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The emergence of soliton trains and interaction of solitons are analyzed by using a Boussinesq-
type equation which describes the propagation of bi-directional deformation waves in
microstructured solids. The governing equation in the one-dimensional setting is based on the
Mindlin model. This model includes scale parameters which show explicitly the influence of
the microstructure in wave motion. As a result the governing equation has a hierarchical
structure. The analysis is based on numerical simulation using the pseudospectral method. It is
shown how the number of solitons in emerging trains depends on the initial excitation. The
head-on collision of emerged solitons is not fully elastic due to radiation but the solitons
preserve their identity after collision and the speed of solitons is retained while the radiation
keeps a certain mean value. That is why we have kept through this paper the notion of solitons.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The Boussinesq approximation for water waves, known from 1872, has served as a valuable basic model and a source for many
extensions in order to include more physical effects. For example, the extensions take nonlinear effects as well as frequency
dispersion into account and the extendedmodels are able to describe layered fluid and internal waves. But the applications are not
limited to water waves only. The general character of the Boussinesq and Boussinesq-type equations has been intensively studied
because the equations of such a type occur also in dynamics of solids (waves in crystals, in rods, in microstructuredmaterials, etc.),
in theory of electric waves and so on. Christov,Maugin and Velarde [1–3] introduced the Boussinesq paradigm in order to grasp the
following effects: (i) bi-directionality of waves; (ii) nonlinearity (of any order); (iii) dispersion (of any order, modeled by space
and time derivatives of the fourth order at least). Christov et al. [4] have summarized the recent studies on properties of
Boussinesq equation and its generalization for nonlinear waves.

Another important milestone for water waves was passed in 1895 when Korteweg and de Vries derived the unidirectional
equation for describing waves in shallow water. This equation which is now known by their name – Korteweg–de Vries (KdV)
equation – takes quadratic nonlinearity and cubic dispersion into account. The KdV equation is nowadays an iconic equation
because of its solitonic solutions. Its rich history and impact to other studies are reflected byWeissert [5] in an excellent overview.
Contemporary science knows a plethora of the KdV-type equations which differ from the standard KdV equation by more
complicated nonlinearities and dispersion effects taken into account [6–10]. Such effects can be traced back to the Boussinesq-type
equations but there is an essential difference between these two models — this is directionality. The Boussinesq equation is bi-
directional (i.e., involves two waves propagating to right and left) while the KdV-type equations are uni-directional (i.e., involve
just one wave). The methods for deriving uni-directional or evolution equations from bi-directional equations (or more general
equations) are well known [11–13]. And again it is not only water waves but alsowaves in solids for which evolution equations are
used in modeling of wave propagation.
ere@ioc.ee (A. Salupere), kert@cens.ioc.ee (K. Tamm).

All rights reserved.

t al., Waves in microstructured solids and the Boussinesq paradigm, Wave Motion
01

http://dx.doi.org/10.1016/j.wavemoti.2011.04.001
mailto:je@ioc.ee
mailto:salupere@ioc.ee
mailto:kert@cens.ioc.ee
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001
http://www.sciencedirect.com/science/journal/01652125
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001


2 J. Engelbrecht et al. / Wave Motion xxx (2011) xxx–xxx
In this paper we focus on nonlinear waves in microstructured solids which demonstrate rich dispersive effects over different
scales. The basic bi-directional model is of a Mindlin-type [14,15] which corresponds to the Boussinesq paradigm [1]. In Section 2,
the basic model is briefly discussed and in Section 3, the method for numerical analysis described. Section 4 forms the main part of
the paper where emergence of soliton trains modeled by the Boussinesq type equation is analyzed and the head-on collision
problems of solitons are described. These results demonstrate clearly the more general character of this model compared with a
uni-directional approach. Finally, in Section 5 some general conclusions are drawn.

2. Model equations

The general idea of Mindlin [14] was to separate macro- and microstructure in continua and to formulate conservation laws
for both structures also separately. This idea is elaborated byEngelbrecht et al. [15–18] including the dispersion analysis. The influence
of nonlinearitymay lead to the formation of solitarywaves [16,17]. Themodel is rather general— it is shown that it can be formulated
in terms of pseudomomentum [19] and in terms of internal variables [20,21]. Here we follow the 1D setting and recall only themain
steps of derivation of the governing equation for longitudinal waves. The free energy function W is given in the following form:
W=W2+W3 where W2 is simplest quadratic function in terms of macrodisplacement u and microdeformation φ
and W
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Plea
(201
W2 =
A
2
u2
x +

