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Thermoelastic waves in microstructured solids: dual internal variables approach
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A coupled system of thermoelasticity equations including an evolution equation for an internal variable in
addition to the traditional equations of motion and heat conduction is solved numerically. The internal variable is
interpreted as a microtemperature or, in other words, as a temperature fluctuation due to the microstructure. The
results of computation show that besides the usual diffusion of the macrotemperature in course of time, the wave-
type behavior of temperature is observed because of coupling effects between microtemperature, stress, and
macrotemperature. Although the observed effect of the microstructure is small, it exists in the case of realistic
values of material parameters. The formulated model includes coupling parameters in addition to material
properties. The ranges of these parameters are establishedfor the prescribed materials and their influence on the
wave-like temperature behavior is analyzed.
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1. INTRODUCTION

The classical continuum theory is based on the assump-
tion of the homogeneity of materials. Clearly this assump-
tion is a constraint in reflecting the real properties of many
materials, especially when dynamic loading is considered.
The early studies by Mindlin [1] and Eringen and Suhubi
[2] have paved the way to develop mathematical models
for inhomogeneous microstructured materials. The prob-
lem is becoming very important due to the wide application
of alloys, composites, functionally graded materials, etc.,
in contemporary technology. Generalized continuum the-
ories extend conventional continuum mechanics for incor-
porating intrinsic microstructural effects into the mechan-
ical behaviour of materials [3–5, etc.]. A leading concept
is to separate macro- and microstructure in continua and to
formulate the conservation laws for both structures sepa-
rately [1, 4]. Recently, an approach is proposed to use in-
ternal variables [6] into modelling of microstructure. Inter-
nal variables are supposed to compensate for our lack of a
precise description of a microstructure and describe the in-
fluence of internal structures as internal fields [7]. Internal
variables are usually taken to be responsible for dissipative
processes and must satisfy the second law of thermodynam-
ics (see [6]). The concept of dual internal variables [8] is a
generalization from a single internal variable and permits
to model also conservative processes. In this way, for ex-
ample, it is possible to represent the Mindlin micromorphic
theory [1] also by using the concept of internal variables
and the material formulation of continuum mechanics [9].

The heat conduction phenomenon, starting already from
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Biot and Fourier, is based on phenomenological models us-
ing the theory of continua. Classical theories of heat con-
duction neglect the microstructure of a material (see, for
example [10]). The theory of thermoelasticity is based on
coupling between heat conduction and elastic deformation
and follows also the assumption of homogeneity. Even intu-
itively it is understood that the existence of a microstructure
should influence the heat conduction and also the propaga-
tion of thermoelastic waves. However, as noted by Tamma
and Zhou [10]: “The heat transport mechanisms in mate-
rials with nonhomogeneous inner structures is clearly not
understood to date”. Much attention has been paid to the
applicability of the Fourier law for describing the propa-
gation of thermoelastic waves – see overviews by Joseph
and Preziosi [11], Chandrasekharaiah [12], Tamma and
Zhou [10], and monographs by Hetnarski and Reza Eslami
[13], Ignaczak and Ostoja-Starzewski [14], Straughan [15],
where the modified Cattaneo, Jeffreys, and other models are
analysed. These modified models predict the existence of
thermal waves but the question about the relaxation time(s)
is still not answered with the full physical rigour. It has
been shown that given the estimates for the relaxation time,
the wave characteristics in modified models are effected at
high frequencies [16]. It should be stressed that the modi-
fied models (including the two-temperature model by Chen
and Gurtin [17]) are also based on the assumption of the
homogeneity of the material.

