excluding formal
exploitations of the Grot assumption [13] who introduces the microtempera-
ture as a vectorial quantity.

Among theories of higher order generalized continua, the most developed is
the description of micromorphic media [14, e.g.]. This approach is even bridged
to atomistic representation of continuum mechanics [15, 16], but it is very
complicated to be used in practice due to a large amount of unknown mate-
rial parameters. Instead, effective media or homogenization technique [17–21,
e.g.] is used commonly. Similar methods are applied to heat conduction in
microstructured solids [22–24]. Unfortunately, homogenization methods, well
elaborated for statics and/or for periodic composites, are not similarly suitable
for wave propagation problems [25]. It is worth, therefore, look at alternative
approaches.

The introduction of a microdeformation in the consideration [4, 5] means
that the corresponding theory is a multi-field one [26]. The size of elements of a
microstructure is characterized by a scale which is definitely much less than the
macroscale of a specimen. Therefore, the corresponding theory is a multi-scale
one by definition. The main difficulty in the multi-field and multi-scale theory
is the formulation or derivation of balance equations at the microscale [26, 27].
A constructive solution of such a problem can be found in the internal variables
approach [28–30, e.g.]. However, the classical theory of internal variables is
concerned with dissipative processes [28, 29].

The uniform treatment of the internal variable theory in case of dissipative
and non-dissipative processes is achieved by means of the dual internal variable
theory [31]. This theory is successfully applied for the description of dispersion
effects in wave propagation in elastic solids [32–34] and of dissipation effects
due to microstructure in thermoelastic solids [35, 36]. In the latter case, the dis-
sipation is associated with microtemperature, i.e. fluctuations of temperature
due to the difference of thermal characteristics of the macro- and microstruc-
ture in a solid [37, 38]. The dual internal variable theory provides a novel ap-
proach to generalized mechanics [33, 39]. Compared to the classical approaches
based on variational principles [4] or homogenization [5] it has several advan-
tages. Here evolution equations for variables describing the microstructure are
direct consequences of the second law without any further assumptions. There
is not need to postulate the balance structure [40] neither a variational prin-
ciple for the internal variables [29]. Moreover, the Euler-Lagrange form of the
evolution equations can be derived in the non-dissipative limit [41], therefore,
the usually problematic connection of variational principles and dissipative dif-
ferential equations [42–44] is clear and straightforward with the help of dual
internal variables. When compared to homogenization methods (see e.g. [5],
or [45]) we want to emphasize that the structure of dissipative terms sug-
gested by our direct thermodynamic derivation and by the homogenization
procedure may be completely different [39]. In the previous treatments the
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influence of microdeformation and that of microtemperature were considered
separately. For the complete thermoelastic theory of microstructured solids,
we need to introduce dual internal variables both for microdeformation and
for microtemperature simultaneously. This results in a double dual internal
variable approach.

In this paper, the double dual internal variables approach is applied for
deriving a complete mathematical model of weakly nonlocal thermoelastic-
ity of microstructured solids. The one-dimensional case is chosen in order to
present the idea and the governing equations as simple as possible. In Section
2 the concepts of the classical linear thermoelasticity are briefly described in
order to create a basis for comparison. Section 3 is devoted to dual internal
variables and to their interpretation. The focal point of this paper is Sec-
tion 4 where the idea of double dual internal variables is used for deriving
the governing equations which describe effects of microdeformation and mi-
crotemperature simultaneously. Finally, in Section 5 the possible variations of
governing equations are given and the importance of the new full system of
governing equations is underlined.

2 Governing equations

Governing equations for linear thermoelasticity in the Piola-Kirchhoff and in
the material formulation are used in parallel. The balance of linear momentum
used as the equation of motion in practical computations is formulated in
the Piola-Kirchhoff framework, whereas the material framework provides the
transparent introduction of internal variables and their evolution equations.
For simplicity, no viscous effects included.

