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Abstract The basic ideas for describing the dispersive wave motiom@nostruc-
tured solids are discussed in the one-dimensional setiénguse then the differ-
ences between various microstructure models are cleasilylei An overview of
models demonstrates a variety of approaches, but the temsgtructure of the
theory is best considered from the unified viewpoint of ingrvariables. It is
shown that the unification of microstructure models can bddesed using the
concept of dual internal variables.
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1 Introduction

Wave propagation in a homogeneous medium is a well knowngshenon in
mechanics. The corresponding wave equation is a classiaaime of hyperbolic
partial differential equations in textbooks. However, siteation is more compli-
cated in inhomogeneous media due to dispersion causedrbysiotmicrostruc-
tural effects [1].

The classical equation of linear elastic wave propagatiomdmogeneous
solids in the one-dimensional case reads

Ut = CZUXX7 (1)

whereu is the displacement; is the elastic wave speed and subscripts denote
derivatives. Considering a harmonic wave

u(x,t) = Gexpli(kx— wt)] 2
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with wave numbek and frequencyw, we obtain the dispersion relation
w? = k2. (3)

It is easy to see that here the group velodity/dk is equal to the phase velocity
¢, which means that no dispersion is present.

Dimensionless frequency
w

0 1 2 3 4 5 6
Dimensionless wavenumber

Fig. 1 Dispersion curves foy = 0.3: 1 — wave equation (1), 2 — Boussinesq-type equation (8).

To describe wave propagation in heterogeneous materfistiag dispersion
effects, several modifications of the wave equation arequeg. The simplest
generalization of the wave equation is the linear versiothefBoussinesq equa-
tion for elastic crystals (cf. [2])

Ut = CZUXX + CZI 2AlluXXXX7 (4)

wherel is an internal length parameter ahg; is a dimensionless coefficient.
Similar equations were obtained by using the homogenizaifoa periodically
layered medium [3-5] or using strain gradient theoriesT8E dispersion relation
is obtained by using again the harmonic wave solution (2)

w? = 2k — A1?AK (5)
Introducing dimensionless frequency and wavenumber by

w ck
= b = bl 6
n ¢ (6)



wherewy is a characteristic frequency, and using the dimensiomlaszmetey’
defined by

|2 2A11
Y=o, ™
we can rewrite the dispersion relation (5) in the dimengsslform
n? =& -yt (8

The corresponding dispersion curve is shown in Fig. 1. Ngadi®n from the non-
dispersive case (the straight line) increases for higlegjuencies and wavenum-
bers.
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Fig. 2 Dispersion curves foy; = 0.5: 1 — wave equation (1), 2 — Love-Rayleigh-type equation
11).

Another generalization of the wave equation is the Lovel&gh equation for
rods accounting for lateral inertia (cf. [7], p.428)

Ut = C2Uyx + 1 2A1 2l (©)

whereA;; is again a dimensionless constant. This equation is dedissdin [8—
11]. The corresponding dispersion equation has the form

w? = k% — 12Ap0%K2. (10)
Its dimensionless version is written as

n%=&%—y2n2&? (11)



where the new dimensionless paramegjes introduced

. | 20)5A12
1 02 :

The deviation of the dispersive curve from the non-dispersase (straight line)
is essentially larger than in the previous case, as one &aim $8g. 2.

12)
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Fig. 3 Dispersion curves foys = 0.5,ya = 0.6,y = 0.2: 1 — wave equation (1), 2 — combined
model (16).

A more general equation combining the two dispersion mogmiss [5,12,
13]
Ut = Czuxx-l- CZ|2A11Uxxxx+ I2A12Uxxtt- (13)

Similar model proposed by Engelbrecht & Pastrone [14] hices additionally a
contribution of microstructure on slowing down of the prgation velocitycﬁ

Ut = (€% — C2) U+ €21 2Aq 1Uoxx+ | 2Ag2Ust- (14)
Accordingly, the dispersion relation
w? = (¢ — c2)k? — A®12A11K* — 12A000K2, (15)
has dimensionless form
n?=(1-y3)&* - in?&? - y*es, (16)

whereyz = c¢?/c3. Due to three additional terms combined, the last model demo
strates even a larger deviation from the non-dispersive (f&g. 3).



