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ideas of Mindlin and governing equations are derived by making use of the Euler-Lagrange formalism.
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in various physical effects. The emphasis of the paper is on dispersion analysis and wave profiles gener-
ated by initial or boundary conditions in a one-dimensional case.
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1. Introduction

Widely used materials in contemporary technological world
like composites, functionally graded materials, polycrystalline sol-
ids, granular materials, etc., all have inherent microstructures at
different scales. Additionally, high-frequency excitations are com-
mon in modern technology. In this case, wavelengths of excitations
are comparable with internal scales in materials. Consequently,
microstructural effects must be taken into account, especially
when modeling and analyzing dynamical phenomena.

Microstructural effects are observed in wave propagation in sol-
ids when the wavelength of a traveling signal becomes comparable
with the scale of material heterogeneities (Gonella et al., 2011).
The influence of microstructure on wave propagation clearly man-
ifests itself in the wave dispersion that alters both the shape and
the velocity of propagating waves. Wave propagation in heteroge-
neous solids has been a subject of considerable research for many
years. However, microstructural details are rarely taken into
account in large-scale structural dynamics or dynamic impact sim-
ulations. The reason is the enormous complexity of wave phenom-
ena in highly heterogeneous media.

There exist distinct approaches to the description of microstruc-
tural effects on wave propagation in solids. The first one is focused
on the determining so-called effective properties of a material. It is
expected that these averaged or smoothened properties reflect in
some global sense the response of specimens of the material to
external loads. Homogenization methods (Santosa and Symes,
1991; Chen and Fish, 2001; Fish and Fan, 2008) represent a pure
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mathematical asymptotic multiple-scale procedure under assump-
tion of the validity of classical wave equation.

Another approach to model dispersion effects returns to the
Born-von Karman model for the one-dimensional atomic chain
(Born and von Karman, 1912). It is the basis for derivation of
higher-order dispersive wave equations by a continualization pro-
cedure (e.g. Metrikine and Askes, 2002; Fish et al., 2005; Askes
et al., 2008; Andrianov and Weichert, 2010). Dispersive wave equa-
tions obtained by continualization and homogenization are dis-
cussed and unified by Berezovski et al. (2011).

A very straightforward approach to involve microstructural
effects into the description of wave propagation is provided by
higher order or generalized theories of elastic continua (Mindlin,
1964; Eringen and Suhubi, 1964). Generalized theories of continua
extend conventional continuum mechanics by incorporating the
micromotion into consideration. The micromorphic continuum
description has enlarged the application area of continuum theory
to the microscopic space and time scales (Wang and Lee, 2010).
The well-established framework for higher grade and higher order
theories is, however, accompanied by too many usually undeter-
mined phenomenological coefficients.

The microcontinuum field theories are intended to provide a
systematic extension of the continuum description of materials,
some characteristic length scales of which are associated with their
microstructure. We focus our attention on the micromorphic the-
ory which is well suited to account for scale effects caused by
the inherent microstructure (Forest, 2009). The basic model fol-
lows Mindlin (1964) who introduced material elements as cells
able to deform independently of the main body. The governing
equations are derived by making use of the Euler-Lagrange formal-
ism (Engelbrecht et al., 2005).
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The purpose of this paper is not to present a detailed overview
on generalized theories of continua but to focus on the one-
dimensional wave motion in microstructured solids based on
mathematical models which in our view reflect best the main char-
acteristics of physical effects in such solids. We would like to dem-
onstrate that the description of wave motion in microstructured
solids is improved by introducing internal fields due to internal
variables combining continuum mechanics with thermodynamics.
The main emphasis will be on the analyzes or in other words on
“how does it work”. The paper is actually a synthesis of recent
studies which has been focused on wave motion in microstruc-
tured solids.

The paper is organized as follows. In Section 2, generic mathe-
matical models for dispersive wave equations are discussed. Their
structure depends on assumptions concerning the free energy. Sev-
eral possible simplifications of governing equations are presented
in Section 3, and feasible extensions are demonstrated in Section
4. Section 5 is devoted to the dispersion analysis of obtained mod-
els together with numerical solutions of typical initial and bound-
ary value problems. These results are mostly based on research
within graduate studies (Peets, 2011; Tamm, 2011) in order to syn-
thesize a general view. Conclusions and final remarks are pre-
sented in the last Section.

2. Dispersive wave equation in one dimension

The structure of the dispersive wave equation is explicitly seen
from the one-dimensional setting. Here we construct governing
equations following first Mindlin (1964) and Engelbrecht et al.
(2005) and then following the concept of dual internal variables
(Van et al., 2008).