2.1 Piola-Kirchhoff formulation

In the Piola-Kirchhoff formulation, the one-dimensional motion of thermoelas-
tic conductors of heat with no body forces is governed by local balance laws
for linear momentum and energy

(ρ0v)t − σx = 0 (1)(
1

2
ρ0v

2 + E

)
t

− (σv −Q)x = 0 (2)

and by the second law of thermodynamics

St +

(
Q

θ
+ J

)
x

≥ 0 (3)

Here ρ0 is the matter density in the reference configuration, σ is the one-
dimensional stress, v is the particle velocity, Q is the heat flux, E is the internal
energy per unit volume, S is the entropy per unit volume, θ is temperature,
J is the extra entropy flux, subscripts denote derivatives. The extra entropy
flux is considered here in the sense of Maugin [46] (see also [47]).
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2.2 Material formulation

The canonical energy equation is derived from Eq. (2) by introducing the free
energy per unit volumeW := E−Sθ and taking into account balance of linear
momentum (1)

(Sθ)t +Qx = hint, hint := σεt −Wt (4)

where ε = ux is the one-dimensional strain measure, u is the displacement.
Multiplying Eq. (1) by ux we then check that Eq. (1) yields the following

canonical balance of material momentum (cf. [48])

Pt − bx = f int + f inh (5)

where the material momentum P, the material Eshelby stress b, the material
inhomogeneity force f inh, and the material internal force f int are defined by
[48]

P := −ρ0utux, b := −
(
1

2
ρ0v

2 −W + σε

)
(6)

f inh :=

(
1

2
v2
)
(ρ0)x − Wx|expl , f int := σuxx − Wx|impl (7)

In the case of non-zero extra entropy flux, the second law of thermodynamics
gives

− (Wt + Sθt) + σεt + (θJ)x −
(
Q

θ
+ J

)
θx ≥ 0 (8)

2.3 Classical thermoelasticity in homogeneous solids

In the classical linear thermoelasticity, the free energy depends on strain and
temperature [3, e.g.]

W (ε, θ) =
1

2
(λ+ 2µ)u2x − ρ0cp

2θ0
(θ − θ0)

2
+m (θ − θ0)ux (9)

where cp is the heat capacity, the thermoelastic coefficient m is related to the
dilatation coefficient a and the Lamé coefficients λ and µ by m = −a(3λ+2µ),
θ0 is the reference temperature.

Accordingly, the one-dimensional stress and entropy are defined as

σ :=
∂W

∂ux
= (λ+ 2µ)ux +m (θ − θ0) (10)

S =: −∂W
∂θ

=
ρ0cp
θ0

(θ − θ0)−mux (11)

Dissipation inequality (8) with zero extra entropy flux is reduced to

− (Wt + Sθt) + σεt −
Q

θ
θx = −Q

θ
θx ≥ 0 (12)
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and the standard choice of the heat flux to satisfy the inequality is the Fourier
law of heat conduction

Q = −kθx (13)

where k > 0 is the thermal conductivity of the material.
The internal heat source hint in the classical case is calculated as

hint := σεt −Wt = Sθt (14)

Then energy balance (4) is represented in the form

(Sθ)t +Qx − hint = Stθ − (kθx)x =

(
ρ0cp
θ0

θt −muxt

)
θ − (kθx)x = 0 (15)

which for small deviations from the reference temperature determines the heat
conduction equation

ρ0cpθt − (kθx)x = mθ0uxt (16)

The balance of linear momentum is, accordingly,

ρ0utt = (λ+ 2µ)uxx +mθx (17)

Governing equations of classical thermoelasticity (16) and (17) are coupled
but do not contain any influence of a microstructure.

3 Thermoelasticity in solids with microstructure

As it was mentioned, the influence of a microstructure on the thermoelastic
processes is expected to be taken into account by means of an internal variable
field [28–30]. We start with the single internal variable theory which will serve
as the pattern for further generalizations. Initially, internal variables were in-
troduced as local fields only [28]. We will follow its weakly non-local extension
elaborated by Maugin [46].

3.1 Single internal variable theory

It is assumed that an internal variable φ is associated with the influence of
a microstructure on the global thermoelastic motion. In the weakly nonlocal
theory, the free energy W is specified as a sufficiently regular function of the
strain, temperature, the internal variable, and its space gradient [46]

W =W (ux, θ, φ, φx) (18)

In a second order weakly nonlocal theory such a dependence is the consequence
of the entropy inequality [31, 39, 47]. In addition to equations of state (10),
(11), we define partial derivatives of the free energy with respect to the internal
variable and its gradient as

σ =
∂W

∂ux
, S = −∂W

∂θ
, τ := −∂W

∂φ
η := −∂W

∂φx
(19)
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The introduction of the internal variable results in a modification of governing
equations (16) and (17). To achieve this modification, we start with dissipation
inequality (8), which is represented as

− (Wt + Sθt) + σεt + (θJ)x −
(
Q

θ
+ J

)
θx = −∂W

∂ux
uxt−

− ∂W

∂θ
θt −

∂W

∂φ
φt −

∂W

∂φx
φxt − Sθt + σεt + (θJ)x −

(
Q

θ
+ J

)
θx =

= (τ − ηx)φt + (ηφt + θJ)x −
(
Q

θ
+ J

)
θx ≥ 0

(20)

