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Summary. Results of numerical simulations of two-dimensional elastic wave propagation
through gratings in a homogeneous medium are presented. The possible application of the
self-imaging Talbot effect to the non-destructive testing is demonstrated.

1 INTRODUCTION

The invention of metamaterials with exotic properties that are unavailable in nature and the
state-of-the-art fabrication tools demands a more accurate prediction of wave propagation in
structured solids. Any substructure suggests a discontinuity in properties of the structured ma-
terial. Diffraction of elastic waves at discontinuities results in the dynamic stress concentration.
Compared to acoustic and electromagnetic scattering, the elasticity problem is more complicated
because of the coexistence of compressional and shear waves that propagate at different speeds.
For example, the elastic counterpart of the well-known Talbot effect in optics1 was elaborated
only recently2. The Talbot effect represents self-imaging of the wavefield transmitting through
the periodic grating at a certain defined distance. The wave patterns formed by the self-imaging
provide new possibilities for the non-destructive testing of materials.

Various numerical methods can be applied to computing of elastic wave propagation3,4,5.
However, only few of them are stable and accurate at discontinuities. Therefore, numerical
simulations are performed by the modification of the finite-volume wave-propagation algorithm6,
which provides the stable and high-order accurate solution of wave propagation problems in
inhomogeneous solids.

2 PLANE STRAIN ELASTICITY

Numerical simulation of elastic wave propagation is based on the solution of equations of
linear elasticity. Neglecting both geometrical and physical nonlinearities, we can write the bulk
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equations of homogeneous linear isotropic elasticity in the absence of body force as follows7:
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where t is time, xj are spatial coordinates, vi are components of the velocity vector, σij is the
Cauchy stress tensor, ρ0 is the density, λ and µ are the Lamé coefficients.

Consider a sample that is relatively thick along x3, and where all applied forces are uniform
in the x3 direction. Since all derivatives with respect to x3 vanish, all fields can be viewed as
functions of x1 and x2 only. This situation is called plane strain. The corresponding displacement
component (e.g., the component u3 in the direction of x3) vanishes and the others (u1, u2) are
independent of that coordinate x3; that is,

u3 = 0, ui = ui(x1, x2), i = 1, 2. (3)

It follows that the strain tensor components, εij are

εi3 = 0, εij =
1

2
(ui,j + uj,i), i, j = 1, 2. (4)

The stress components follow then
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, i = 1, 2. (5)
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, i, j, k = 1, 2, (6)

where E is the Young’s modulus, ν is the Poisson’s ratio, δij is the unit tensor.
Inversion of Eq. (6) yields an expression for the strains in terms of stresses:

εij =
1 + ν

E
(σij − νσkkδij) , i, j, k = 1, 2. (7)

System of Eqs. (1)-(2), specialized to plane strain conditions by Eqs. (3)-(7) is solved numeri-
cally by means of the conservative finite-volume wave-propagation algorithm5,8 modified for the
application to front propagation9,10,11. The advantages of the wave-propagation algorithm are
its stability up to the Courant number equal to unity, high-order accuracy, and energy conserva-
tion. The algorithm was successfully applied to wave propagation simulation in inhomogeneous
solids6.

3 DIFFRACTION GRATING

As it was shown recently2, the Talbot effect can be observed also in the case of elastic waves.
The corresponding simulations, however, were performed for the case of perfectly rigid gratings.
To extend the results onto fully elastic case, we have chosen high contrast material properties
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Figure 1: Single grating (left) and wave pattern due to diffraction (right). Wavelength is equal to the
width of slits.

for the carrier material and the grating material. Namely, the properties of the carrier material
ρ=8900 kg/m3, cp=6040 m/s, cs=3000 m/s correspond to a metal like Nickel, and grating
properties correspond to those for Lucite: ρ=1100 kg/m3, cp=2610 m/s, cs=1140 m/s.

As one can see from Fig. 1, the periodic wave pattern is formed though not as sharp as in the
case of perfectly rigid grating. To be able to apply the elastic Talbot effect for interferometry,
we need to introduce a second grating placed on the Talbot distance, as it proposed for X-Ray
Talbot interferometry12. The next step is to embed an inclusion (defect) inside the material
and see how this defect changes the wave pattern. This situation is presented in Fig. 2.

Figure 2: Double grating with an inclusion (left) and wave pattern due to diffraction (right). Wavelength
is equal to the width of slits.
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The distortion of the wave pattern is significant. It takes a hope to see the image of the
defect mirrored by the Talbot self-imaging property. The location of the image of the inclusion
can be easily seen after the second grating as a bright area in the center of the upper part of
the picture.

4 CONCLUSIONS

1. Numerical simulations show that elastic waves form a periodic pattern after a grating
embedded into a material.

2. The distortion of the pattern by a defect in the material can localize the position of the
defect.
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