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The article deals with the analysis of three complicated one-dimensional
evolution equations, the solutions of which can be classified as soliton
ensembles or solitonic structures. The case studies from the physical
viewpoint are: (i) martensitic–austenitic alloys; (ii) hyperelastic rod and
(iii) granular materials. The corresponding evolution equations governing
the propagation of longitudinal waves include higher order nonlinear and
dispersive terms and are nonintegrable. Numerical simulation is carried out
by the pseudospectral method. The first class of solutions involves solitons
with nonvanishing oscillatory tails and wave packets called solitonic
structures. The second class includes special soliton ensembles or more
exactly – plaited solitons. The emergence of such entities and their
interaction demonstrate the solitonic character of waves.

Keywords: dispersion; nonlinearities; evolution equations; solitonic
structures; soliton ensembles

AMS Subject Classifications: 35Q74; 74J30; 74J35; 65M70

1. Introduction

This article explains the role of complicated evolution equations in the analysis of
wave motion and, as a result, reveals some complicated solitonic solutions. The
classical wave equations are hyperbolic and within the linear theory well-understood
from a long time (see, e.g. [1]). In the simplest one-dimensional case the wave
equation describes two waves, propagating to the right and to the left and possesses
the d’Alembert solution. This is a cornerstone of mathematical physics and many
practical cases are solved using such a model. However, during the last half a
century, the attention has been turned also towards evolution equations which
describe just one wave propagation along a properly chosen characteristic. Such an
approach permits explicitly with a certain accuracy to account also for nonlinear,
dispersive, dissipative a.o. effects which accompany the wave motion and can
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sometimes bring in novel phenomena. The highlight of nonlinear evolution equations
is without any doubt the concept of soliton – a solution to an evolution equation
with a specific nonlinear and dispersive (higher order) terms. Soliton is a wave in
which the nonlinear and dispersive effects are balanced and therefore it propagates as
a stable entity and interacts with another similar entity without losing its shape and
velocity.

There is no need to describe here the history of solitons. First seen and described
by John Scott Russel in 1834 as a wave in a narrow canal next to Edinburgh, the
mathematical model of this phenomenon was derived by Korteweg and de Vries [2]
and bears now their name – the Korteweg–de Vries (KdV) equation. The real
meaning of this equation and its richness was understood only after the seminal
paper by Zabusky and Kruskal [3] who demonstrated the emergence of solitons from
a harmonic input and coined the concept of soliton. This article is an excellent
example of a fruitful computational experiment. Since then, the solitons are widely
studied theoretically (see, history by Weissert [4]) and many practical applications
have followed.

One of the first overviews on the essence and the analysis of the KdV equation
was the overview by Jeffrey and Kakutani [5]. In 1980s, the general theory was
developed in order to derive evolution equations from rather general models of wave
motion, see [6–8] etc. and the references therein. Clearly, the attention was focused to
nonlinear models which have added a new breath to understanding of physical
phenomena.

The description of a soliton is based on the iconic KdV equation which involves
the quadratic nonlinearity and cubic dispersion. As mentioned by Ablowitz and
Clarkson [9], this is the simplest nonclassical partial differential equation (PDE)
possessing the minimum number of independent variables (one), the lowest order of
the derivative not considered classically (three), the simplest such term (an unmixed
derivative), the simplest additional term to make the equation nonlinear (quadratic),
etc. Also the KdV equation is not only a rich model, it possesses specific
mathematical beauty [10].

However, the underlying physics of wave processes can be much more
complicated than that described by nonlinearity and dispersion embedded into the
KdV equation and therefore evolution equations with much more complicated
nonlinearities and dispersive terms can arise. We limit here ourselves to conservative
models and leave dissipative effects aside. The interesting question is whether such
complicated evolution equations can also support solitons or soliton-like solutions
(solitary waves).