In its turn, the Maxwell-Rayleigh model of anomalous digpen [2] intro-
duces in consideration the four-order time derivative

12A00
Ut = Cloct — - (Ut — Gy - (17)

However, there is no dispersion unless the velocities ih bave operators are
not equal.

Four-order time derivatives are included also in the "cHusedel for the
dispersive wave propagation proposed by Metrikine [12]

|2
2 212 2
Ut = C Uxx — C1 A1 1l t | “AroUxtt — EAZZUIttt, (18)

and in the model based on the Mindlin theory of microstrue{as] proposed by
Engelbrecht et al [16] in the form

U = (% — GA) Uxx— PP (Ut — € Uex)y + P° 6 (e — G U)o (19)

Here p and pc; determine time and length scales of the microstructur@e@s
tively, c; can be associated with the wave propagation velocity in ticeastruc-
ture itself.

Dimensionless frequency
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Fig. 4 Dispersion curves for the "causal” model (20) wjth= 0.5,y = 0.4: 1 — optical branch,
2 —acoustical branch; dotted lines correspond to asyngptotdispersion curves.

The last two equations differ from each other in two aspggtghe latter
accounts for the slowing down of the propagation velocitthie microstructured



medium in comparison with that without microstructure aifjch{gher-order deri-
vatives appear as derivatives of wave operators in ther lattelel in contrast to
the former one. If the explicit expression for the slowingwdoof the propagation
velocity can be an advantage of the latter model, then theazppce of the higher-
order terms only as derivatives of the wave operator is ngitalele.

Dimensionless frequency
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Fig. 5 Dispersion curves for the Mindlin-type model (21) wigh= 0.5,y = 0.6: 1 — optical
branch, 2 — acoustical branch; dotted lines correspondytoptetes to dispersion curves.

It is instructive to compare the dispersion properties aj tast models. The
corresponding dispersion equations can be represented as

% =&+ (n*—&2) (n>— &%) - v, (20)
for the causal model (18) and
n®=(1-ya) &%+ (n*—&?) (n* - i&?) (21)

for the Mindlin-type model (19). Dispersion curves for batiodels have the
acoustical as well as optical branches (Figs. 4,5), butedsspn curves for the
so-called "causal” model [12] deviate from asymptotes wiith increase of the
parametey’.

All the models listed above are based either on homogeoiz§3i, 4,10], or
on continualisation [5,9,12], or on generalized continuteories [6,13,14,16],
which means that all the models are of the mechanical orfginalternative ap-
proach to the description of microstructural effects isvpted by the internal
variable theory, which is intimately related to thermodynes. The use of inter-
nal variables in the description of the behavior of materigith microstructure
has a long tradition and nowadays it is commonly accepted(€}).



The thermodynamic theory of internal variables presenyeddieman & Gur-
tin [18] had presupposed first-order evolution equatiomsHe internal variables
and did not include their gradients. Accounting for the ¢gats leads to the
weakly nonlocal theory [9,19], which can be also enrichedh®yextra entropy
flux [20]. The complete theory of the internal state variahtepresented recently
by Maugin [21]. Moreover, the limitation of evolution eqiats by only first-order
ones is got over by the concept of dual internal variablek [22

Given the plethora of models, there is a clear need to uradetsheir structure
and characteristics from a unified viewpoint. In this pagieg,internal variable ap-
proach is applied consecutively to the description of nmsigative processes of
linear dispersive wave propagation. We start in Sectiont@ thie governing equa-
tions in the material formulation of continuum mechanic3][After demonstrat-
ing the role of internal variables in Section 3, we introddcal internal variables
(Section 4) and derive evolution equations for them. As altewe arrive at the
known dispersive wave equations for micro- and macromdsactions 5 and 6)
depending on the choice of the free energy function. Thedifit dispersive wave
equations are unified in Section 7. Some conclusions ara givie last Section.

