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Thermoelastic wavesin microstructured solids: dual internal variables approach
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A coupled system of thermoelasticity equations includingegolution equation for an internal variable in
addition to the traditional equations of motion and heaticmtion is solved numerically. The internal variable is
interpreted as a microtemperature or, in other words, anpégature fluctuation due to the microstructure. The
results of computation show that besides the usual diffusiéhe macrotemperature in course of time, the wave-
type behavior of temperature is observed because of cqupfiects between microtemperature, stress, and
macrotemperature. Although the observed effect of theastoucture is small, it exists in the case of realistic
values of material parameters. The formulated model irducbupling parameters in addition to material
properties. The ranges of these parameters are estabitibd prescribed materials and their influence on the
wave-like temperature behavior is analyzed.
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1. INTRODUCTION Biot and Fourier, is based on phenomenological models us-
ing the theory of continua. Classical theories of heat con-

The classical continuum theory is based on the assum duction neglect the microstructure of a material (see, for
tion of the homogeneity of mater?/als Clearly this assum E’example L1D)). The theory of thermoelasticity is based on
o geneity or m : yh pcoupling between heat conduction and elastic deformation
tion is a constraint in reflecting the real properties of man

: ) . L : Yand follows also the assumption of homogeneity. Even intu-
materials, especially when dynamic loading is considere

; A . Jtively it is understood that the existence of a microstuuet
The early studies by Mindlin 1] and Eringen and SUhUbIshould influence the heat conduction and also the propaga-

[2] have paved the way to develop mathe_maucal mOde'%on of thermoelastic waves. However, as noted by Tamma
for inhomogeneous microstructured materials. The prob-

lem is becoming very important due to the wide z;\pplicationand Zhou [10]: "The heat transport mechanisms in mate-

of alloys, composites, functionally graded materials, etc rials with nonhomogeneous inner.structures is cle_arly not
in conter’nporary tech’nology Generalized continuur;{ the_undgrstqqd to date’, Ml.JCh attention has_ t_)een paid to the
ories extend conventional cc;ntinuum mechanics for incor-app-)hc"mIIIty of the Fourier law for descnblr_lg the propa-

gation of thermoelastic waves — see overviews by Joseph

porating intrinsic microstructural effects into the mecha and Preziosi[[11], Chandrasekharaiahl [12], Tamma and
ical behaviour of material$|[B-5, etc.]. A leading concepchou F10], anldﬂmg)’nographs by Hetnarski[an]a Reza Eslami

is to separate macro- and microstructure in continua and tm] Ignaczak and Ostoja-Starzewski[14], Straughah,[15]

formulate the conservation laws for both structures S€PY; here the modified Cattaneo, Jeffreys, and other models are

rately BD” Recently, an app_roach IS proposed to use Inémalysed. These modified models predict the existence of
ternal variable< [6] into modelling of microstructure. dnt

nal variables are supposed to compensate for our lack of thermal waves but the question about the relaxation time(s)
PP P TR still not answered with the full physical rigour. It has

precise de_scription ofa microstrgcture an_d describe the "Nveen shown that given the estimates for the relaxation time,
flue_nce of internal structures as internal f!elas [7]. . Ina_adzrn_ the wave characteristics in modified models are effected at
variables are usually taken to be responsible for dissipati high frequencies [16]. It should be stressed that the modi-

processes and must satisfy the second law of thermodynarp- . . }
ics (seel[6]). The concept of dual internal variabiés [8] is ;ﬂed models (including the two-temperature model by Chen

Y ! : . .—and Gurtin [1]) are also based on the assumption of the
generalization from a single internal variable and permit : .
. ; omogeneity of the material.
to model also conservative processes. In this way, for ex-
ample, it is possible to represent the Mindlin micromorphic
theory [1] also by using the concept of internal variables
and the material formulation of continuum mecharlics [9].