In the spirit of Mindlin (1964), we consider a continuum
equipped by deformable cells characterized by the microdeforma-
tion ¢. Note that in this simple one-dimensional case, ¢ is a scalar
quantity. This additional degree of freedom together with the mac-
rodisplacement u forms a quadratic potential energy W which can
be specified as (Engelbrecht et al., 2005)

2

W =22 | Agu, +1Bg? + 12, (1)
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where c is the longitudinal wave speed, and coefficients A, B, and C

are material parameters characterizing microstructure influence.

The Lagrangian L = K — W can be constructed by intoducing the

kinetic energy (Capriz, 1989)

K=2ou s T2 @)
where I is the measure of microstructure inertia. It must be stressed
that in the multi-dimensional case the microinertia tensor appears,
which must be analyzed with care to avoid the incompatibility with
the standard mechanics of rigid bodies (Mariano, 2008).

By making use of Euler-Lagrange equations (for details, see
Engelbrecht et al., 2005), the balance laws are obtained for macro-
scopic and microscopic scales

Pollie = PoCUx + A, 3)
I(ptt = C(Pxx — Auy — B(/) (4)

Equations of motion (3) and (4) can be combined into a single dis-
persive wave equation
2

ﬁu’“' (5)
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For any particular material the parameters A, B, C, I should be
specified as well as corresponding initial and boundary conditions
for a given geometry and loading.

A slightly more general model for microstructure can be
obtained by considering the microdeformation ¢ as an internal
variable complemented by its dual counterpart y (an auxiliary
internal variable). Following the concept of dual internal variables
(Van et al., 2008), we consider the free energy W as a general suf-
ficiently regular function of the strain, temperature, two internal
variables ¢,  and their space derivatives

W:W(ux797(P7(pan7l//x)‘ (6)

In this case the equations of state define the macrostress o, the
entropy S, microstresses # and {, and interaction forces 7 and ¢ as
follows:
oW oW oW oW
D= , Si=——0r, Ti=———1, Ni=———,
Oy 00 [0} 0,
3 oW oW
A )
N O
In the isothermal case the dissipation inequality reduces to the
intrinsic part depending only on internal variables (Berezovski
et al., 2009, 2011)

D= (T 1)@+ (£~ L)y = 0. (8)

It is easy to see that the following choice of governing equations for
internal variables

¢ =R(E=G), ¥ =—R(z—ny), 9)

where R is an appropriate constant, leads to zero dissipation. This
means that dissipation inequality (8) is satisfied automatically with
governing Eq. (9).

Keeping a quadratic free energy dependence in the form

2
W:%uﬁ/\u@ +A’ux(px+%B(p2+%C(p§+%Dw2, (10)
we see that the considered free energy function is the one-dimen-
sional reduction of the general micromorphic strain energy density
(Mindlin, 1964), where the product of the microdeformation ¢ and
its gradient is replaced by the square of the second internal variable
Y. The corresponding macro- and microstresses follow from the
equations of state

ow

0 =Gu. = PoCt + AP +Ag,, (11)
oW ,
'I:—a—%:—/‘ux—apm (12)
as well as the interactive internal force
oW
T= —%: —Auy — Bo. (13)

Accordingly, the balance of linear momentum results in
Pollee = pOCZuXX +A(px +A/(/)xx (14)

and the governing equation for the primary internal variable ¢ has
the form (Berezovski et al., 2011)

I(/)H = C(/)xx +A,uXX _Aux - B(/)v (15)

if we use the same notation for the measure of microinertia as pre-
viously. Here I = 1/(R*D). It must be stressed that governing Eq.
(15) follows from dissipation inequality (8) by applying choice
(9). Therefore, this approach is thermodynamically consistent.

The latter equations of motion can be combined in the single
dispersive wave equation (Berezovski et al., 2011)

72
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Dispersive wave Eq. (16) is sufficiently general to cover all existing
one-dimensional microstructure models (Berezovski et al., 2011). In
fact, with A =0 it is equivalent to “causal” model by Metrikine
(2006), while with A" = 0 it is reduced to the Mindlin-type model
by Engelbrecht et al. (2005) (cf. Eq. (5)). The Maxwell-Rayleigh
model of anomalous dispersion (Maugin, 1995) corresponds to the
choice A=0, A =0, and C =0, and more classical linear version
of the Boussinesq equation for elastic crystals and the Love-
Rayleigh equation for rods accounting for lateral inertia (cf. Maugin,
1995) can be obtained choosing A=0,1=0, C=0 and
A=0, =0, pc*C = A", respectively.