2 Governing equations
In the linear case, the one-dimensional motion of the theftastic conductors of

heat without body forces is governed by local balance law$ifear momentum
and energy [24, e.g.]

17} Jdo
SOV =5 =0, (22)
J (1 17}
5t (Epv2+E> — 55 (0v=Q) =0, (23)
and by the second law of thermodynamics
s od /Q
— (= >0.
0t+dx<6+K>—0 (24)

Heret is time, p is the matter densityy = u; is the physical velocityu is the
displacementy is the Cauchy stresk, is the internal energy per unit volunm®eis
the entropy per unit volumd) is temperatureQ is the material heat flux, and the
"extra entropy flux”’K vanishes in most cases, but this is not a basic requirement.
Our main goal is the description of wave propagation in soliith microstruc-
ture. The existence of the microstructure generally mdaatthe medium is inho-
mogeneous. The most consistent way to treat the inhomdadgenisi the material
formulation of continuum mechanics [23].

2.1 Canonical form of the energy conservation

To derive the canonical energy equation, the free energymevolumeWw = E —
S6 is introduced into the energy balance (23), and the balaffloeear momentum



(22) is multiplied byv. The canonical form of the energy conservation follows
from the combination of the obtained equations:

d<86) dQ_ int int .__
En +dx_h’ h"™ = og

oW

where the right-hand side of Eq. (253 formally an internal heat source [21]. The
second law of thermodynamics (24) gives then

AW 206 d Q 06
(2 Z _ (= RAEN
( ot —FSE) +0&+ aX(QK) (6 +K> X = 0, (26)

wheree = uy is the one-dimensional strain measure. The dissipatiogquiléy
(26) can be also represented as follows:

S@+(9+K>@§h‘”‘+ 9

at 2 ax R(GK)' (27)

2.2 Canonical (material) momentum conservation

The canonical balance of momentum is derived by the muttgion of the bal-
ance of linear momentum (22) hy (cf. [23])

—(pv) —ux— =0. (28)

Defining then the material momentufn the material Eshelby strebsthe mate-
rial inhomogeneity forcd ™", and the material internal fordé™ by [23]

Pi=—puly, bi=-— (%pvz—WJrGg), (29)
ginh (}Vz> 9gp WL gy OV 5
2 ox  0x expl ox impl
we can represent the Eg. (28) in the canonical form [23]
oP b i i
Z- _ZZ _ fint ginh 1
ot o0x + 1

Here the subscript notatioegplandimpl mean, respectively, the derivative keep-
ing the fields fixed (and thus extracting the explicit dep@geonx), and taking
the derivative only through the fields present in the functio

The canonical equations for energy and momentum (25) and(@lthe most
general expressions we can write down without a postulatteediull dependency
of the free energyV [21]. Together with the dissipation inequality, they pidwia
consistent framework for the introduction of internal edlies.



3 Single internal variable

As it was mentioned, the introduction of an internal vareatsociated with the
distributed effect of the microstructure is not a new ideas lexpected that in-
ternal variables extending the state space represent saeonesgopic material
structural characteristics [18,19,29,30] which are ngtlieitly determined like
in the Mindlin theory [15] based on the notion of a "deformeabkll”. The most
comprehensive theory of thermomechanics with internaatsées is presented re-
cently by Maugin [21]. We remind here its one-dimensionabian and focus on
its consequences for wave propagation.