Introducing internal variables into the description of ther-
moelastic waves opens a new, physically clear way to de-
scribe thermal effects in microstructured materials. Even
if we consider temperature as an internal variable and
displacements as observable variables, a simple example
shows that in this case a discontinuity of temperature may
exist provided the gradient of the initial excitation is large
enough [18]. Based on the concept of dual internal variables
[8], a consistent theory of thermoelasticity is built [19].In
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addition to the coupling of elastic and thermal effects on the
macrolevel, this theory includes also the coupling between
the macro- and microlevels and on the microlevel. In this
case, the wave-like behaviour of microtemperature (fluctua-
tion of temperature in microstructural elements) is possible
without proposing the finite speed of thermal waves on the
macrolevel. This idea was recently reported by Berezovski
and Engelbrecht [20] and the numerical scheme for such
calculations presented by A. Berezovski and M. Berezovski
[21].

In this paper we focus on coupling effects and leave aside
the non-dissipative and fully dissipative cases analyzed in
[19]. In Section 2, the corresponding one-dimensional
mathematical model for thermoelastic waves in microstruc-
tured solids is presented by using the concept of dual in-
ternal variables. The attention is paid to thermodynamic
fluxes and forces and to the interpretation of internal vari-
ables. Section 3 describes the statement of the problem for
thermoelastic plane wave propagation an a half space spec-
ifying governing equations and coupling parameters. The
numerical results shown in Section 4 are obtained by means
of the finite-volume algorithm presented earlier in [21]. Fi-
nally, in Section 5, the discussion about the novelty of mod-
elling and results is presented and conclusions are written
separately in Section 6.

2. ONE-DIMENSIONAL THERMOELASTICITY WITH
DUAL INTERNAL VARIABLES

The most suitable framework for the generalization of
continuum theory by weakly nonlocal dual internal vari-
ables enriched by an extra entropy flux is the material for-
mulation of thermomechanics [22]. We present this frame-
work on the example of one-dimensional thermoelasticity.
The full 3D presentation is given in [19].

The one-dimensional motion of thermoelastic conductors
of heat is governed by standard local balance laws for linear
momentum and energy (no body forces)

(ρ0v)t − σx = 0, (1)

(
1

2
ρ0v

2 + E

)

t

− (σv −Q)x = 0, (2)

and by the second law of thermodynamics

St +

(
Q

θ
+ J

)

x

≥ 0. (3)

Hereσ is the one-dimensional stress,v is the particle veloc-
ity, ρ0 is the matter density in the reference configuration,Q
is the heat flux,E is the internal energy,S is the entropy,θ
is temperature,J is the extra entropy flux, subscripts denote
derivatives.

The canonical energy equation is derived from Eq. (2) by
introducing the free energy per unit volumeW := E − Sθ

and taking into account balance of linear momentum (1)

(Sθ)t +Qx = hint, hint := σεt −Wt. (4)

Multiplying Eq. (1) byux we then check that Eq. (1) yields
the following canonical balance of material momentum (cf.
[22])

Pt − bx = f int + f inh, (5)

where the material momentumP , the material Eshelby
stressb, the material inhomogeneity forcef inh, and the ma-
terial internal forcef int are defined by [22]

P := −ρ0utux, b := −

(
1

2
ρ0v

2 −W + σε

)
, (6)

f inh :=

(
1

2
v2
)
(ρ0)x − Wx|expl , (7)

f int := σuxx − Wx|impl . (8)

In the case of non-zero extra entropy flux, the second law
of thermodynamics gives

− (Wt + Sθt) + σεt + (θJ)x −

(
Q

θ
+ J

)
θx ≥ 0, (9)

whereε = ux is the one-dimensional strain measure.

2.1. Dual internal variables

Now we suppose that the free energy depends on the
internal variablesϕ, ψ and their space derivativesW =
W (ux, θ, ϕ, ϕx, ψ, ψx). Then the constitutive equations
follow

σ :=
∂W

∂ux
, S := −

∂W

∂θ
, τ := −

∂W

∂ϕ
,

η := −
∂W

∂ϕx

, ξ := −
∂W

∂ψ
, ζ := −

∂W

∂ψx

.