Following the scheme originally developed by Maugin [49] for materials with
diffusive dissipative processes described by means of internal variables of state,
we select the extra entropy flux J in order to eliminate the divergence term in
Eq. (20)

J = −θ−1ηφt (21)

In this case, the internal material force and heat source each split in thermal
and intrinsic terms according to

f int = f th + f̃ intr, hint = hth + h̃intr (22)

where the introduced thermal source terms involve only temperature

f th := Sθx, hth := Sθt (23)

whereas intrinsic source terms are determined by the internal variable

f̃ intr := (τ − ηx)φx, h̃intr := (τ − ηx)φt (24)

so that we have the following consistent canonical equations of momentum
and energy:

Pt − b̃x = f th + f̃ intr, (Sθ)t + Q̃x = hth + h̃intr (25)

with dissipation inequality

Φ = (τ − ηx)φt −
Q̃

θ
θx ≥ 0 (26)

where we have introduced the modified heat flux [46]

Q̃ = Q− ηφt (27)

and the modified Eshelby stress tensor

b̃ = −(ρ0v
2/2−W + σux − ηφx) (28)

which includes all effects presenting gradients since the material gradient of
φ plays a role parallel to that of the deformation gradient ux. The latter
demonstrates the main advantage of the use of the material formulation of
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thermomechanics: the conservation of the form of canonical balance laws and
a clear separation of thermal and intrinsic dissipation.

If intrinsic dissipation is still independent of temperature gradient, then
we are forced to modify the Fourier law

Q− ηφt = −kθx (29)

The standard choice to provide the non-negativity of the intrinsic part of
dissipation inequality (26)

Φ = (τ − ηx)φt ≥ 0 (30)

leads to the evolution equation for the internal variable in the form

φt = d(τ − ηx), d ≥ 0 (31)

The obtained reaction-diffusion-like equation can be found under different
names in numerous applications. For example, for the quadratic free energy
dependence

W =
1

2
(λ+ 2µ)u2x −

ρ0cp
2θ0

(θ − θ0)
2
+m (θ − θ0)ux +Aφux +

1

2
Bφ2 +

1

2
Cφ2

x

(32)
stress components (19)3,4 are determined as follows:

σ =
∂W

∂ux
= (λ+ 2µ)ux +m (θ − θ0) +Aφ, η = −∂W

∂φx
= −Cφx (33)

and τ coincides with the interactive internal force

τ = −∂W
∂φ

= −Aux −Bφ (34)

Consequently, the balance of linear momentum is rewritten as

ρ0utt = (λ+ 2µ)uxx +mθx +Aφx (35)

and evolution equation for the internal variable (31) is the Ginzburg-Landau
(or the Allen-Cahn) equation (cf. Cross and Hohenberg [50])

1

d
φt = Cφxx −Aux −Bφ (36)

Correspondingly, energy balance equation (25)2 for small deviations from the
reference temperature is represented in the form

ρ0cpθt − (kθx)x = mθ0uxt + (Cφxx −Aux −Bφ)φt = mθ0uxt +
1

d
φ2
t (37)

The influence of the microstructure in the single internal variable theory man-
ifests itself in a dissipative manner. Such an internal variable cannot be associ-
ated with the microdeformation, as it is represented in theories of generalized
continua. It is shown, however, that the microdeformation can be treated as
an internal variable in the dual internal variables approach [33, 39].
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3.2 Dual internal variables

Now we suppose that the free energy depends on two internal variables φ,ψ and
their space derivativesW =W (ux, θ, φ, φx, ψ, ψx). Corresponding constitutive
equations are similar to those which were previously presented

σ :=
∂W

∂ux
, S = −∂W

∂θ
, τ := −∂W

∂φ
, η := −∂W

∂φx
,

ξ := −∂W
∂ψ

, ζ := −∂W
∂ψx

(38)

Taking into account constitutive relations (38), we can represent the source
term in Eq. (4) as follows:

hint = σεt −Wt = Sθt + τφt + ηφxt + ξψt + ζψxt =

= Sθt + (τ − ηx)φt + (ηφt)x + (ξ − ζx)ψt + (ζψt)x
(39)