Dispersive wave Eq. (16) can be also represented in terms of
distinct wave operators

, A C , A
U — | ¢ — ﬁ Upx = B U — | ¢ — ﬁ Uxx
0 0 "

I
— 5 (e = i), (17)
Introducing the wave speed related to the microstructure
G-, (18)

we can identify corrections to wave velocity due to couplings as
follows:

z:Az . _A

2
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and represent dispersive wave Eq. (17) as
ct
Uy — (€* — ) Uy = P22 (un - (CZ - %) uxx>
Cl XX
- P (U — Ctiy) ., (20)

with p? = I/B. All three wave operators in Eq. (20) are different and
reflect characteristics of macro- and microstructure and their
coupling.

As one can see, Mindlin-type dispersive wave Eq. (5) and unified
dispersive wave Eq. (16) differ from each other only by the single
term containing the fourth-order space derivative. This leads, how-
ever, to three distinct wave operators in Eq. (20) instead of two of
them in Eq. (5).

Unified dispersive wave Eq. (16) and/or Mindlin-type dispersive
wave Eq. (5) are basic material models for the analysis of 1D prob-
lems including further simplification (Section 3) or extension (Sec-
tion 4). As far as the classical wave equation is considered as the
cornerstone for wave dynamics of homogeneous media, these
models allow to demonstrate specific dispersion effects which
are characteristic to microstructured materials.

3. Model simplifications
3.1. Reduction by the slaving principle

Governing Eq. (16) or (20) include several wave operators
which describe the motion in macro- and microscale. It is possible
to distinguish leading operators by using the slaving principle
(Porubov, 2003). By means of series representation and the slaving
principle (for details, see Engelbrecht et al., 2005) we get finally

U — (¢ = €3 U = P°Cx (Ut — CTlUkx) - (21)

Eq. (21) reflects clearly the hierarchical character of wave propaga-
tion in microstructured materials following Whitham (1974).
Indeed:

(i) if pc, is small then the terms in the r.h.s. are negligible; if pca
is large then, vice versa, the terms in the L.h.s. are negligible and the
wave characteristics are governed by properties of microstructure;

(ii) the wave speed in the compound material is affected by the
microstructure (c? versus ¢? —c3) and only A=0 (no coupling)
excludes this dependence;

(iii) the influence of the microstructure is, as expected, charac-
terized by dispersive terms of the fourth-order (U and Uy ).

The nonlinear governing equations will be presented in Sec-
tion 4.2. The comparison of model Egs. (16) and (21) will be given
in Section 5.2.

3.2. One-wave asymptotics

The model equation derived in Section 2. actually generalizes
the classical wave equation which describe two waves - one prop-
agating to the right, another - to the left. There exist powerful
methods which allow to derive so-called evolution equations
describing just the propagation of one wave along the chosen char-
acteristics. These asymptotic (reductive perturbation) methods are
described in details, for example by Engelbrecht (1983). Applying
the reductive perturbation method for Eq. (5) the following evolu-
tion equation is derived (Peets et al., 2008; Randriiiit et al., 2009):

2 2
Ur + S _2 G
Ca

Uxxx =0, (22)

where v = Uy, UX,T) =u/l, X = (x—cat)/L, T =calt/2L? and L
and [ are macroscale and microscale, respectively.

Eq. (22) is the linearized Korteweg—de Vries (KdV) equation. If
the reductive perturbation method is applied for the hierarchical
Eq. (21) then the result will be the same Eq. (22). This means that
basic Eq. (16) and its asymptotic (hierarchical) approximation (21)
yield the evolution equation in the same form. The case of nonlin-
ear models will be dealt in Section 4.3.

4. Model extensions

Microstructure model (14) and (15) allows not only the reduc-
tion, but also the extension in various directions. The most desired
extensions regard to several microstructures and to nonlinear
effects.

4.1. Double microstructure

The extension of microstructure model (14) and (15) to the case
with two microstructures can be achieved in different ways. The
first one is the “hierarchy of microstructures” (Engelbrecht et al.,
2006). In this case, the coupling of the corresponding microstruc-
ture hierarchy may be represented schematically as follows
(Fig. 1).