(10)

Taking into account constitutive relations (10), we can rep-
resent the source term in canonical energy equation (4) as
follows:

hint = Sθt + τϕt + ηϕxt + ξψt + ζψxt =

= Sθt + (τ − ηx)ϕt + (ηϕt)x+

+ (ξ − ζx)ψt + (ζψt)x.

(11)

Defining thermal and intrinsic parts of the internal heat
source,

hth := Sθt, h̃intr := (τ − ηx)ϕt + (ξ − ζx)ψt, (12)
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we arrive at another form of the canonical energy balance

(Sθ)t + Q̃x = hth + h̃intr, (13)

with the appropriate modification of heat flux

Q̃ = Q− ηϕt − ζψt. (14)

Similarly, calculating the internal force

f int = Sθx + τϕx + ηϕxx + ξψx + ζψxx =

= Sθx + (τ − ηx)ϕx + (ηϕx)x+

+ (ξ − ζx)ψx + (ζψx)x,

(15)

and defining of thermal and intrinsic parts of the internal
force

f th := Sθx, f̃ intr := (τ − ηx)ϕx + (ξ − ζx)ψx, (16)

we can represent the canonical equation of momentum as

Pt − b̃x = f th + f̃ intr, (17)

with the appropriate modification of the Eshelby stress

b̃ = −

(
1

2
ρ0v

2 −W + σε− ηϕx − ζψx

)
. (18)

Comparing modified heat flux (14) with the expression in
parenthesis in the last term of dissipation inequality (9),we
conclude that the extra entropy flux should be chosen as

J = −θ−1ηϕt − θ−1ζψt. (19)

The latter means that dissipation inequality (9) reduces to

Φ = (τ−ηx)ϕt+(ξ−ζx)ψt−

(
Q− ηϕt − ζψt

θ

)
θx ≥ 0.

(20)
If we assume that the intrinsic dissipation is independent
of temperature gradient, then we are forced to modify the
Fourier law

Q− ηϕt − ζψt = −kθx, (21)

to satisfy the thermal part of the dissipation inequality. Here
k > 0 is the thermal conductivity.

The remaining intrinsic part of dissipation inequality (20)
is nothing else but a linear combination of products of ther-
modynamic fluxes and forces (Table 1). It is straightfor-

TABLE I: Thermodynamic fluxes and forces.

Internal 1 Internal 2

Fluxes ϕt ψt

Forces τ − ηx ξ − ζx

ward to point out the simplest solution of the intrinsic part

of the dissipation inequality assuming linear relationships
between the thermodynamic fluxes and their multipliers, the
thermodynamic forces

ϕt = R11(τ − ηx) +R12(ξ − ζx), (22)

ψt = R21(τ − ηx) +R22(ξ − ζx). (23)

Equations (22) and (23) are evolution equations for dual in-
ternal variablesϕ andψ that close the thermoelasticity the-
ory.

2.2. Interpretation of internal variables

Coefficients in the right hand side of Eqs. (22)-(23) con-
stitute the conductivity matrixR

R =

(
R11 R12

R21 R22

)
. (24)

These coefficients may depend on state variables. For sim-
plicity, we consider here constant coefficients.

The interpretation of internal variables relates to prop-
erties of the conductivity matrix. The conductivity matrix
can be symmetric, if Onsager symmetry relations are valid
between its coefficients, or antisymmetric in the case of
Casimir relations. Using the fact that internal variables are
not specified yet, we may assume that a symmetric conduc-
tivity matrix is represented in its diagonal form

R =

(
r1 0

0 r2

)
, (25)

wherer1 andr2 are real and distinct eigenvalues of the ma-
trix R. In this case, the intrinsic part of the dissipation in-
equality (20) is a quadratic form

Φ = r1(τ − ηx)
2 + r2(ξ − ζx)

2 ≥ 0, (26)

and its positive definiteness is provided by the non-
negativity of the eigenvalues. The absence of coupling be-
tween internal variables takes the introduction of the second
one superfluous. It can be omitted without the loss of gener-
ality. The situation is reduced to the theory of single internal
variable of a dissipative nature [23].