Introducing internal variables into the description ofrthe
moelastic waves opens a new, physically clear way to de-
scribe thermal effects in microstructured materials. Even
The heat conduction phenomenon, starting already frorf{ W€ consider temperature as an internal variable and
displacements as observable variables, a simple example
shows that in this case a discontinuity of temperature may
exist provided the gradient of the initial excitation isgar

*Corresponding author. Email: Arkadi.Berezovski@csdecTel.: +372 enOUghl-[-_lB]- Based on the concept quufil i!"temal variables
6204164, Fax: +372 6204151. [8], a consistent theory of thermoelasticity is bulilt/[19h.
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addition to the coupling of elastic and thermal effects @n th and taking into account balance of linear momentim (1)
macrolevel, this theory includes also the coupling between ‘ .

the macro- and microlevels and on the microlevel. In this (SO); + Q= h'™, K™ = oey — W, (4)
case, the wave-like behaviour of microtemperature (fluctua

tion of temperature in microstructural elements) is pdesib Multiplying Eq. (T) by, we then check that Ed.1(1) yields
without proposing the finite speed of thermal waves on thdhe following canonical balance of material momentum (cf.
macrolevel. This idea was recently reported by Berezovs

and Engelbrech{ [20] and the numerical scheme for such int inh

calculations presented by A. Berezovski and M. Berezovski Py = by = [+ 7, ()

21 where the material momenturRR, the material Eshelby
In this paper we focus on coupling effects and leave asidetress, the material inhomogeneity forgé™, and the ma-

the non-dissipative and fully dissipative cases analyred iterial internal forcef™* are defined by [22]

[18]. In Section 2, the corresponding one-dimensional

mathematical model for thermoelastic waves in microstruc-

tured solids is presented by using the concept of dual in-

ternal variables. The attention is paid to thermodynamic

fluxes and forces and to the interpretation of internal vari-

ables. Section 3 describes the statement of the problem for inh 9

thermoelastic plane wave propagation an a half space spec- frt= (5” ) (Po)s — Wm|ezpl ’ @)

ifying governing equations and coupling parameters. The

numerical results shown in Section 4 are obtained by means

of the finite-volume algorithm presented earlierlin [21}. Fi fi = oy, — Ww|l.mpl . (8)

nally, in Section 5, the discussion about the novelty of mod-

elling and results is presented and conclusions are writtetn the case of non-zero extra entropy flux, the second law

separately in Section 6. of thermodynamics gives

1
P := —poustty, b:=— <§p0v2 - W+ 05) ,  (6)

Q
2. ONE-DIMENSIONAL THERMOELASTICITY WITH — (W + 50;) + oee + (0J), — (g +J|6,>0, (9
DUAL INTERNAL VARIABLES

wherees = u,, is the one-dimensional strain measure.

The most suitable framework for the generalization of
continuum theory by weakly nonlocal dual internal vari-
ables enriched by an extra entropy flux is the material for- 2.1. Dual internal variables
mulation of thermomechanids [22]. We present this frame-
work on the example of one-dimensional thermoelasticity. Now we suppose that the free energy depends on the

The full 3D presentation is given if [19]. internal variablesp, v and their space derivatived =
The one-dimensional motion of thermoelastic conductorW(u””’ 0,0z, 9s). Then the constitutive equations
. ; ollow
of heat is governed by standard local balance laws for linear

momentum and energy (no body forces) OW oW OW

g = —, = ——, Ti=——,
(po’U)t — Oy = O, (1) 6uz 89 8@ (10)

1 g DWW oW

(5/)01)2 + E) —(ov—Q), =0, (2) . Oz’ oY’ . o

t

Taking into account constitutive relations10), we canrep
resent the source term in canonical energy equafion (4) as
follows:

and by the second law of thermodynamics

Sy + <%+J) > 0. 3)
. . . co ) R = SO, + Top + Nt + Ep + by =
Hereo is the one-dimensional stregsis the particle veloc-

ity, po is the matter density in the reference configurati@n, =50, + (T = 12)pr + (Npt)a+ (11)
is the heat flux [ is the internal energy is the entropyg + (€ = CG)be + (Cr)
ljlsetr?\gzséiture] Is the extra entropy flux, subscripts denote Defining thermal and intrinsic parts of the internal heat
source,
The canonical energy equation is derived from E&. (2) by _
introducing the free energy per unit voluriié := £ — S0 Rt = 86,, BT = (1 — ) 4+ (€ — G, (12)
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we arrive at another form of the canonical energy balance of the dissipation inequality assuming linear relatiopshi
between the thermodynamic fluxes and their multipliers, the