In the one-dimensional case, the free enéigis specified as a general suffi-
ciently regular function of the strain, temperature, theinal variableg, and its
space gradient [21]

W =W(uy, 8,6, ). (32)

Then the equations of state determine the macroscopisstréise entropys, the
internal stresg), and interactive internal forceby

oW oW oW oW
The non-zero extra entropy fluk is represented in the form
K=-6"n¢, (34)

following the scheme originally developed in [20] for madés with diffusive
dissipative processes described by means of internablesiaf state.
The canonical equations of momentum and energy keep thair fo

oP db

i via R (35)
a(s8) 9Q -
(at ) + 0_(3 _ hth + hlntr’ (36)
provided the new definitions are introduced [21]:
~ oW oW 9 [OW
=5 (a5 (ag) T 7
~ 1
b::—<§pv2—W+auX—r/¢X>. (38)

In this case, the "internal” material force and heat sou@eheare split in two
terms according to

fint — fth+ Fntr hint — hth _'_Eintr (39)
where thehermal sourceand the'intrinsic” sources are given by [21]

fh:=s6, h":=sq, (40)
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fintr = T¢,, "= Ty, (41)
so the dissipation inequality reads
~ - 00
_pnr_ (QZN93 99 42
¢ ( 6 ox — 0 (42)

The dissipation inequality (42) is automatically satisfiedhe isothermal case
under choice
T=ke¢, k>0, (43)

since
@ =k¢? > 0. (44)

The fully non-dissipative case correspond&te 0.

3.1 Dispersive wave equation |

Now we have to prescribe the free energy function to be moeeip. The sim-
plest free energy dependence is a quadratic function @) [1

2
_ C 1 1
W= pTu)2(+A¢uX+§B¢2+§C¢f, (45)

where coefficient#, B, andC depend on the material.
The corresponding stresses (38are calculated as follows:

oW oW

= — = 2 = — = —
0= aux pC UX+A¢7 r] d¢x C¢X7 (46)
and the interactive internal foraeis, respectively,
oW
r_—%_—Aux—Bq). 47
The balance of linear momentum (22) takes the form
Polt = POCZUxx+ Adx, (48)

and the evolution equation for the internal variable (43hmfully non-dissipative
case (withk = 0) reduces to

Evaluating the first space derivative of the internal vdddiom the last equation
C A
Px = B Prxx— B Uxx, (50)

and its third space derivative from Eq. (48)

A
% Prox = (Ut — CZUXX) XX (51)
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we will have, inserting the results into the balance of lmeamentum (48)

Ut = CPUyy+ 9 (Utt - CzUxx) - A—zuxx~ (52)
B " pB

Obtained equation is similar to that for the microstructunedel (13) derived in
[14]. It should be noted that higher-order derivatives appethe dispersive wave
equation (52) "en bloc”, i.e., as derivatives of the waverap@r, and cannot be
eliminated separately. This means that Eq. (52) cannot dhécesl either to Eq.
(4) or to Eg. (9). The difference in the models is related wtidct free energy
dependencies.

3.2 Dispersive wave equation Il
In fact, choosing the free energy in the quadratic form

2
_ C 1 1
\N:%?&+N@W+§BW+§cﬁ, (53)

we have for the corresponding stresses
oW
d¢x

Note that there the coupling is described differently coragavith Egs. (45), (46).
Therefore, the balance of linear momentum is rewritten bovws:

oW
0= 5o = PCUHA D, 1=

—Auy— Cy. (54)

Polkt = pOCZUxx+ A Py, (55)

and the evolution equation for the internal variable (43hmfully non-dissipative
case (withk = 0) reduces to

T=T—Nyx=Chux+Aux—Bp =0. (56)

By means of Eqg. (55) the latter relation can be representétkiform

/

C
% =5 (Polkt — PoCUec) + 5 Uox (57)
If coefficientC vanishes then we arrive at the strain-gradient model

AI
o= EUXX7 (58)

which results in the equation of motion of the form (4)

A/ 2

Polkt = pOCZUxx+ Fuxxxx (59)
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It should be noted that in the terms of stresses the firstratdgn-gradient model
(58) coincides with the second-order strain-gradient rhiodibe spirit of Aifantis
[25,26], since, following (54)and (58),

A/2
0 = pcuy + 5 Uooe (60)

Accordingly, in the case of a non-zero value of the coeffici@the more general
model (13) is obtained

— Ryt S (- 2 A 61
Ut = CUkx + B (Utt C Uxx)xx+ pOBUxxxx, (61)

but without explicit slowing down of the propagation veliyci

As one can see, the material formulation of continuum meckarovides a
thermodynamically consistent framework for the derivatgd equations of mo-
tion in the medium with microstructure described by intérvariables. How-
ever, the considered dispersion effects correspond tcehigittler space deriva-
tives only. Remaining dispersive wave equations with higivder time deriva-
tives (17), (18), and (19) require further consideratior & able to go on fol-
lowing the recent generalization of the internal varialheory [22].