We are interested in coupling, therefore, we have to look
for a more specific case with the conductivity matrix of the
form

R =

(
0 R12

−R12 R22

)
. (27)

The conductivity matrix is antisymmetric, but with a con-
tribution to the entropy production. The intrinsic part of the
dissipation inequality (20)

Φ = R22(ξ − ζx)
2 ≥ 0, (28)
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is satisfied by the non-negativity of the coefficientR22, but
internal variables cannot be considered relating to a mi-
crodeformation due to dissipation. As shown in [19], they
can be interpreted as the microtemperature.

3. STATEMENT OF THE PROBLEM

To be more specific, let us prescribe explicitly the de-
pendence of the free energy on state variables. We use a
quadratic free energy function like in [19]

W =
1

2
(λ+ 2µ)u2x −

ρ0cp
2θ0

(θ − θ0)
2 +

+m (θ − θ0)ux +Aϕxux +
1

2
Cϕ2

x +
1

2
Dψ2.

(29)

Hereux = ε is the one-dimensional strain measure,cp is
the heat capacity, the thermoelastic coefficientm is related
to the dilatation coefficientα and the Lamé coefficientsλ
andµ bym = −α(3λ + 2µ), θ0 is the reference tempera-
ture,A,C, andD are material parameters, subscripts denote
derivatives. As one can see, only contributions of gradients
of the primary internal variable and of the second internal
variable itself are included here. Constitutive relations(10)
determine the macrostressσ

σ :=
∂W

∂ux
= (λ+ 2µ)ux +m (θ − θ0) +Aϕx, (30)

the microstressη

η := −
∂W

∂ϕx

= −Cϕx −Aux, (31)

zero interactive internal forceτ , since free energy does not
depend explicitly onϕ,

τ := −
∂W

∂ϕ
= 0, (32)

and auxilary quantities related to the second internal vari-
able

ζ = −
∂W

∂ψx

= 0, ξ = −
∂W

∂ψ
= −Dψ, (33)

correspondingly.

According to evolution equations (22)-(23) and account-
ing the form of the conductivity matrix (27), we have

ϕt = R12(ξ − ζx),

ψt = −R12(τ − ηx) +R22(ξ − ζx).
(34)

Due to Eq. (33) evolution equation for the primary internal
variable (34)1 is reduced to

ϕt = −RDψ, (35)

and Eq. (34)2 becomes (denotingI = 1/R2

12
D)

Iϕtt +
R22

R2

12

ϕt = Cϕxx +Auxx, (36)

which is a Cattaneo-Vernotte-type hyperbolic equation [11]
for the primary internal variableϕ.

Correspondingly, energy conservation equation (4) deter-
mine the heat conduction equation

ρ0cp θt − (kθx)x = mθ0uxt +
R22

R2

12

ϕ2

t , (37)

which is influenced by a source term depending on the in-
ternal variableϕ. Equation of motion (1) obtains a source
term as well

ρ0utt = (λ+ 2µ)uxx +mθx +Aϕxx, (38)

due to definition of macrostress (30). Therefore, all three
governing equations (36) - (38) are coupled. This cou-
pling can induce wave-like propagation for macrotemper-
ature [20, 21].

To verify the propagation of expected thermal waves in
a realistic situation, we solve governing equations (36) -
(38) in the case of plane wave motion in a thermoelastic
half-space by means of the wave propagation algorithm ex-
plained in detail in [21]. It is assumed that the half-space is
initially at rest. A heat pulse is applied at the traction free
boundary plane for the first 60 time steps following the rule

θ̄(0, t) =
1

2

(
1 + cos

(
π(t− 30∆t)

30

))
. (39)

The time history of the thermal loading is shown in Fig. 1.
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FIG. 1: Time history of thermal loading.