Defining thermal and intrinsic parts of the internal heat source,

hth := Sθt, h̃intr := (τ − ηx)φt + (ξ − ζx)ψt (40)

we arrive at the canonical energy balance in the form like (25)2

(Sθ)t + Q̃x = hth + h̃intr (41)

but with the appropriate modification of heat flux

Q̃ = Q− ηφt − ζψt (42)

Similarly, calculating the internal force

f int = σuxx − Wx|impl = Sθx + τφx + ηφxx + ξψx + ζψxx =

= Sθx + (τ − ηx)φx + (ηφx)x + (ξ − ζx)ψx + (ζψx)x
(43)

and defining its thermal and intrinsic parts

f th := Sθx, f̃ intr := (τ − ηx)φx + (ξ − ζx)ψx (44)

we can represent the canonical equation of momentum like (25)1

Pt − b̃x = f th + f̃ intr (45)

again with the appropriate modification of the Eshelby stress

b̃ = −
(
1

2
ρ0v

2 −W + σε− ηφx − ζψx

)
(46)

Comparing modified heat flux (42) with the expression in parenthesis in the
last term of dissipation inequality (8), we conclude that the extra entropy flux
should be chosen as

J = −θ−1ηφt − θ−1ζψt (47)



Weakly Nonlocal Thermoelasticity for Microstructured Solids 9

The latter means that dissipation inequality (8) reduces to

Φ = (τ − ηx)φt + (ξ − ζx)ψt −
(
Q− ηφt − ζψt

θ

)
θx ≥ 0 (48)

Again, under the independence of the intrinsic dissipation of temperature gra-
dient, we are forced to modify the Fourier law accordingly

Q− ηφt − ζψt = −kθx (49)

to satisfy the thermal part of the dissipation inequality, as it was shown by
means of the Liu procedure in [39].

The remaining intrinsic part of dissipation inequality (48) is nothing else
but a linear combination of products of thermodynamic fluxes and forces. It
is straightforward to point out the simplest solution of the intrinsic part of
the dissipation inequality assuming linear relationships between the thermo-
dynamic fluxes and their multipliers, the thermodynamic forces [51]

φt = R11(τ − ηx) +R12(ξ − ζx) (50)

ψt = R21(τ − ηx) +R22(ξ − ζx) (51)

Coefficients in the right hand side of Eqs. (50)-(51) constitute the matrix R
which we call following Onsager [52] the matrix of conductances

R =

(
R11 R12

R21 R22

)
(52)

These coefficients may depend on state variables. For simplicity, we consider
here constant coefficients.

3.3 Interpretation of internal variables

The interpretation of internal variables relates to properties of the matrix
of conductances. The matrix of conductances can be symmetric, if Onsager
symmetry relations are valid between its coefficients, or antisymmetric in the
case of Casimir relations.

Using the fact that internal variables are not specified yet, we may assume
that a symmetric matrix of conductances is represented in its diagonal form

R =

(
r1 0
0 r2

)
(53)

where r1, r2 are real and distinct eigenvalues of the matrix R. In this case, the
intrinsic part of the dissipation inequality (48) is a quadratic form

Φ = r2(τ − ηx)
2 + r3(ξ − ζx)

2 ≥ 0 (54)

and its positive definiteness is provided by the non-negativity of the eigen-
values. The absence of a coupling between internal variables takes the intro-
duction of the second one superfluous. Therefore, the second internal variable
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can be omitted without the loss of generality. The situation is reduced to the
theory of single internal variable of a dissipative nature described above.

In the case of complex eigenvalues, the antisymmetric matrix of conduc-
tances has the Jordan normal form

R =

(
c2 d2
−d2 c2

)
(55)

with two complex eigenvalues c2 ± d2i. In this case, the intrinsic part of the
dissipation inequality (48) still has a quadratic form

Φ = c2(τ − ηx)
2 + c2(ξ − ζx)

2 ≥ 0 (56)

If c2 = 0, then internal variables do not contribute to the entropy produc-
tion. Such non-dissipative internal variables φ and ψ can be interpreted as a
microdeformation and its conjugate momentum, as it shown in [33, 39].

The less standard example is delivered by the matrix of conductances of
the form

R =

(
0 R12

−R21 R22

)
(57)

The matrix of conductances is still antisymmetric, but now with a contribution
to the entropy production. The intrinsic part of the dissipation inequality (48)

Φ = R22(ξ − ζx)
2 ≥ 0 (58)

is satisfied in this case by the non-negativity of coefficient R22, but internal
variables cannot be considered relating to a microdeformation due to dissipa-
tion. Taking into account the parabolic, diffusive form of the evolution equation
of the primary internal variable and also the coupling to the Fourier law, one
can regard it to microtemperature as shown in [35].