This means that only the motion of the first microstructure is
coupled with the macromotion, and the motion of the second
microstructure is coupled with that of the first one. In this case,
the free energy is dependent on two internal variables ¢, and ¢,
as follows:

c? 1 1
W =92 + A1t + 5 B1 o} + 5 C1(@1)] + +Aa(91),0

1 1
+5 8203 + 5 Ca( @) (23)

This leads to expressions of stresses in the form

o ow i+ A _ ow
*auxfpo x T A1y, ’117__6((,01))‘
ow
= —Ci(P1)y — Ay, 1, = _W = —C2(y), (24)

and to interactive internal forces
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Fig. 1. Hierarchical microstructures.

ow ow
Tl*_a_(p]*_Alux_qu)p Tzf—a—(pz
= —An(@); — B¢, (25)
Accordingly, equations of motion take the form
Pollic = Tx = PoCUxx + A1(P1)5s (26)

- (’11 )x = Cl((/)] )xx —Aslx — By ®q +A12((p2)x7 (27)

L(@2)e = T2 = (12)x = Ca(P2) i — Ar2(@1)x = B2, (28)

where I; and [, are appropriate internal inertia measures. The very
same model is presented by Pastrone (2010) including nonlinear
terms at the macroscopic level.

Another example of possible coupling of macromotion and
microstructures can be constructed by means of the representation
of the free energy dependence as the sum of two similar contribu-
tions (cf. Berezovski et al., 2010)

Li(@1)e=T1

c? , 1 1
W= L9202+ A1+ AL (0) 1+ 5 B0 + 5 Co(0,);

1 , 1 1
+ 5 DI + +Aa @yl + A (93) b + 5 B2 + 5 Ca(02);

1
+5 D203, (29)

where /;, and v, are auxiliary internal variables (cf. Eq. (10)). In the
considered case, both equations of motion for microstructures are
coupled with the balance of linear momentum for the macromo-
tion, but not coupled with each other. This is illustrated in Fig. 2.
Corresponding stresses are determined as follows:

8W ! I
o= oy PoCUx + A1y + A0y + AL (01, + Ay (Py), (30)
ow ' ow
=_ =-Au —-C , L=— =0, 31
'/Il a((P1)x 19X ((pl )x 1 8(!//1 )X ( )
ow ' ow
=———=-Au —C(p,),, L=———=0, 32
2= gy, T (2o B =gy 52
as well as interactive internal forces:
oW oW

11:—8—%:—A1ux—31(p1, rzz—a—%:—Aqu—Bzmz. (33)

Accordingly, equations of motion take the form

Poller = poczu)‘x +A1((Pl )x +A2(q)2)x +A/1 ((P] )xx +A/2(q)2)xx7 (34)

Li(@1) i = Ci(@1) o + Al — Arlly — B1p, (35)

L(@3) = Co(@3)x + Asthne — Aslix — B2, (36)

The doubling of the number of coefficients in the double micro-
structure model in comparison to the single microstructure compli-
cates the quantitative analysis of the model. Nevertheless, it can be
qualitatively analyzed by studying dispersion curves (see Section
5.1.2).

4.2. Nonlinearities

In Section 2, the free energy W was determined with the accu-
racy of quadratic terms (see expressions (1) and (10)). In order to
model physical nonlinearities, cubic terms should also be taken
into account. Then instead of Eq. (1) we have to consider a more
general free energy function

W= P u? +Aq)ux+ qu +5 qux+1Nu += M% (37)

2
where terms with coefficients N and M are responsible for the non-
linearity in the macro- and microscale, respectively. Then system of
Egs. (3) and (4) is transformed to

Pollir = PoC Uy + A, + Nyliyy, (38)

I(ptt :C(pxx_AuX _B(p+M(pxq)x><' (39)

By using the asymptotic procedure like it was done for deriving Eq.
(20), here system of Egs. (38) and (39) yields (for details see Enge-
lIbrecht et al., 2006)

p
U — (€% — €3 )t — g (u3), = PP (e — ) +5 (U3 (40)

where p and 4 are combinations of material and geometrical param-
eters. Alternatively, Eq. (40) can be written in terms of deformation
U= Uy

)
—C) U — 5 (V) = D"Ca (Ut — C1Uxx) e T 5 (Vx )
3 00— 5 (1), = PP (Ve — )y + 5 () e (41)

Ve — (Cz
Both Eqgs. (40) and (41) belong to the family of Boussinesq-type
equations (Christov et al, 2007; Engelbrecht et al., 2011).
Comparing Eqs. (40) and (41) with Eq. (20), it is clear that in the lat-
ter case the wave operators are nonlinear and reflect the influence
of nonlinearities in macro- and microlevel. The corresponding non-
linear evolution equation derived on the basis of slaving principle is
the following (Randriiiit et al., 2009):