There are three kinds of parameters to be prescribed for
the performance of calculations: material parameters, scale
parameters, and coupling parameters. Material parameters
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for the carrier medium are chosen similar to that for silicon
[Si] [24]:
The macroscopic density,ρ0, is equal to 2390 kg/m3, the
Lamé coefficientsλ = 48.3 GPa, andµ = 61.5 GPa, the
heat capacity,cp = 800 J/(kg K), the reference temperature,
θ0 = 300 K, the thermal coductivity,k = 149 W/(m K), the
thermal expansion coefficient,α = 2.610−6 1/K.

It is assumed that the microstructure is formed by copper
particles embedded randomly into silicon. Material param-
eters of copper are [25]:
The macroscopic density,ρ0, is equal to 8960 kg/m3, the
Lamé coefficientsλ = 101.5 GPa, andµ = 47.75 GPa, the
heat capacity,cp = 386 J/(kg K), the reference temperature,
θ0 = 300 K, the thermal coductivity,k = 401 W/(m K), the
thermal expansion coefficient,α = 16.510−6 1/K.

The scale of excitation,U0, is chosen as 6% of the length
of the computational domain,L, so that

U0

L
= 0.06. (40)

The scale of the microstructure,l, is even less

l

L
= 0.002. (41)

Coupling parameters used in calculations are

R22

R2

12

, A, and C, (42)

because the parameterD is related to the microinertia mea-
sureI which can be identified with the density of copper.
We will study the influence of the values of the coupling pa-
rameters on the propagation of thermoelastic waves in the
microstructured material.
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FIG. 2: Stress distribution at 400 time steps for different values
of the normalized model parametera = A/ρ0c
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FIG. 3: Distribution of macrotemperature at different timeinstants
for values of model parametersa = A/ρ0c
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2

12ρ0c0 = 0.2.

4. NUMERICAL RESULTS

All calculations were performed by means of the finite-
volume numerical scheme [21] using the value of the
Courant number 0.98. This scheme is a modification
of the previously reported conservative finite-volume algo-
rithm [26, 27] adapted for microstructure modeling. It be-
longs to a broad class of finite-volume methods for thermo-
mechanical problems [28–30]

To exclude the direct influence of stress field on the
macrotemperature, it was assumed that the velocity gradient
in Eq. (37) is negligible. First, massive diagnostic calcula-
tions determined the range of model parameters where the
numerical scheme is stable:

0 ≤
R22l

R2

12
ρ0c0

≤ 4, 0 ≤
A

ρ0c20
≤ 0.02,

0 ≤
C

ρ0c20
≤ 2,

(43)

Then it was recognized that the influence of microstructure
on the amplitude of the stress wave is small. It is illustrated
in Fig. 2, where the difference in the corresponding curves
can be seen only under a large zoom. The correspond-
ing influence of microstructure on the macrotemperature is
small as well, but it demonstrates a wave-like nature as it
can be seen in Fig. 3. Without coupling, these wave-like
temperature profiles do not appear [21].

In spite of the small amplitude of the microstructure in-
fluence, it is possible to analyze its variation depending on
the values of coupling parameters. The parameterA de-
termines the magnitude of the coupling between the equa-
tion of motion and the evolution equation for microtemper-
ature. If this parameter is zero, there is no coupling and
the variation of the microtemperature is absent (Fig. 4).
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FIG. 4: Microtemperature variation at 400 time steps for different
values of the normalized model parametera = A/ρ0c
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FIG. 5: Macrotemperature variation at 400 time steps for different
values of the normalized model parametera = A/ρ0c
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Here values of parametersC andR22/R
2

12
were chosen as

c = C/ρ0c
2

0
= 1.0 andr = R22l/R

2

12
ρ0c0 = 0.5, respec-

tively. The higher the value of the parameterA, the higher
amplitude of the microtemperature is achieved. The same
is true for the variation of the macrotemperature, as it is
seen in Fig. 5. It is clearly seen that there is practically no
contribution of the microtemperature close to the bound-
ary. Fluctuations of the microtemperature are induced by
the stress and they are localized in the zone with non-zero
stress values. In its turn, the macrotemperature is affected
by the microtemperature due to the nonlinear term in the
right hand side of Eq. (37).