4 Double dual internal variables

In order to take into account the effect of both microdeformation and mi-
crotemperature simultaneously, we need to make a step further. We suppose
that the free energy depends on the internal variables α, β, φ,ψ and their
space derivatives

W =W (ux, θ, α, αx, β, βx, φ, φx, ψ, ψx) (59)

Constitutive equations are written as usual

σ :=
∂W

∂ux
, S := −∂W

∂θ
,

a := −∂W
∂α

, A := −∂W
∂αx

, b := −∂W
∂β

, B := −∂W
∂βx

,

τ := −∂W
∂φ

, η := −∂W
∂φx

, ξ := −∂W
∂ψ

, ζ := −∂W
∂ψx

(60)
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To be more specific, we prescribe explicitly the dependence of the free energy
on state variables. We still use a quadratic free energy function

W =
1

2
(λ+ 2µ)u2x − ρ0cp

2θ0
(θ − θ0)

2
+m (θ − θ0)ux+

+Aαux +
1

2
Bα2 +

1

2
Cα2

x +
1

2
Dβ2 +Mφxux +

1

2
Nφ2

x +
1

2
Pψ2

(61)

Here A,B,C,D and M,N,P are material parameters. As one can see, only
contributions of gradients of the primary internal variable and those of the sec-
ondary internal variables themselves are included here. Constitutive relations
(60) determine the macrostress σ

σ :=
∂W

∂ux
= (λ+ 2µ)ux +m (θ − θ0) +Aα+Mφx (62)

microstresses A and η

A = −∂W
∂αx

= −Cαx, η := −∂W
∂φx

= −Nφx −Mux (63)

interactive internal forces

τ := −∂W
∂φ

= 0, a = −∂W
∂α

= −Aux −Bα (64)

and auxilary quantities related to secondary internal variables

ζ = −∂W
∂ψx

= 0, ξ = −∂W
∂ψ

= −Pψ, B = −∂W
∂βx

= 0, b = −∂W
∂β

= −Dβ

(65)
correspondingly. The extra entropy flux is selected in the same way as previ-
ously

J = −θ−1ηφt − θ−1ζψt − θ−1Aαt − θ−1Bβt = −θ−1ηφt − θ−1Aαt (66)

Dissipation inequality (8) reduces to the following one:

Φ = (τ − ηx)φt + ξψt + (a−Ax)αt + bβt −
(
Q− ηφt −Aαt

θ

)
θx ≥ 0 (67)

Accordingly, the Fourier law is modified

Q− ηφt −Aαt = −kθx (68)

to satisfy the thermal part of the dissipation inequality.
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4.1 Microdeformation

Suppose that internal variables α and β are coupled as in the non-dissipative
case

αt = R12(b−Bx) (69)

βt = −R12(a−Ax) (70)

It follows from Eqs. (69) and (653,4) that

αt = −R12Dβ (71)

and Eq. (70) can be represented as a hyperbolic equation

αtt = R2
12D(a−Ax) (72)

Due to the definitions of microstress (Eq. (63)1) and interactive force (Eq.
(64)2), we arrive at

Iαtt = Cαxx −Aux −Bα (73)

where I = 1/R2
12D > 0 represents the microinertia. The latter is the hyperbolic

evolution equation for the microdeformation.

4.2 Microtemperature

Now we turn to next internal variables which we associate with a microtem-
perature. According to evolution equations (50)-(51) and accounting the form
of the matrix of conductances for microtemperature (Eq. (57)), we have for
internal variables φ and ψ

φt = R12(ξ − ζx),

ψt = −R12(τ − ηx) +R22(ξ − ζx)
(74)

Due to Eq. (65)1,2 evolution equation for the primary internal variable (74)1
is reduced to

φt = −R12Pψ (75)

and Eq. (74)2 becomes (denoting L = 1/R2
12P )

Lφtt +
R22

R2
12

φt = Nφxx +Muxx (76)

which is a Cattaneo-Vernotte-type hyperbolic equation [6] for the internal
variable φ. Correspondingly, energy conservation equation (4) determines the
heat conduction equation for small deviations from the reference temperature

ρ0cp θt − (kθx)x = mθ0uxt +
R22

R2
12

φ2
t (77)
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which is influenced by source terms depending on the internal variable φ.
Equation of motion (1) is supplemented by a source term as well

ρ0utt = (λ+ 2µ)uxx +mθx +Aαx +Mφxx (78)

due to definition of macrostress (62). All four governing equations (73), (76)
- (78) are coupled. This coupling can induce wave-like propagation for macro-
temperature [37, 38].