In this article we describe some of such complicated models which all are similar
to the celebrated KdV equation and study the properties of solutions. In Section 2
the models are described and in Section 3 the main ideas of the pseudospectral
method used for numerical simulation are briefly presented. Section 4 is devoted to
the results and analysis. A short summary is given in Section 5.

2. Mathematical models

As it is well-known, the KdV equation

ut þ uux þ duxxx ¼ 0 ð1Þ
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is written in terms of dependent variable u and independent variables x and t and
involves the dispersion parameter d. Note that x and t are usually scaled variables
and x is actually a moving coordinate [7,8]. The balance of nonlinear and dispersive
effects gives rise to solitons which interact with each other elastically, i.e., after
interaction they retain their amplitude and velocity. There are many physical
examples for which the one-dimensional wave process can be modelled by the KdV
equation. But quadratic nonlinearity and cubic dispersion is just one case and there
are many other physical examples with different nonlinearities and dispersion terms
involved. In principle, the corresponding evolution equations can be of the KdV-type
retaining the time derivative ut but involving more complicated other terms. The
interesting question is whether such ‘modified’ equations also possess soliton-type
solutions and whether the properties of solitons are also retained. Here we present
three interesting cases in order to demonstrate the richness of the soliton-type family
of solutions.

Case i: martensitic–austenitic alloys. This case is characterized by higher order
nonlinearity and higher order dispersion. Several such models are known to govern
also other interesting problems. The cubic and quintic dispersive terms appear in the
case of magneto-acoustic waves in a cold collision-free plasma [11], in the case of
capillary-gravity water waves [12], etc. The existence of a quintic term changes
radically the character of phase and group velocities for short waves [13]. Higher
order nonlinearities can appear in models of waves in electronic transmission
line [14], see also [15]. We focus here on a case of martensitic–austenitic shape
memory alloys [16–18]. In this case the evolution equation is as follows [13,19]:

ut þ PðuÞ½ �xþ duxxx þ buxxxxx ¼ 0, ð2Þ

where P(u) is the elastic potential and d and b are the third-order and fifth-order
dispersion parameters, respectively. The elastic potential P(u) is determined by a
polynomial

PðuÞ ¼
u4

4
�
u2

2
: ð3Þ

This potential depicts quartic nonlinearity in its simplest (symmetrical) form that
possesses two minima. The higher order dispersion can be caused by the dislocations
in the crystal structure of an alloy. Because of the orders of nonlinearity and
dispersion equation (2) is referred as the KdV435 below.

Case ii: hyperelastic rod. Small but finite amplitude travelling waves in a
compressible hyperelastic rod are described by the evolution equation derived by
Dai [20,21]

u� þ �1uu� þ �2u��� þ �3ð2u�u�� þ uu���Þ ¼ 0, ð4Þ

where �1, �2 and �3 are functions of material parameters. Note that here the
dispersion is described by a mixed third-order derivative and besides the usual
quadratic nonlinearity more complicated nonlinearities are involved reflecting the
coupling effect of the material nonlinearity and the geometry of the rod.

Case iii: granular materials. Here the waves are governed by a hierarchical
evolution equation. The evolution equation governing the waves propagating near
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the region of an equilibrium of a dilatant granular material is derived by Giovine and
Oliveri [22]

ut þ uux þ �1uxxx þ � ut þ uux þ �2uxxxð Þxx¼ 0, ð5Þ

where �1 denotes the macrostructure (matrix) dispersion parameter and �2 – the
microstructure (grains) dispersion parameter. Parameter � involves besides the other
material characteristics involves the ratio of the grain size and the wavelength. What
should be stressed here, is that parameter � can be either positive or negative
depending on the ratio of kinetic and potential energy of grains. For lower values of
kinetic energy, parameter � is positive and for higher values it is negative.

Equation (5) consists of two KdV operators: the first describes the influence of
the macrostructure and the second (in the parentheses) – the influence of motion in
the microstructure. This equation is clearly hierarchical in Whitham’s [23] sense and
is referred to as the hierarchical KdV (HKdV) equation below. If parameter � is
small, then the influence of the microstructure can be neglected and the wave ‘feels’
only the macrostructure. If, however, parameter � is large, then the influence of the
microstructure is dominant.