Fig. 2. Concurrent microstructures.
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c cd-a ley,

N (2 M (12),, =0, 42
vT+26/2‘(7/)X+ c vXXX+2LCi(yX)XX 0, (42)
where

N MA
2 I 2 _

CN_p’ Cy Bl (43)

This is a modified KdV equation with two nonlinear terms: (i) the
second term in Lh.s of Eq. (42) reflects the nonlinearity in the mac-
roscale; (ii) the fourth term reflects the nonlinearity in the micro-
scale. If ¢y =0 then Eq. (42) reduces to the classical KdV
equation. It is certainly possible to transform Eq. (42) into the stan-
dardized form (Randriiiit and Braun, 2010)

q; +6qqy + e + 3k(£1§)xx =0 (44)

after suitable transformation of dependent and independent vari-
ables. Note that here g is related to deformation .

5. Dispersion analysis
5.1. Dispersion relations

5.1.1. Single microstructure

The presence of higher-order derivatives in Egs. (20) and (21)
indicates the influence of dispersion. Dispersion relations can be
derived by assuming the solution in the form of harmonic waves

u(x, t) = fe'k-n, (45)

with the wave number k, the frequency w, and the amplitude ii.
Introducing expression (45) into Egs. (20) and (21), we obtain

? = (2 - Ak +p? (wz - c2k2> (w2 - ka2)7 (46)

* = (¢ - )k - p*c; (wz - c%k2>k2 (47)

respectively. In order to simplify our discussion, we assume A" = 0.

Preliminary analysis shows immediately that in the long wave
limit (pck < 1) both dispersion relations (46) and (47) provide
the same limiting speed cg = (¢ — cf‘)”z, which means that wave
propagation in the medium with microstructure is slower than in
the case without microstructure (Peets et al., 2008). This is direct
consequence of the inclusion of the microstructure (Mindlin,
1964). In the short wave limit (pck > 1) full dispersion relation
(46) provides two modes of wave propagation — one with the speed
¢, characteristic to the microstructure and the other with the elas-
tic wave speed c of the medium without microstructure. As hierar-
chical model (47) is an approximated one, in the short wave limit
only the speed c; appears in this model.

The typical dispersion curves are shown in Figs. 3 and 4. Disper-
sion relation (46) which corresponds to full Eq. (20) is represented
by solid lines and consists of two branches - acoustic (lower
branch) and optical (upper branch). Dispersion relation (47) which
corresponds to approximated Eq. (21) is represented by dotted
lines while dashed lines correspond to asymptotic lines
w =k, w=ck/c, w=cgk/c.

In general, the dispersion type following the acoustic dispersion
branch can be either normal (cg < cpn, see Fig. 3) or anomalous
(cgr > Cpn, see Fig. 4). Here ¢, and cp, denote group and phase
speed, respectively. The dispersion type of the optical branch in
our case is always normal. The phase speed (c,, = w/k) and the
group speed (cg = dw/0k) reveal dispersion effects even more
explicitly.

The phase and group speeds are depicted in Fig. 5 (against the
frequency) and in Fig. 6 (against the wave number). While the
asymptotic value of acoustic phase speed curve approaches

4
~-Eq. (86)
3.5 Eq. (85)
---Asymptotes

2.5

Dimensionless frequency
[\S)

15
05
% ] 2 3 4

Dimensionless wave number

Fig. 3. Dispersion curves in case of ¢ < ¢y (ca = 0.8c, ¢; = 0.2c).

~Eq. (86)
3.51—Eq. (85)
--—-Asymptotes

2.5

Dimensionless frequency
[\)

0 1 2 3 4
Dimensionless wave number

Fig. 4. Dispersion curves in case of ¢z > ¢, (ca = 0.8¢, ¢; = 0.8c).

gradually the value c; /c, the group speed curve changes faster, ini-
tially assuming the value that is lower than c¢;/c and then
approaching this value. In the case of very strong normal disper-
sion (i.e. cg > c1), the group velocity curve assumes a value that
is very close to zero before approaching the asymptotic value
c1/c. the effect becomes more subtle when ¢ ~ c;.