(S0)¢ + Qo = " 4+ H™'T, (13)  thermodynamic forces
with the appropriate modification of heat flux o1 = Ra1 (T — 1) + Ri2(§ — G), (22)
Q=Q—ner — . (14) Yr = Ro1 (7 — ) + Roa(€ — (u). (23)
Similarly, calculating the internal force Equations[(2R) and (23) are evolution equations for dual in-
- ternal variables ands) that close the thermoelasticity the-
J7 =800 + 700 + NPra + Ep + (ap = ory.
=50, + (T — 1) e + (N02)a+ (15)

and defining of thermal and intrinsic parts of the internal

2.2. Interpretation of internal variables

force Coefficients in the right hand side of Egs.](22)(23) con-
~ stitute the conductivity matriR.
fth = 50, fmtr = (T = M)z + (§ — C2)Ybe, (16)
. . _ [ R Riz
we can represent the canonical equation of momentum as R = <R21 R22> : (24)
Py—by = "4 (17)  These coefficients may depend on state variables. For sim-

with the appropriate modification of the Eshelby stress plicity, we consider here constant coefficients.

The interpretation of internal variables relates to prop-
7 1 ties of the conductivity matrix. The conductivity matrix
b=—(=pov® = W + 0c — gy — . 18) °©f ductivity - Ity .
( ro 1P sz) (18) can be symmetric, if Onsager symmetry relations are valid

. . , . between its coefficients, or antisymmetric in the case of
Comparing modified heat fluk (14) with the expression incagimir relations. Using the fact that internal variables a

parenthesis in the last term of dissipation inequalily$®, ot specified yet, we may assume that a symmetric conduc-
conclude that the extra entropy flux should be chosen as tivity matrix is represented in its diagonal form

J==0""np — 071 (i (19) R (7‘1 0) | (25)

The latter means that dissipation inequalifly (9) reduces to 0 r
Q — e — Ciy wherer; andr, are real and distinct eigenvalues of the ma-
Q= (T—m2)pr+(§—Ca )b — <f> b2 > 0. trix R. In this case, the intrinsic part of the dissipation in-
(20) equality [20) is a quadratic form
If we assume that the intrinsic dissipation is indepe_ndent B =y (1 —10)2 + (€ — C)2 >0, (26)
of temperature gradient, then we are forced to modify the
Fourier law and its positive definiteness is provided by the non-
negativity of the eigenvalues. The absence of coupling be-
Q — npr — iy = —kby, (21)  tweeninternal variables takes the introduction of the sdco

one superfluous. It can be omitted without the loss of gener-
ality. The situation is reduced to the theory of single intér
variable of a dissipative nature [23].

to satisfy the thermal part of the dissipation inequalitgrél
k > 0is the thermal conductivity.

The remaining intrinsic part of dissipation inequalify}20  \ye are interested in coupling, therefore, we have to look

is nothing else but a linear combination of products of therq 5 more specific case with the conductivity matrix of the
modynamic fluxes and forces (Table 1). It is straightfor-¢j .,

TABLE I: Thermodynamic fluxes and forces. R= 0 Fa . (27)
—Ri2 R

Internal 1 Internal 2
Fluxe ¢ Py
Forces 7—n. | € — (o

The conductivity matrix is antisymmetric, but with a con-
tribution to the entropy production. The intrinsic part loét
dissipation inequality{20)

ward to point out the simplest solution of the intrinsic part ® = Roo(€ — ()* >0, (28)



Journal of Coupled Systems and Multiscale Dynamitarch 2013

is satisfied by the non-negativity of the coefficiét, but  and Eq. [3%) becomes (denoting = 1/R?,D)
internal variables cannot be considered relating to a mi-
crodeformation due to dissipation. As shownlinl/[19], they

R
. . Tpu + 20, = Cpuy + Atige, 36
can be interpreted as the microtemperature. o R2, ot P o (36)

which is a Cattaneo-Vernotte-type hyperbolic equafiofj [11
3. STATEMENT OF THE PROBLEM for the primary internal variable.
Correspondingly, energy conservation equafidn (4) deter-

To be more specific, let us prescribe explicitly the de-mine the heat conduction equation
pendence of the free energy on state variables. We use a