3. Pseudospectral method

Let a function u(x, t) (periodic in space) be given on the interval 0� x� 2� and the
space grid be formed by N points with space step Dx¼ 2�/N. Now the discrete
Fourier transform (DFT) can be defined by

Uðk, tÞ ¼ Fu ¼
XN�1
j¼0

uð jDx, tÞ exp �
2�ijk

N

� �
ð6Þ

and the inverse DFT (IDFT) by

uð jDx, tÞ ¼ F�1U ¼
1

N

X
k

Uðk, tÞ exp �
2�ijk

N

� �
: ð7Þ

Here F denotes the DFT and F�1 the IDFT, i is the imaginary unit and wave
numbers k¼ 0, �1, �2, . . . ,�(N/2� 1),�N/2. Making use of properties of the DFT
space derivatives of function u(x, t) can be calculated as

@nuðx, tÞ

@xn
¼ F�1 ðikÞnFu½ �: ð8Þ

If the length of the space period for u(x, t) is not 2�, but 2m�, then one must use
quantity k/m instead of k in formulae (8).

In a nutshell the idea of the pseudospectral method (PsM) is very simple. Let a
PDE be given in a general form

ut ¼ � u, ux, uxx, . . .ð Þ: ð9Þ

Making use of formula (8) (which can be considered as numerical differential
operator) one can formally reduce the original PDE (9) to ordinary differential
equation (ODE)

ut ¼ � uð Þ: ð10Þ
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Now Equation (10) can be solved making use of standard ODE solvers. However,
because of the usage of DFT boundary conditions must be periodic and the length of

the space period must be 2m�, where m is a positive integer [24].
It is clear, that the DFT deals with derivatives and nonlinear terms are dealt by

the ODE solvers. Calculations are carried out with the package SciPy [25] using: the
FFTW library [26] for the DFT and the F2PY [27] generated Python interface to the
ODEPACK Fortran code [28] for the ODE solver. In particular, for solving of

resulting ODE in explicit form (10) solver LSODA is applied. LSODA automatically
selects between nonstiff (Adams) and stiff (BDF) methods. It uses the nonstiff
method initially, and dynamically monitors data in order to decide which method to
use [28]. Thereafter, in the case of problems considered in this article, the instability

of numerical scheme was not a problem. The integrals of conserved quantities
(momentum and energy) [29] permit to check the accuracy of numerical results over
calculation period [24]. For example, for Equation (5) the first and the second
conservation laws [30] are as follows:

uþ �uxxð Þtþ
u2

2
þ �1uxx þ �

u2

2
þ �2uxx

� �
xx

� �
x

¼ 0 ð11Þ

and

1

2
�1u

2 þ � uxð Þ
2
þ uuxx

� �� 	
t

þ
1

3
�1u

3 þ uuxx �
1

2
uxð Þ

2
þ �

1

3
�2u

3 þ uuxx �
1

2
uxð Þ

2

� �
xx

� 	
x

¼ 0: ð12Þ

4. Results

4.1. Wave propagation in martensitic–austenitic alloys

In order to simulate the one-dimensional wave propagation in martensitic–austenitic

alloys (characterized by quartic nonlinearity and positive values of third- and fifth-
order dispersion) the KdV435 equation is integrated numerically under harmonic as
well as localized initial conditions:

uðx, 0Þ ¼ sinðxÞ, ð13Þ

and

uðx, 0Þ ¼ A sech2
x

D
, D ¼

ffiffiffiffiffiffiffiffi
12d

A

r
: ð14Þ

Here A is the amplitude and D the width of the initial solitary pulse. The proposed
localized initial excitation (14) is the analytical solution of the KdV equation (1) and
is known as the KdV soliton [3]. In our case the initial wave (14) is related to the

model Equation (2) through the third-order dispersion parameter d (neglecting the
quartic nonlinearity and the fifth-order dispersion). Here we demonstrate two typical
solutions of the KdV435 equation (see [31–34] for additional examples).