It is interesting to compare the accuracy of dispersion relation
(47) which corresponds to hierarchical approximation (21) against

—_
8}

Optical branch|

—_

Acoustic branch|

Dimensionless speed

e o 2 2
o bk o

o

0.5 1 1.5 2 2.5 3
Dimensionless frequency

Fig. 5. Group (solid line) and phase (dashed line) speed curves against the
frequency, c4 = 0.3c, ¢; = 0.2c.
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3 1.2 Optical branch
-
208
g
= 0.6 :
z Acoustic branch|
E 04 Tl
Q -----------------
0.2
0 1 2 3 4 5 6

Dimensionless wave number

Fig. 6. Group (solid line) and phase (dashed line) speed curves against the wave
number, ¢, = 0.3c, ¢; =0.2c.

dispersion relation (46) which corresponds to full Eq. (20). In some
cases the difference could be rather large like in the case shown in
Fig. 7. Obviously, the differences depend on material properties.
Peets et al., 2008 have shown that in this context the main param-
eters are velocity ratios ca/c and c; /c.

The ranges of parameters are shown in Fig. 8 where values of
speeds obtained from both relations agree within 5% error (the
area between dashed lines) and within 10% error (the area between
solid lines) at k = 1.5/pc. The behavior for higher values of k is sim-
ilar; only the area of good agreement becomes narrower. When k
becomes very large, the area of good agreement becomes larger
(Peets et al., 2008).

The physical situation studied above is similar to cases analysed
by Papargyri-Beskou et al. (2009) who also have included micro-
structural and micro-inertial terms into governing equations. Here,
however, the clear analysis of both branches of dispersion curves
gives more insight to the understanding of the importance of mi-
cro-inertial terms (see also (Wang and Sun, 2002)).

5.1.2. Double microstructure

In case of hierarchical (Eqs. (26)-(28)) and concurrent (Egs.
(34)-(36)) microstructures the dispersion relations are certainly
more complicated. Instead of relation (46) we get the following

(Il — ) (K — @ + ?) (K — * + @?)

— WK (PP — ) — Pk (K — 0 + w?)

=0, (48)
(@I — )k — 0 + ) (I — 0 + @)

+ 22K (K — 0 + ?) — K (K — 7 + )

=0 (49)

1.4 . . .
1.2}

Dimensionless speed

Dimensionless frequency

Fig. 7. Behavior of the group speed curves for Eq. (20) (solid line) and (21) (dashed
line) against the frequency, ¢4 = 0.2c, ¢; = 0.3c.

T T ~
~
1.0t < ]
N
\
0.8} N
\
|
0.0 02 0.4 0.6 0.8 1.0

CA/C

Fig. 8. The accuracy of the approximation (21).

respectively, for the hierarchical and concurrent models.
Here parameters
C
2 1
] =—,
1 Il
B,

5 = A (50)

), G o A L A

=2 ¢ c 2 _ B
2_127 Al _pOB17 AZ_POBZ.‘

1 117

have been introduced.

In addition, it is possible that two concurrent microstructures
which are described by free energy function (29) influence also
each other. Then free energy function (29) should be enlarged by
a term Ay, ¢, — cf. free energy function (23). Then the dispersion
relation reads

(I — )Pk — @ + ) (K — @ + @?)
+ G (—CIE + ) — —C PP (K — @ + @)
— K3 — 0 + w?) =0, (51)

with C/2\12 = A%z/lle.

Dispersion curves for all cases (48), (49) and (51) are shown in
Fig. 9. We limit ourselves to the case with w; =1, w, =2,
c1/c > cy/c. It is seen immediately that while the behavior of hier-
archical model (48) and concurrent model (49) is quite similar,
concurrent model with coupled microstructures (51) departs dras-
tically from others in the region of medium-range wavelengths. It
can therefore be concluded that the coupling between the micro-
structures has a significant effect on the dispersion in that region.
The detailed analysis of all features of dispersion curves is pre-
sented by Peets (2011).

The models analysed above describe the physical situation
clearly on the basis of the interaction of physical constituents
(see Section 3). If the micro-displacement is described by a series
representation (Huang and Sun, 2008) then dispersion curves have
also several branches like in Fig. 9, but in this context correction
factors are needed to adjust phase velocities of higher wave modes.

5.2. Wave profile analysis

The numerical simulation for boundary and initial value prob-
lems demonstrates clearly the influence of dispersion effects on
wave profiles (Tamm, 2011; Peets, 2011). Here we show only a
couple of typical cases.

(i) linear case, sinusoidal boundary conditions for system of Egs.
(14) and (15) with A" = 0. The frequency of the boundary excitation
is limited to the range where only acoustic dispersion exists
(dimensionless frequency is less than 1, see Fig. 10(a)), although
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Fig. 9. Comparison of dispersion curves of Egs. (48) - solid lines, (49) - dashed
lines, (51) - dotted lines. Here ca; = cax = ca12 = 0.4c, ¢; = 0.5¢, ¢; = 0.3c.

due to coupling effects in the course of propagation the influence of
the optical branch can be seen.