4 Dual internal variables

Let us consider the free energy as a (sufficiently smooth) function of two inter-
nal variablesgp, ¢ and their space derivatives

sz(“Xa6a¢a¢X?w?lﬁUX)' (62)

In this case the equations of state are given by

oW oW oW oW
=5 ST 00 T o 1T Tapy (63)
oW oW
=——, R Yl 64
E=—50 (=5, (64)

The non-zero extra entropy flux is included into considerasimilarly to the case
of one internal variable

K=-6"1n¢.—671&. (65)

The canonical equations of momentum and energy keep thair fo

9P b _

ooy = (66)
d(Se) + d_Q _ hth _'_ﬁintr’ (67)

ot Jx
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with the modified Eshelby stress tensor

~ 1
b=~ (307 - au—ngu— ) (69)
and intrinsic source terms
=T+ Eg, A = Th+ E b (69)
In the above equations the following definitions are used
~_ OW OW 9 (W)
=G = (55 ~(m)) =T 7o)
_ OW OW 9 (OW)\) _
=5 = (G mlow)) = i
S=67'Q, Q=Q-n¢-y, (72)

which are similar to those in the case of one internal vagiabl
The corresponding dissipation is determined by

® =H" — S0 = Tgi + Egh —SB > 0. (73)

In the isothermal case the dissipation inequality reducdhé intrinsic part de-
pending only on internal variables

@ =h" = T+ & = (T— N9+ (E — L) 2 0. (74)
It is easy to see that the choice
¢t = R(E - Zx)a = _R(T - nx)a (75)

whereR is an appropriate constant, leads to zero dissipation.eftwey, the dis-
sipation inequality (74) is satisfied automatically witke tthoice (75). The latter
two evolution equations express the duality between ialerariables: one inter-
nal variable is driven by another one and vice versa.

5 Microstructure model |

Having the evolution equations for internal variables ia ton-dissipative case,
we can derive a microstructure model. We keep a quadraticdrergy depen-
dence )

— c 1 1 1

W= %u§+A¢ux+§B¢2+§c¢x2+§Dw2, (76)
where, as before,is the elastic wave speed in the medium without microstnectu
A, B,C, andD are material parameters characterizing microstructiheence.

Here we include for simplicity only the contribution of thecond internal

variable itself. In this case, the stress components acelleaéd as follows:

oW oW
R T

o= W pRuctAd, n— o (77

OUy
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and the expression for the interactive internal forés not changed

oW

T:—%—

—Au— B¢. (78)

The derivative of the free energy with respect to the dualrimdl variable gives

oW

§=-55=Dv (79)

Therefore, the evolution equation for the primary intenvaiable¢ (75) can be
rewritten as

$ = —RDY. (80)

Time differentiation of Eq. (80) and the evolution equatfonthe dual internal
variable (75) lead to the hyperbolic equation for the primary internalaale

§ = RD(1 ). (81)

This allows us to represent the equations of motion both facnm and mi-
crostructure in the form, which includes only the primariemmal variable

Polkt = pOCZUXX +Adx, (82)

I ¢t = Coux— Aux— B¢, (83)

wherel = 1/(R?D). In terms of stresses introduced by Eq. (77), the same system
of equations is represented as

o’u  do

P5E = ox 84)
26 _on . (85)
otz ox

It is worth to note that the same equations are derived injagged on different
considerations.