B
2
φ2 +

C
2
φ2
x + Dφux ð1Þ

3 includes nonlinearities on both the macro- and microlevel

W3 =
N
6
u3
x +

M
6
φ3
x : ð2Þ
Here A, B, C, D, N andM are constants and right subindices here and further denote differentiation as usual. The kinetic energy K
is determined by
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I is the microinertia related to a microelement. By making use of the Euler–Lagrange equations, the basic 1D model for
where
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By introducingσ as the macrostress, η as the microstress and τ as the interactive force,
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∂W
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ive at the system of equation

ρutt = σx; Iφtt = ηx−τ: ð6Þ
Now we introduce the dimensionless variables
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U0 and L0 are certain constants (e.g. the amplitude and the wavelength of the initial excitation) and also geometric
where
parameters
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l20
L20
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; ð8Þ

l0 is the characteristic scale of microstructure. By using an asymptotic procedure (for details see Ref. [15]) we obtain the
where
final governing equation in the following form
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nstants. The related equation for the deformation V=UX reads
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Both Eqs. (9) and (11) belong clearly to the family of Boussinesq-type equationswhich are extensively studied by Christov et al.
[4]. They include the mixed fourth-order space-time derivative like the regularized long-wave Boussinesq equations originally
derived in fluid dynamics [22] and later in solid mechanics for waves in rods [23]. In the context of microstructured solids, this
mixed derivative describes the effect of the inertia of the microstructure. One should mention here that the Boussinesq-type
equation derived from the lattice dynamics for a chain of atoms involves only the fourth-order space derivatives [24]. The
existence of two types of higher order derivatives in Eqs. (9) and (11) displays also explicitly the hierarchical character of the
waves in the sense of Whitham [25]. Indeed, in derivation of Eqs. (9) and (11) the scale parameter δ plays the crucial role. If δ is
small (the wavelength is large) then the waves are governed by the properties of the macrostructure and the operator
Ψmacro = VTT−bVXX−
μ
2

V2
� �

XX
ð12Þ

e leading role. If however δ is large (the wavelength is small) then the influence of the microstructure is more essential and
has th
the operator
Ψmicro = δ βVTT−γVXX +
λ
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δ

p

2
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e leading role. One should also note that Eqs. (9) and (11) are derived by the asymptotic analysis and the exact fourth-order
uation model which corresponds to the system (6) of two second order equations includes also more fourth-order
tives (with respect to space, time, and mixed space-time), see Engelbrecht et al. [15]. The dispersion analysis of two
s – exact and approximated – has shown a good correspondence in a certain domain of material parameters [18].
3. Statement of the problem and numerical methods

When the Boussinesq paradigm related problems are studied, besides the analytical methods different numerical techniques
play often important role [2,26–29]. In the present paper we study formation of soliton trains from a localized initial pulse and
succeeding interaction between solitons. For this purpose the hierarchical model Eq. (11) is integrated numerically under localized
initial conditions
V X;0ð Þ = V0sech
2B0 X−X0ð Þ: ð14Þ
We use values V0=1 and B0=0.01,…0.1 for the initial pulse amplitude and width in numerical experiments discussed below;
X0 is the initial phase shift and is taken equal to half of the length of the space period. For material parameters fixed values of
δ=0.09, b=0.7188, β=56.0, γ=9.3867, μ=1.1394, λ=1.1470 and the initial phase speed c=0 are used (cf., for example Ref.
[30]). For numerical integration the discrete Fourier transform (DFT) based pseudospectral method (PSM) [31,32] is used and
therefore periodic boundary conditions
V X; Tð Þ = V X + 2Lκπ; Tð Þ; κ = 1;2;… ð15Þ

plied. Parameter L defines the length of the period. When interactions of solitons are studied, then the value L=800 is
are ap
used, but when the formation of soliton trains is studied, then longer space periods are needed and therefore values up to L=5500
are used.

In a nutshell, the idea of the PSM is to approximate space derivatives making use of the DFT
∂mV
∂Xm = F−1 ikð ÞmF Vð Þ� �

; ð16Þ

F and F−1 denote the DFT and the inverse DFT, respectively, k=0, ±1, ±2,… and i is imaginary unit and then to use
where
standard ODE solvers for integration with respect to the time. The regular PSM algorithm is derived for ut=Φ(u, ux, u2x,…, umx)
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Fig. 1. Formation of trains of solitons for B0=0.01. In upper panel single profiles are plotted at every ΔT=2050 and in lower panel — train of 16 solitons at
T=16400.
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type equations. However, in our case we have a mixed partial derivative term δβVTTXX in Eq. (11) and therefore the standard PSM
has to be modified [30,32,33]. First we introduce a new variable
and ex
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Numbe
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Now the hierarchical Eq. (11) is rewritten in form
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variable V and its space derivatives are calculated in terms of the new variable Φ according to Eq. (18) and therefore after
where
reducing it to a system of two first order differential equations the PSM can be applied.