The Laplace transform technique is used with the inverse trans-
form accomplished numerically (for details see Peets, 2011). A typ-
ical wave profile is shown in Fig. 10(b). This wave profile can
roughly be divided into two parts — high amplitude acoustic one
and low amplitude optical part. Points denoted as “front acoustic”
and “front optical” are related to maximal asymptotic speeds de-
rived from the acoustic and optical dispersion curves, respectively.
Point denoted as “main group” is related to the group speed of the
dimensionless frequency 0.8 which is the frequency of the har-
monic boundary condition.

For convenience we also divide the acoustic part into the main
part, which has the amplitude almost equal to unity (the wave pro-
file up to the point “main group”), and the medium amplitude part
(the wave profile between the points “main group” and “front
acoustic”).

The main acoustic part travels at the group speed 0.53c corre-
sponding to the dimensionless frequency 0.8 at given material
parameters (Fig. 10(a)). The approximate dimensionless wave-
length can be estimated from Fig. 10(b) by measuring the distance
between the two adjacent wave crests. The measured dimension-
less wavelength for main acoustic part 5.40 is in good agreement
with the dimensionless wave length 5.44 given by the dispersion

(@) .
1.2+ S Optical branch

Dimensionless speed

Dimensionless frequency

0 0.5 1 L5 2 2.5 3

analysis. The medium amplitude acoustic part travels at the group
speed 0.8c which corresponds to the highest asymptotic value of
the acoustic dispersion branch (Fig. 10(a)). As at the given fre-
quency there are differences in phase and group speeds, the med-
ium amplitude part is slightly out of phase (Fig. 10(b)).

The optical part of the wave profile is a low amplitude part that
travels at the asymptotic speed of the optical dispersion branch
which is equal to unity. This high frequency and low amplitude
optical part reflects the effect of the optical dispersion branch.
The amplitude of the optical part depends on the frequency of
the boundary excitation.

(ii) linear case, Heaviside-type boundary conditions with A" = 0
for full Eq. (20) and its hierarchical approximation (21). The solu-
tions are obtained in the similar way to the case (i). Typical wave
profiles are shown in Figs. 11-13.

It can be seen that regardless of the differences in wave profiles,
hierarchical model (21) provides good approximation of full model
(20) (see Figs. 11 and 12). However the wave profile corresponding
to Eq. (21) departs from full model (20) when c4/c — 0 (Fig. 13). The
low amplitude oscillations in front of the main pulse in Figs. 11 and
12 reflect the influence of the optical dispersion branch.
(iii) nonlinear case, sech®-type initial conditions for hierarchical
Eq. (41). The solution is obtained by the pseudospectral method
(Salupere et al., 2008; Salupere, 2009; Tamm, 2011). The presence
of both nonlinearities and dispersion in Eq. (41) indicates to the pos-
sibility of emergence of solitary waves. While the classical soliton
equations (like KdV equation) are of the one-wave equations,
Eq. (41) is of the Boussinesq-type (Christov et al., 2007; Engelbrecht
etal.,2011) and describes the waves propagating to the right and to
the left. Starting from the localized initial conditions

v(x,0) = vosech’Bo(X — Xp), (32)

where v, is the amplitude of initial excitation and parameter By is
related to the width of the initial pulse and using periodic boundary
conditions

v(x,t) = v(x + 2Kkm, t), (53)

where K is the number of 27 periods within a space domain and
k=1,2,... the emerging soliton trains are shown in Fig. 14 (cf.
Engelbrecht et al., 2011).

Indeed in this case two trains of solitons emerge propagating to
the right and to the left. To the best of the authors’ knowledge, such
a description was shown first by Engelbrecht et al. (2011) within
the same model but with different parameters resulting in differ-
ent trains.