4.3 Boundary conditions

As it is mentioned in [31], natural boundary conditions for microstructured
solids should provide zero value of the extra entropy flux at boundaries. Ac-
cording to definition of the extra entropy flux (66), the latter condition is
equivalent to αt = 0, βt = 0 and φt = 0, ψt = 0 at boundaries, which provides
zero boundary conditions for internal variables under zero initial conditions.
A non-trivial solution for internal fields will appear due to the coupling even
if initial and boundary conditions for them are equal to zero.

5 Conclusions

To make the description of the influence of microstructure on a global motion
apparent, it is useful to compare the governing equations for each considered
case. The comparison of equations of motion is shown in Table 1.

Classical thermoelasticity ρ0utt = (λ+ 2µ)uxx +mθx

Single internal variable ρ0utt = (λ+ 2µ)uxx +mθx +Aαx

Dual internal variable
(microdeformation) ρ0utt = (λ+ 2µ)uxx +mθx +Aαx

Dual internal variable
(microtemperature) ρ0utt = (λ+ 2µ)uxx +mθx +Mφxx

Double dual internal variables ρ0utt = (λ+ 2µ)uxx +mθx +Aαx +Mφxx

Table 1. Balance of linear momentum
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As one can see, the influence of microdeformation gives the same contribution
both in the single and in the dual internal variables (for microdeformation)
theories. The main difference between the two cases is in the evolution equa-
tions for internal variables: in the case of the single internal variable theory it
is a parabolic one, but in the case of dual internal variable theory it is a hy-
perbolic one (Table 3). The equation of motion in the case of the double dual
internal variables combines contributions from both dual internal variables
cases, namely, for microdeformation as well as for microtemperature.

Classical thermoelasticity ρ0cpθt = (kθx)x +mθ0uxt

Single internal variable ρ0cpθt = (kθx)x +mθ0uxt + 1
dφ

2
t

Dual internal variable
(microdeformation) ρ0cpθt = (kθx)x +mθ0uxt

Dual internal variable
(microtemperature) ρ0cpθt = (kθx)x +mθ0uxt +R22

R2
12
φ2
t

Double dual internal variables ρ0cpθt = (kθx)x +mθ0uxt +R22

R2
12
φ2
t

Table 2. Balance of energy

The heat conduction equation remains parabolic for all considered cases, and in
the conservative case of the dual internal variable theory for microdeformation
it is the same as in the case of classical thermoelasticity (Table 2).
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Single internal variable 1
dφt = Cφxx −Aux −Bφ

Dual internal variable
(microdeformation) Iαtt = Cαxx −Aux −Bα

Dual internal variable
(microtemperature) Lφtt +

R22

R2
12
φt = Nφxx +Muxx

Double dual Iαtt = Cαxx −Aux −Bα
internal variables

Lφtt +
R22

R2
12
φt = Nφxx +Muxx

Table 3. Evolution equations for internal variables

For convenience, we collect all the governing equations for thermoelasticity
with coupled microdeformation and microtemperature.
Balance of linear momentum:

ρutt = (λ+ 2µ)uxx +mθx +Aαx +Mφxx (79)

Balance of energy:

ρcpθt = (kθx)x +mθ0uxt +
R22

R2
12

φ2
t (80)

Evolution equation (microdeformation):

Iαtt = Cαxx −Aux −Bα (81)

Evolution equation (microtemperature):

Lφtt +
R22

R2
12

φt = Nφxx +Muxx (82)

To our best knowledge, system of Eqs. (79) - (82) is the first attempt to model
the effects of microdeformation and microtemperature simultaneously under
the internal variable approach. The double dual internal variable theory con-
tains two hyperbolic evolution equations: one for the microdeformation (Eq.
(81)) and another for the microtemperature (Eq. (82)). These evolution equa-
tions are not coupled directly, but both of them are coupled with the balance
of linear momentum (Eq. (79)). The heat conduction equation (Eq. (80)) is
affected only by the microtemperature field because of the non-dissipative mi-
crodeformation.
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We have solved earlier system of equations (79), (81) with M = 0 [34] and
system of equations (79) - (82) with A = 0 [37] separately. The calculations
for full coupled system of governing equations (79) - (82) are in progress.
In summary, the introduction of double dual internal variables provides a
complete extension of the classical thermoelasticity theory onto the case of
microstructured solids.
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