Applicable Analysis 241

D
ow

nl
oa

de
d 

by
 [

T
al

lin
n 

U
ni

ve
rs

ity
 o

f 
T

ec
hn

ol
og

y]
 a

t 0
5:

43
 1

7 
Fe

br
ua

ry
 2

01
2 



The first is the train of KdV-type solitons (Figure 1) that is emerged from the

initial harmonic wave (13). Here, like in the case of the KdV solitons, solitons are

phase-shifted and their amplitudes decrease during interactions. However in the

present case – contrary to the KdV solitons – the lower the soliton the faster it

propagates to the left.
The second solution type is a plaited soliton (Figure 2) that is emerged from

sech2-type localized initial pulse (14) (the amplitude of the initial localized pulse is

A¼ 0.37 and the length of the space period is 16�). In the present case, two solitary

waves and an oscillating tail emerge from the initial excitation. These two solitary

waves interact with (i) each other, and (ii) the oscillating tail. Furthermore, these

solitary waves form a plaited solitary entity that propagates at constant speed. On

can call these solitary waves solitons, because they propagate with constant speed,

and restore their amplitude after interactions.

4.2. Wave propagation in hyperelastic rods

The model equation (4) is integrated under localized initial conditions

uðx, 0Þ ¼ A sech2Bx: ð15Þ

Several examples of different solution types are presented in [35], here we consider

two of them.
At first the formation of soliton train from the initial pulse is demonstrated.

In the case of A¼ 0.1 and B¼ 0.5 a train of six solitons is formed (Figure 3).

T
im

e

Space

Figure 1. Solution of the KdV435 equation: time-slice plot over two space periods for
d¼ 10�2.4, b¼ 10�2.8 and t¼ 0, 0.2, 0.4, . . . , 60.
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T
im

e

Space

Figure 2. Solution of the KdV435 equation: time-slice plot over two space periods for
d¼ 10�1.2, b¼ 10�2.0 and t¼ 0,2,4, . . . , 500.

T
im

e→

Space →

Figure 3. Solution of Equation (4): time-slice plot over one space period for �1¼�0.7205,
�2¼�0.0026, �3¼�0.0010; A¼ 0.1; B¼ 0.5; t¼ 0, 10, 20, . . . , 1400; the length of the space
period is 40�.
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However, in the case of narrower pulse (B¼ 3) only one soliton and an oscillating tail
is evolved (Figure 4).

The second example demonstrates again the plaited soliton (Figure 5). Like in the
case of the KdV435 equation a pair of interacting solitary waves and a tail form a
solitonic structure.

4.3. Wave propagation in granular materials

In order to simulate numerically the propagation of solitary waves in dilatant
granular materials HKdV equation (5) is integrated numerically under sech2-type
localized initial conditions

uðx, 0Þ ¼ A sech2
x

�
, � ¼

ffiffiffiffiffiffiffiffiffiffi
12�1
A

r
, ð16Þ

where A is the amplitude and � the width of the initial pulse. It is clear that the latter
is the analytical solution of KdV equation that corresponds to the first KdV operator
in Equation (5). In this article A¼ 4 and the length of the space period is 16�.

The following four solution types are found for �1 6¼ �2: (i) train of KdV solitons
(Figure 6), (ii) train of KdV solitons with a weak tail (Figure 7), (iii) solitary wave with
a strong tail (Figure 8) and (iv) solitary wave with tail andwave packets (Figure 9). The
type of an emerging solution depends on the parameters of Equation (5) [30]. More
examples of different solution types can be found in [30,36,37].