(iv) interactions of solitons. According to the classical definition
of solitons, every soliton should restore its amplitude (and speed)
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Fig. 10. (a) - phase (dotted lines) and group (solid lines) speed curves and (b) wave profile at 60 time steps. Here c4 = 0.6¢, ¢; = 0.5¢, dimensionless frequency for the

boundary condition is equal 0.8.
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Fig. 11. Group speed curves (a) and wave profiles for Heaviside-type boundary conditions at 40 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here

ca =0.9c, ¢c; =03c.
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Fig. 12. Group speed curves (a) and wave profiles for Heaviside-type boundary conditions at 50 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here

ca=0.7c, ¢, =0.3c.
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Fig. 13. Group speed curves (a) and wave profiles for Heaviside-type boundary conditions at 40 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here

cy=0.1c, ¢c; =0.7c.

after interaction with other solitons. While the KdV-type equation
permits to model only the process of overtaking of solitons, here
the Boussinesqg-type model permits also to analyse the head-on
collision. First, it must be stressed that due to the nonlinearity at
the microscale, the emerging solitons are asymmetric. This is
shown by numerical calculations (Tamm, 2011) and also by the
analysis of Eq. (44) - see Randriiiit and Braun (2010). The

numerical calculations demonstrate that the interaction of solitons
is not fully elastic (Fig. 15).

The presence of radiation is clearly seen and that is why the no-
tion of solitons in this case can be used only conditionally. This is
also demonstrated by Khusnutdinova et al. (2009) in the case of
models derived from lattice dynamics. On the other hand, however,
it is known that single solitary waves modeled by Eq. (41) exist
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Fig. 14. Formation of train of solitons for By = 0.02, K = 5500, profiles plotted at every 1500 time steps.

(Janno and Engelbrecht, 2005). The interaction of solitary waves
are of importance in many Boussinesq-type systems (Christov
et al., 2007; Maugin, 2011). However, a more detailed analysis of
interaction processes is needed like it is done for KdV-type (one-
wave) systems.

6. Final remarks

The aim of the paper was to analyse the structure and proper-
ties of the micromorphic-type microstructure model for describing
the wave motion. As described above, the model reflects the influ-
ence of the internal structure on the macromotion of solids in a
sufficiently general way. Actually this model describes internal
fields in solids under external loading and the interaction of these
fields results in various physical effects.

Main results described in this paper can be formulated as
follows:

s

Time

Space

Fig. 15. Interaction of solitons - time-slice plot.

e The resulting microstructure model depends on the form of the
free energy dependence. The dispersive wave equation can be
represented in terms of distinct wave operators (20) describing
the motion of macro- and microstructure. The scale parameters
govern the wave motion indicating the relative strength of one
wave operator or another (Engelbrecht et al., 2006). Approxima-
tion (21) is an excellent example of a simple hierarchical struc-
ture of wave operators in Whitham'’s sense (Whitham, 1974),
while dispersive wave Eq. (20) has a mixed type of hierarchy
which depends on rates of change in time or in space.

e The coupling between macro- and micromotion is governed by
the corresponding mixed product terms in the free energy func-
tion. The influence of the coupling manifests itself not only in
dispersion effects, but also in the changes of macroscopic veloc-
ity. This effect is demonstrated also by numerical simulation of
2D wave propagation (Engelbrecht et al., 2005).
If physical nonlinearities are included into the free energy func-
tion, then the resulting governing wave equation is of the Bous-
sinesq type. The numerical solution of this two-wave equation
demonstrates the emergence of soliton trains propagating in
1D case to the right and to the left (Tamm, 2011). The one-wave
approximation results in an evolution equation which belongs
to the KdV-family (Randriiiit and Braun, 2010). Their soliton-
type solutions exhibit asymmetry caused by the nonlinearities
on the microscale.

e The generalization of the microstructure model on the multi-
scale case (Berezovski et al., 2010; Peets, 2011) is natural either
for hierarchical microstructures or for concurrent microstruc-
tures. The resulting dispersive wave equation includes sixth
order terms. In contrast to models derived from lattice dynam-
ics, the higher order terms always form the corresponding wave
operators (Engelbrecht et al., 2006).

o The specific features of group speed changes against frequencies
are clearly reflected in changes of wave profiles. Precursors of
main wave travel faster than the main pulse and their speed
is determined by the properties of the optical branches of dis-
persion curves (Peets, 2011).
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e The physical parameters of materials used for deriving the gov-
erning equations must be determined for applications. For mod-
els described in this paper, Janno and Engelbrecht (2011) have
proposed several algorithms on the basis of direct measure-
ments of phase and group velocities of harmonic waves or wave
packets as well as the distortion of solitary waves. This mathe-
matically well-posed approach enlarges the possibility of con-
temporary non-destructive testing and opens new avenues of
research, especially with tight connection with atomic calcula-
tions (Chen et al., 2004; Zeng et al., 2006; Maranganti and Shar-
ma, 2007).

Finally, we hope that the detailed analysis of dispersion curves
and corresponding wave profiles described in the paper could
serve as a tool for the further applications of microstructured solids
under dynamical excitations.
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