) 9F R
quadratic free energy function like in [19] pocy b — (K8,), = mBoua: + R_;z(p?’ 37)
_ 1 2 PoCp 2 2
W=g Ot 2u)u; = 20, (0= 60)"+ 29) which is influenced by a source term depending on the in-
1,5 5 ternal variablep. Equation of motion[{1) obtains a source
Hereu, = ¢ is the one-dimensional strain measutgjs ottt = (A 4 2) Uy + Mby + Apga, (38)

the heat capacity, the thermoelastic coefficienis related
to the dilatation coefficientr and the Lamé coefficients  due to definition of macrostreds {30). Therefore, all three
andu by m = —a(3X\ + 2p), 6, is the reference tempera- governing equationd (86) [ (B8) are coupled. This cou-
ture, A, C, andD are material parameters, subscripts denotepling can induce wave-like propagation for macrotemper-
derivatives. As one can see, only contributions of gragientature [20[ 211].

of the primary internal variable and of the second internal
variable itself are included here. Constitutive relati@s)
determine the macrostress

To verify the propagation of expected thermal waves in

a realistic situation, we solve governing equatidng (36) -

(@8) in the case of plane wave motion in a thermoelastic
oW half-space by means of the wave propagation algorithm ex-

0i=5 = (A +2p)uy +m (0 — ) + Apz,  (30)  plained in detail in[[21]. It is assumed that the half-space i
initially at rest. A heat pulse is applied at the tractiorefre
the microstresg boundary plane for the first 60 time steps following the rule

W ~ 1 t — 30At
e ey w00k (e () o
Don 2 30

zero interactive internal force, since free energy does not The time history of the thermal loading is shown in Fig. 1.
depend explicitly onp,

1

T = —8—W =0, (32)
6@ 08 i
and auxilary quantities related to the second internal vari%
able & o6} 1
oW oW 3
= = = O = —— = —D 33 X 04 + 4
C==gp, =0 &=y =D @) 3
correspondingly. “ 02 1

According to evolution equations (24)-{23) and account-
ing the form of the conductivity matrik (27), we have 0

01 = Ri2(§ — Co)s
Yy = —Ria(T — 1) + Roa(§ — (o).

Due to Eq. [3B) evolution equation for the primary internal

0 20 40 60 80 100
Time steps

(34)
FIG. 1: Time history of thermal loading.

variable [3%) is reduced to There are three kinds of parameters to be prescribed for
the performance of calculations: material parameter¢g sca
wr = —RD, (35) parameters, and coupling parameters. Material parameters
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for the carrier medium are chosen similar to that for silicon 0.02

100 time sfeps

[Sl] [@] 200 time steps
. . . 3
The macroscopic densityy, is equal to 2390 kg/f the x10 200 time 323?

0.015

Lamé coefficients\ = 48.3 GPa, and. = 61.5 GPa, the
heat capacity;, = 800 J/(kg K), the reference temperature,
0o = 300 K, the thermal coductivity; = 149 W/(m K), the
thermal expansion coefficient,= 2.610~6 1/K.

0.01 |

lized temperature

Itis assumed that the microstructure is formed by coppeig
particles embedded randomly into silicon. Material param-2
eters of copper aré [25]:

The macroscopic densityy, is equal to 8960 kg/f the
Lamé coefficients\ = 101.5 GPa, angt = 47.75 GPa, the o ‘ A N
heat capacity;, = 386 J/(kg K), the reference temperature, 0 50 100 150 200 250 300 350 400 450
0y = 300 K, the thermal coductivity; = 401 W/(m K), the Space steps

thermal expansion coefficient,= 16.51076 1/K.