4. Results and discussion

Eq. (11) is of the Boussinesq-type and therefore it can be predicted that two symmetric trains of solitons emerge from the initial
bell shaped pulse in case of the initial phase speed c=0. In Fig. 1 the formation of two soliton trains is presented for B0=0.01— the
r of solitons against the width of the initial pulse B0.
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Table 2
Soliton amplitudes Vi against the width of the initial pulse B0.

i ∖B0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.991 0.929 0.873 0.823 0.778 0.737 0.700 0.666 0.634 0.606
2 0.858 0.689 0.549 0.431 0.332 0.249 0.178 0.120 0.073 0.038
3 0.739 0.502 0.326 0.197 0.104 0.042
4 0.634 0.355 0.175 0.063 0.011
5 0.541 0.242 0.076 0.007
6 0.459 0.154 0.019
7 0.387 0.089
8 0.323 0.041
9 0.267 0.013
10 0.217
11 0.174
12 0.136
13 0.104
14 0.076
15 0.050
16 0.028
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upper panel demonstrates the formation process (ΔT=2050 and last line at T=16400) and the lower panel shows the train of 16
solitons at T=16400. For initial pulses of different width, the soliton train consists of different number of solitons. In Table 1 the
number of solitons NS is presented against the width of the initial pulse B0. It is clear, that the wider the initial pulse (the lower the
value of B0), the higher the number of emerged solitons.

In Table 2 amplitudes of emerged solitons Vi are presented against the width of the initial pulse B0. The amplitudes are
measured at the end of the formation period, i.e., just before the first interaction between the left- and the right-propagating
soliton trains starts. After solitons are emerged they propagate indeed without any amplitude change as shown in Fig. 2 for
B0=0.01 up to T=16400. In Table 3 speeds of the four highest solitons are presented against the width of the pulse B0. It is clear
that as usual, the higher the soliton the faster it is. In Fig. 3 speeds of four higher solitons are plotted against their amplitudes for
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Fig. 2. Emergence of soliton trains: amplitudes of solitons against time for B0=0.01; 0≤T≤16400.

Table 3
The speed of the four highest solitons against the width of the initial pulse B0.

i ∖B0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 1.0467 1.0353 1.0249 1.0156 1.0071 0.9994 0.9923 0.9857 0.9797 0.9740
2 1.0222 0.9902 0.9630 0.9395 0.9193 0.9018 0.8868 0.8741 0.8635 0.8549
3 0.9998 0.9536 0.9181 0.8909 0.8711 0.8568
4 0.9798 0.9241 0.8868 0.8619
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0.01≤B0≤0.1 (speeds and amplitudes are calculated before the interactions between soliton trains start). It is clear that soliton
speed is linearly dependent on their amplitudes. Straight solid line cs=0.2013Vs+0.8507 fits the data-set by means of least
squares (Vs is the amplitude of the soliton and cs is its speed). From Eq. (11) (or Eq. (9)) it follows that the characteristic speed
c0 =

ffiffiffi
b

p
and in the present case c0=0.8478. Consequently, if the amplitude of the soliton approaches zero the speed of the soliton

approaches the characteristic speed, i.e., limVs→0cs≈c0 . The difference is caused by the fact that the straight line is generated by using
the least squares fit. It should be noted that in one-wave equations (for example the KdV equation) usually the moving frame of
reference is used. The speed c0 would be the speed of the moving frame of reference in such a case. However, as Eq. (11) is a two-
wave equation, in the present case it makes sense to stay in the fixed frame of reference.

In all considered cases solitons propagate to the right and left at the same speed and therefore the solutions are symmetric with
respect to the initial phase shift X0.

The time-slice plot in Fig. 4 characterizes the emergence of two soliton trains and succeeding interactions between solitons for
B0=0.03. Due to the periodic boundary conditions the behavior of emerged trains can be traced throughout four interactions (for
T
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→
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Fig. 4. Formation of soliton trains and interaction of solitons (waveprofiles are plotted at every ΔT=150) for B0=0.03; 0≤T≤12000.
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single solitons the number of interactions is 4×5=20) for 0≤T≤12000. In order to compare the solutions that correspond to
different values of the pulse width B0 single waveprofiles for B0=0.01… 0.1 are plotted at T=2280 and T=7000 in Figs. 5 and 6,
respectively. Trains, presented in these Figures propagate to the right. Trains in Fig. 5 can be called initial trains, because they are
plotted before the first interactions. Trains in Fig. 6 are plotted after the second interactions (just before the third interactions will
start). At timemoment T=7000 all solitons which can be detected in Fig. 6 have passed two interactions with all solitons from the
train propagating to the left. The x–V space-scale is the same for all plots in Figs. 5 and 6. Therefore one can estimate the different
speeds and amplitudes of single solitons for different values of parameter B0 (the width of the pulse). Initial soliton trains in Figs. 1
and 5 are different, because of the different length of space periods. When the emergence of trains is studied, the space periods of
different length are used for different values of the parameter B0 — the length for B0=0.01 is 11000π. When the interaction is
studied, the length of the space period equals to 1600π for all values of B0. For wider initial pulses (0.01≤B0≤0.06) the initial pulse
is morphed into a train of solitons without a distinguishable tail (see Figs. 1, 4 and 5). However, if the initial pulse is so narrow that
only a train of two solitons emerges (0.07≤B0≤0.1), then besides the solitons a distinguishable oscillating tail emerges (see
Fig. 5).