A similar trend is observed for the variation of the ma-
terial parameterC, both for the microtemperature (Fig. 6)
and for the macrotemperature (Fig. 7). This material pa-
rameter plays no role in coupling and influences the mag-
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FIG. 6: Microtemperature variation at 400 time steps for different
values of the normalized model parameterc = C/ρ0c
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FIG. 7: Macrotemperature variation at 400 time steps for different
values of the normalized model parameterc = C/ρ0c
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nitude of the microtemperature. The fixed values of pa-
rametersA andR22/R

2

12
in Figs. 6 and 7 were chosen

asa = A/ρ0c
2

0
= 0.02 andr = R22l/R

2

12
ρ0c0 = 0.2,

respectively.

The coupling between micro- and macrotemperatures is
provided by the ratio of the coefficients of the conductivity
matrixR22/R

2

12
. However, its variation shows the reverse

trend: maximal amplitudes of the microtemperature and its
influence on the macrotemperature are observed for small
values of this ratio (Figs. 8 and 9). This is because of the
appearance of this parameter at the damping term in the left
hand side of evolution equation of microtemperature (36).
ParametersA andC in Figs. 8 and 9 had values satisfying
a = A/ρ0c

2

0
= 0.02 andc = C/ρ0c

2

0
= 1.0, respectively.
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5. DISCUSSION

Mathematical model (36) - (38) represents a coupled sys-
tem of thermoelasticity equations where besides the tradi-
tional equations of motion and heat conduction, an evolu-
tion equation for the internal variableϕ is included. This
internal variable is interpreted as a microtemperature or,in
other words, as a temperature fluctuation due to the mi-
crostructure.

The results of computation show that besides the usual
diffusion of the macrotemperature in course of time, the
wave-type behavior of temperature is seen (Figs. 3, 5, 7,
9). This is possible because of coupling effects between

microtemperature (notice that Eq. (36) has a hyperbolic op-
erator), stress, and macrotemperature. The reason why the
microtemperature is governed by a hyperbolic equation is
based on the inclusion of time rates of internal variables
into the modified heat flux (Eq. 14).

Although the observed effect of the microstructure is
small, it exists in the case of realistic values of material pa-
rameters. This effect can be amplified by a choice of suit-
able materials or even by a design of corresponding artificial
materials.

The formulated model includes coupling parameters in
addition to material parameters. Given the present form of
free energy (29) and evolution equations for internal vari-
ables (34), we have three coupling parameters. The ranges
of these parameters are established for the prescribed mate-
rials (see condition (43)), and their influence on the wave-
like temperature behavior is analyzed. To exclude the direct
influence of stress on the temperature field, the velocity gra-
dient is neglected.

6. CONCLUSIONS

To sum up, it is shown that due to the existence of a mi-
crostructure (inhomogeneity of a material), the heat wave in
a solid which accompanies the stress wave, may cause tem-
perature fluctuations well ahead of the usual thermal diffu-
sion process.

This paper has a clear novelty in comparison with previ-
ously reported results:

- The material formulation is clearly explained (omitted
in earlier studies);

- The theoretical part includes detailed analysis ofhint

andf int, which are crucial for the phenomenon;
- The real material parameters are used and ranges of cou-

pling parameters are established;
- The study is focused on the influence of the variation of

coupling parameters, which open doors for experiments.

Clearly the problem is worth to further studies, espe-
cially the values of coupling parameters should be estimated
either from experiments or from mesoscopic calculations.
However, the model and numerical simulation described
above cast more light on the extremely interesting phenom-
ena.
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