0.005

FIG. 3: Distribution of macrotemperature at different timstants

The scale of excitatiorl/y, is chosen as 6% of the length ¢\ a1ues of model parametesis— A/poc — 0.02, C/poc? —

of the computational domait,, so that 1.0, Ra2l/R32poco = 0.2.
U
=2 = 0.06. (40)
L 4. NUMERICAL RESULTS

The scale of the microstructurig s even less
All calculations were performed by means of the finite-
L — 0.002. (41) volume numerical schemé [21] using the value of the
Courant number 0.98.  This scheme is a modification

of the previously reported conservative finite-volume algo
rithm ﬂI;E,] adapted for microstructure modeling. It be-
Rys longsto a broad class of finite-volume methods for thermo-
R A, and C, (42)  mechanical problem5 [28-30]

_ S To exclude the direct influence of stress field on the
because the parametris related to the microinertia mea- macrotemperature, it was assumed that the velocity gradien
surel which can be identified with the density of copper. in Eq. (37) is negligible. First, massive diagnostic cadeul

We will study the influence of the values of the coupling pa-tions determined the range of model parameters where the
rameters on the propagation of thermoelastic waves in thaumerical scheme is stable:

microstructured material.

Coupling parameters used in calculations are

Rool
0< o3 <4, 0<— <0.02,
0.001 ‘ : : : R2, poco poc2
(43)
0 C
0<—5 <2
-0.001 | B LoCy

-0.002 | 1 Then it was recognized that the influence of microstructure

-0.003 | . on the amplitude of the stress wave is small. It is illustlate

in Fig. [, where the difference in the corresponding curves
can be seen only under a large zoom. The correspond-
ing influence of microstructure on the macrotemperature is
-0.006 | 1 small as well, but it demonstrates a wave-like nature as it

-0.004 - 1

Normalized stress

-0.005 - b

0007 | @00 — | can be seen in Fig.] 3. Without coupling, these wave-like
' P temperature profiles do not appdar [21]

o008 20002 — ‘ ‘ p p pp .
’ 0 100 200 300 400 500

In spite of the small amplitude of the microstructure in-
fluence, it is possible to analyze its variation depending on
the values of coupling parameters. The paramdtete-

FIG. 2: Stres_s distribution at 400 time steps f20r differemglues termines the magnitude of the coupling between the equa-
of the normalized model parameter = A/poco. (C/poco = tion of motion and the evolution equation for microtemper-
1.0, Roal/ Rizpoco = 0.5.) ature. If this parameter is zero, there is no coupling and
the variation of the microtemperature is absent (Hig. 4).

Space steps
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=
N

10 a=0.0 —— =00 —
X o8 L a=0.001 —— | x 10° =10 ——
a=0.002 —— 15} ¢c=20 —
0.6 A
%) o) 1+
S5 04Ff 1 E]
8 8
3 o2f | g 057
5 5
L 0 2 0
e} °
g 2
5 027 1 T -05
£ £
5 -04f 1 S
z z 1k
0.6 .
o8 L | 15
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Space steps Space steps

FIG. 4: Microtemperature variation at 400 time steps fofedént ~ FIG. 6: Microtemperature variation at 400 time steps fofedént
values of the normalized model parameter= A/poci. (Values  values of the normalized model parameter C/poci. (Values

of C andR22 /R, are fixed.) of A andRas/R3, are fixed.)
a:‘0.0 .
0.014 a=0.001 —— | oo —
x 10° a=0.002 —— 0.014 | =10 1
0.012 1 x 10° c=2.0 ——
o 0.012 1
3
& o001} 1 ®
9] 2
g & o001 1
§ o008 || | o}
3 §  o.008 ]
N
& 0006 | 1 ©
£ = 0.006 ]
2 0004 ] g
2 0004 |
0.002 1
0.002 1
o ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 o ‘ ‘ ‘ ‘ ‘
Space steps 0 50 100 150 200 250 300 350 400 450

Space steps

FIG. 5: Macrotemperature variation at 400 time steps fdedght o _ _
values of the normalized model parameter= A/poci. (Values  FIG. 7: Macrotemperature variation at 400 time steps fdecght
of C andR22 /R, are fixed.) values of the normalized model parameter C/poc. (Values

of A andR22/R3, are fixed.)