In order to verify the usage of the term soliton, one must analyze the character of interactions. By definition a solitary wave can
be called soliton if it interacts with other such entities elastically, i.e., if it restores after interaction its speed and amplitude. In the
case of soliton emergence, the spatial period of initial pulses has been taken long enough, so in practice this part of the study is
non-periodic even if the applied numerical method requires periodic boundary conditions. In the case of interactions, however, the
results can be interpreted as a non-periodic setup with K identical initial conditions and correspondingly longer initial spatial
period, where the K is the number of interactions.

Time-slice plot in Fig. 4 demonstrates that really all emerged solitons conserve their identity throughout interactions. However,
it is obvious that each interaction produces a certain radiation which first of all influences the shape of the lower-amplitude
solitary waves. Of course, observing the time-slice plot is not sufficient in order to verify the solitonic behavior of emerged solitary
waves. Analysis of trajectories of solitary waves demonstrates that between interactions they propagate at constant speed. In Fig. 7
amplitudes of four higher solitons (waveprofile maxima) are plotted against time over the whole integration interval, i.e., for
0≤T≤31000. In order to focus on the behavior of solitons between interactions, the maximawhich correspond to interactions are
abandoned in this figure. It is clear, that one can speak about constant amplitudes of solitons before the first interactions only (the
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Fig. 5. Single waveprofiles at T=2280 for B0=0.01 … 0.1.
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Fig. 6. Single waveprofiles at T=7000 for B0=0.01 … 0.1.
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highest soliton has constant amplitude also between the first and the second and the second and the third interactions between
the two soliton trains). The amplitudes of the lower solitons start to oscillate just after the first interaction. This is due to the
radiation, generated during interactions. However, these oscillations take place about a certain mean level. For the first soliton this
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Fig. 7. Interactions of soliton trains: amplitudes of solitons against time for B0=0.04; 0≤T≤31000.
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mean level decreases and for the fourth soliton increases slightly. This means that the interactions are not completely elastic and a
certain exchange of energy takes place between different solitons and solitons and the radiation (radiating structure).

5. Conclusions and final remarks

The Boussinesq-type bi-directional models (9) and (11) involve fourth order derivatives which characterize the influence of
dispersion. It is evident how inertial and elastic properties of the microstructure are inscribed into various terms in the governing
equation. Compared with the uni-directional KdV-type model, the present one is without any doubt closer to reality. Indeed, such
a bi-directional model, called also a double-dispersion model is used to describe nonlinear deformation waves in rods [34,35]. For
model (11) it has been shown that the resulting uni-directional KdV-type equation involves the usual third order dispersive term
with a coefficient which combines both inertial and elastic properties [36].

The present approach demonstrates clearly the most interesting feature for nonlinear waves in dispersive medium — the
emerging of soliton trains. The emerging solitons display all the characteristics of classical solitons. This model permits also to
study the head-on collision of solitons. The study reveals that the interaction is not fully elastic. The numerical method used for the
analysis is of high accuracy and tested for many complicated cases [32], so the demonstrated radiationmust have physical reasons.
The additional oscillations of soliton amplitudes after head-on collision, however, are more distinguishable for solitons with lower
amplitudes but these oscillations take place about a certain mean level. As far as the identity of solitons is preserved after
interactions, we kept throughout the paper the notion of solitons, although strictly speaking, we should use the term ‘quasi-
solitons’. The process of emerging and propagating such quasi-solitons needs more studies in order to understand the process in
non-integrable systems and also to agree on terminology. Quasi-solitons are characteristic to the real world and they do not
interact completely elastically like “pure solitons” which are characteristic for highly idealized systems. It is clear that the
interaction process of such quasi-solitons needs also more detailed analysis like it is done for the KdV-solitons [37] and for ‘clean’
solitary waves following [38]. The results of the present paper together with results of paper [39] can be applied for elaborating
and enhancing of nondestructive testing algorithms.
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