As in the case of single internal variable, the constructedehdescribing the
influence of microstructure by means of dual internal vdesls non-dissipative.
Equations of motion at both macro- and microlevels are Hygér. The hyper-
bolicity of the equation of motion at the microlevel is a direonsequence of
the non-dissipativity requirement. The thermodynamicststency of the model
is provided, as before, due to the use of the canonical frameef continuum
mechanics.
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5.1 Single wave equation

To derive the single wave equation, we can determine thesfieste derivative of
the internal variable from Eq. (83)

[ C A
Px = — B Prex + B Broex— B Uxx, (86)

and its third derivatives from Eq. (82)

A A
%d)xxx: (Utt - C2uxx) XX %d’ttx = (Utt - CZUXX)H . (87)

Inserting the results into the balance of linear momentud), (e obtain a more
general equation [28]

C | A2
2 2 2
U = C U+ 5 (Ut — €)= 5 (Ut — U — oBe (88)

Identifying A> = c3Bp,C = Ic2,B = 1 /p?, we see that the obtained equation is
nothing else but the general model of the dispersive wavpggation (19). The
Maxwell-Rayleigh model of anomalous dispersion (17) cgpmnds to a special
case of the latter equation wi€h= 0.

The dispersion analysis of the dispersive wave equationig&fiven in [16].

6 Microstructure model Il

It may be instructive to construct another microstructucaled based on distinct
free energy dependence similarly to the case of a singlenalteariable (cf. Eq.
(53)). Here we apply the free energy in the form

2
W= £u§+A’¢XUX+}B¢2+}C¢E+ED4/2. (89)
2 2 2 2
Note that the coupling between macromotion and microsireds described by
the termA’ ¢4uy while in the microstructure model | this coupling is diffate
described by the terAg uy (cf. also Egs. (45), (53)).
In this case, the stress components are calculated as $ollow

W _ 2 oW , oW
0= —— = pC-Uux+A ¢y, =——— = —Aux—Cqy, =———=0, (90
aux p X ¢X rl 0¢X X ¢X Z aLIJX ( )
while the interactive internal forceis reduced to
oW

The evolution equation for the primary internal varialplés the same as previ-
ously

¢ = RPD(T— 1), (92)
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and the equations of motion both for macro- and microstredtuclude only the
primary internal variable

Polt = PoCUxx + A Py, (93)

[ ¢t = Cyx + Al — Bo. (94)

In terms of stresses introduced by Eq. (90), the same systequations is still
represented as previously by

d%u  do
POW =’ (95)
ﬁ = —d—rl+r (96)
o2 oax

6.1 Single wave equation

To obtain a single wave equation from Egs. (93) and (94), werdene the second
space derivative of the internal variable from Eq. (94)

/

| C A
Pyx = — B Prexx + B Broocx+ B Uxixxxs 97)

and its fourth derivatives from Eq. (82)

A A
% Prxxx = (Utt - C2Uxx) . % Prixx = (Utt - CzUxx) it (98)

Inserting the results into the balance of linear momentuB8), (&e obtain the
fourth-order equation

C | A2
Ut = CPUxx + 5 (U — ClUyy) o — 5 (W — U + o thoooe (99)

The higher-order dispersive wave equations (88) and (9% rgdize the dispersive
wave equations derived in Sec. 3.1 and 3.2, respectivelys& lequations differ
from each other only by the last term in the right hand sidevéieer, this differ-
ence is essential, because the second-order space derivaiq. (88) exhibits
the slowing down the velocity of propagation, whereas thetfeorder derivative
in Eg. (99) does not. At the same time, derivatives of the wawerator in Eq.
(88) cannot be rearranged, whereas it is possible in Eq.di@®Yo the additional
fourth-order space derivative.