Here values of parametefsand R,2 / R?, were chosen as
c = C/pocd = 1.0 andr = Rgal/R2,p0co = 0.5, respec- . . ,
tively. /Theohigher the value of t{1e1p2arameﬂarthe higher ~Nitude of the microtemperature. The fixed values of pa-
amplitude of the microtemperature is achieved. The saméameierifl a”fj‘ }EQQ/RéZ 'ndF'gf' B 7”05'7 were:chozsen
is true for the variation of the macrotemperature, as it is*> % ~— /lpoco = 0.02andr = Rxnl/Rippoco = 0.2,
seen in Fig[h. It is clearly seen that there is practically ndespectively.

contribution of the microtemperature close to the bound- Th lina betw . d N t .
ary. Fluctuations of the microtemperature are induced by € coupiing between micro- and macrolemperatures Is

the stress and they are localized in the zone with non-zerBrOVided by the ratio of the coefficients of the conductivity

; 5 . o
stress values. In its turn, the macrotemperature is affecteMarx Ra2/Ri,. However, its variation shows the reverse

by the microtemperature due to the nonlinear term in th‘;Ifrend: maximal amplitudes of the microtemperature and its
right hand side of Eq[(37) influence on the macrotemperature are observed for small

values of this ratio (Figd.18 arid 9). This is because of the
A similar trend is observed for the variation of the ma- appearance of this parameter at the damping term in the left
terial paramete€’, both for the microtemperature (Figl 6) hand side of evolution equation of microtemperatiiré (36).
and for the macrotemperature (Fig. 7). This material paPParameterst andC in Figs.[8 and® had values satisfying
rameter plays no role in coupling and influences the maga = A/poc3 = 0.02 andec = C'/pocé = 1.0, respectively.
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N

i — microtemperature (notice that E.136) has a hyperbolic op-
| o — | erator), stress, and macrotemperature. The reason why the
' microtemperature is governed by a hyperbolic equation is
based on the inclusion of time rates of internal variables
into the modified heat flux (E._1L4).

Although the observed effect of the microstructure is
0 small, it exists in the case of realistic values of materal p
rameters. This effect can be amplified by a choice of suit-
-0.5 | 1 able materials or even by a design of corresponding arfificia
materials.

<
9N
o
w
=
o

=
T
!

o
o
T
L

Normalized temperature

The formulated model includes coupling parameters in
0 50 100 150 200 250 300 350 400 450 addition to material parameters. lee_n the present form pf
Space steps free energy[(29) and evolution equations for internal vari-

ables[(34), we have three coupling parameters. The ranges

FIG. 8: Microtemperature variation at 400 time steps fofedént qf These pararg_(-:_ters a;e eStagl,ltﬁh?q f?lr the presctl;:bed mate
values of the normalized model parameter= Ra2l/R3,poco. rais (see conditiorL(4 .))' an eir influence on the wave-
(Values ofA andC are fixed.) like temperature behavior is analyzed. To exclude the tirec
influence of stress on the temperature field, the velocity gra

dient is neglected.

0.014 | 02— |
x 10° =40 ——

o 0.012 r 1 6. CONCLUSIONS
g ootf 1
“éi To sum up, it is shown that due to the existence of a mi-
kS 0.008 1 1 crostructure (inhomogeneity of a material), the heat wave i
L — | a solid which accompanies the stress wave, may cause tem-
£ perature fluctuations well ahead of the usual thermal diffu-
2 0004 . sion process.

0.002 : This paper has a clear novelty in comparison with previ-

ously reported results:
0 0 50 100 150 200 250 300 350 400 450 - The material formulation is clearly explained (omitted
Space steps in earlier studies);

- The theoretical part includes detailed analysis6f
FIG. 9: Macrotemperature variation at 400 time steps fdectht ~ andf*"*, which are crucial for the phenomenon;
values of the normalized model parameter= Raal/R%poco. - The real material parameters are used and ranges of cou-
(Values ofA andC are fixed.) pling parameters are established;
- The study is focused on the influence of the variation of
coupling parameters, which open doors for experiments.

5. DISCUSSION . .
Clearly the problem is worth to further studies, espe-

) cially the values of coupling parameters should be estichate
Mathematical mode[(36) E(38) represents a coupled sySgjther from experiments or from mesoscopic calculations.
tem of thermoelasticity equations where besides the tradiggyever. the model and numerical simulation described

tional equations of motion and heat conduction, an evoluypgye cast more light on the extremely interesting phenom-
tion equation for the internal variable is included. This g4

internal variable is interpreted as a microtemperaturaor,
other words, as a temperature fluctuation due to the mi-

crostructure. Acknowledgments
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