T
im

e
→

Space →

Figure 4. Solution of Equation (4): time-slice plot over one space period for �1¼�0.7205,
�2¼�0.0026, �3¼�0.0010; A¼ 0.1; B¼ 3.0; t¼ 0, 10, 20, . . . , 1400; the length of the space
period is 40�.
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T
im

e→

Space →

Figure 5. Solution of Equation (4): time-slice plot over two space periods for �1¼ 1.857,
�2¼�0.036, �3¼�0.002; A¼ 0.1; B¼ 3.58; t¼ 0, 2, 4, . . . , 130; the length of the space
period is 2�.

T
im

e→

Space→

Figure 6. Solution of the HKdV equation: time-slice plot over two space periods for �1¼ 1.0,
�2¼ 0.1, �¼ 111.11, A¼ 4, t¼ 0, 2, 4, . . . , 100.
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Ti
m
e→

Space→

Figure 8. Solution of the HKdV equation: time-slice plot over two space periods for �1¼ 0.05,
�2¼ 0.09, �¼ 11.111, A¼ 4, t¼ 0, 2, 4, . . . , 100.

T
im

e
→

Space →

Figure 7. Solution of the HKdV equation: time-slice plot over two space periods for �1¼ 0.4,
�2¼ 0.2, �¼ 111.11, A¼ 4 , t¼ 0, 2, 4, . . . , 100.
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5. Summary

The model equations like the KdV equation, the nonlinear Schrödinger equation, the
sine-Gordon equation a.o. have revealed many fundamental properties of solitons.
The real world is much more complicated that is why there is a growing interest to
other soliton-bearing systems including the evolution equations with complicated
(often higher order) nonlinear, dispersive and/or dissipative terms. In this context the
question of integrability is important in order to obtain closed analytical solutions.
For solving complicated nonintegrable systems powerful numerical methods are used
which permit to obtain and analyse solutions and show their solitonic behaviour if it
exists. This way or another, the soliton ‘zoo’ is large and special types of solitary
waves like compactons [38], breathers [39], peakons, cuspons and pulsons [40,41],
kovatons [42] etc., reflect rich physics of waves.

Here our results are based on numerical integration of governing equations (see
Section 2) by the pseudospectral method. The accuracy and stability of the method
[24] are prerequisites for the analysis. The conservation laws are checked at every
time step of calculations. The number of space-grid points is chosen so high that the
relative error of conserved densities does not exceed the limit which is fixed earlier
(as a rule, the relative error is less than 10�6). We demonstrated the existence of
certain solitonic solutions without assuming the integrability of underlying models.
These solutions have a complicated structure compared to single solitary waves or
classical soliton ensembles or soliton trains (Figures 1, 3 and 6). The first typical class
of such solutions involve solitons or solitary waves with nonvanishing oscillatory
tails and/or wave packets (Figures 4, 7–9). These entities can be called solitonic
structures or quasi-solitons following Champneys et al. [43], if the leading part of

T
im

e→

Space→

Figure 9. Solution of the HKdV equation: time-slice plot over two space periods for �1¼ 0.05,
�2¼ 0.09, �¼ 0.0111, A¼ 4, t¼ 0, 5, 10, . . . , 100.
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such a structure reveals the properties of solitons. The second typical class includes a
special soliton ensembles or more exactly ‘plaited’ solitons (Figures 2 and 5). The
plaited solitons propagate with a constant speed like the single solitons and restore
their amplitude after interacting with each other [19,31]. It is remarkable that in both
classes of such entities, the emergence of solitary solutions follows the classical
pattern of the KdV solitons provided the energy of the initial excitation is large
enough. If, however, the initial excitation is small, then for example Equation (2)
reveals irregular solution due to weak interplay between dispersive and nonlinear
effects provided both d and b are small.

It must be stressed that the evolution equations including those analysed in this
article are derived by certain asymptotic expansions. The higher order terms usually
destroy the integrability compared to classical soliton equations but nevertheless,
the solutions reveal solitonic characteristics. Besides the interesting case studies, the
general stability of solutions needs further analysis together with deeper studies of
interaction processes of such solitonic entities.
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