17

7 Unification

The both approaches to derive the dispersive wave equateombe united by
choosing the free energy function in the form
2
— C 1 1 1
W— %u§+Aux¢ + AU+ 5BO7+ 5097+ SDYL (100)
The corresponding stresses combine contributions frorh bases mentioned
above

oW oW
0=——=pu+Ap+Apy, nN=—=—=—Au—Cohy, (101)
dUy 0 P
and the interactive internal force is the same as in the fast c
oW
T=——=—Au—Bo¢. 102
20 U — B¢ (102)
6 T
1 [
2 —_—
5
oy
T 4
g 3
S
2
g 2
£
1
o k2
0 1 2 3 4 5 6

Dimensionless wavenumber

Fig. 6 Dispersion curves for the unified model (110) with= 0.5,y» = 0.6,y = 0.25: 1 —
optical branch, 2 — acoustical branch; dotted lines comedpo asymptotes to dispersion curves.

Accordingly, the balance of linear momentum results in
Polkt = PoC?Uxx + Adx + A Py, (103)
and the evolution equation for the primary internal varadives

I ¢tt = C¢XX + A/UXX - AL& - B¢ . (104)
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The first derivative of the internal variable can be deteedifrom Eq. (104)

By = — 1 rix + Chroxx+ A'Uxxx — Aliex. (105)
The third mixed derivativey follows from Eq. (103)
Adrix = (Polht — PoCUx)  — A Prixe. (106)

The appeared fourth-order mixed derivative the internab¥ée is calculated by
means Eq. (104)

I httxx = Cxxxx+ A Uyx— Aoy — By (107)

and, in its turn, the fourth-order space derivative is dateed again from Eq.
(103)
A byxxx = (pOUtt - pOCZUxx> o — Abxxx. (108)

Collecting all the results (105) - (108) and substitutingrthinto Eqg. (103) we
arrive at the dispersive wave equation

A/ 2 2

A
(Utt — CZU)()()tt + — Uxxxx — —5 Uxx, (109)

C !
2 2
Ut = C Ut = (Uit — C o)y — = OB B

B B
that unifies and generalizes both approaches.
The dispersion equation for the unified model (109) reads

n%=(1-y) &2+ (n?- &%) (n*— y2&%) — y*&s. (110)

The dispersion curves for the unified model representedgn6-are similar to
those in the Mindlin-type model [16]. However, they startddwiate from asymp-
totes with increasing of the parametér

8 Conclusions

The general 3D theory of microstructured materials in teofriaternal variables
is presented in [32]. Here the 1D setting is used in order toa¥estrate explicitly
how the structure of the governing equation depends on itaing free energy
function.

The earlier analysis of the Mindlin-type equation [13] hapliitly demon-
strated the need to involve micro-elastic and micro-iaédharacteristics into the
physically acceptable models. The consistent analysisaafignt-type theories is
given in [5,31]. Here we demonstrated that several wellkkmonodels (see [9],
for example) together with generalization of the Mindlypé models [14,16] can
be derived by using internal variables. The adopted phenological approach is
based on the material formulation of continuum mechani8f&d provides the
full thermodynamic consistency due to the dual internalaldes concept [22].
So, Eq. (109) is rather general and well-grounded. Its piffieature is that be-
sides the fourth-order derivatives it includes also thengesa in the velocity of
wave propagation at macroscale due to the coupling - a stpdamwn effect. This
effect is also demonstrated by direct numerical computat[@6, 24] for regular
and random microstructure distribution. The fourth-ordspersive terms in Eq.
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(109) are explicitly related to various terms in free enefigyction and reflect
the effects of micro-elasticity and microinertia. The cling between macromo-
tion and microstructure deformation is taken into accoyriaist two terms of Eq.
(109).

Equation (109), first time derived in this paper, could beduas a basis for
further generalizations. First, even more higher-ordegivdgves can appear in
the model (cf. [13,31]). Second, using perturbation teghej Eqg. (109) can be
reduced to a "hierarchical equation” which includes one evaperator for the
macromotion and another for the microstructure [16]. Thirgt generalization
to multiple microstructures is also possible [33]. At lastroduction of nonlinear
terms, i.e. cubic terms in a free energy function, is descridsewhere for simpler
models [14, 34].
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