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Abstract The basic ideas for describing the dispersive wave motion inmicrostruc-
tured solids are discussed in the one-dimensional setting because then the differ-
ences between various microstructure models are clearly visible. An overview of
models demonstrates a variety of approaches, but the consistent structure of the
theory is best considered from the unified viewpoint of internal variables. It is
shown that the unification of microstructure models can be achieved using the
concept of dual internal variables.
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1 Introduction

Wave propagation in a homogeneous medium is a well known phenomenon in
mechanics. The corresponding wave equation is a classical example of hyperbolic
partial differential equations in textbooks. However, thesituation is more compli-
cated in inhomogeneous media due to dispersion caused by intrinsic microstruc-
tural effects [1].

The classical equation of linear elastic wave propagation in homogeneous
solids in the one-dimensional case reads

utt = c2uxx, (1)

whereu is the displacement,c is the elastic wave speed and subscripts denote
derivatives. Considering a harmonic wave

u(x, t) = ûexp[i(kx−ωt)] (2)
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with wave numberk and frequencyω, we obtain the dispersion relation

ω2 = c2k2. (3)

It is easy to see that here the group velocity∂ ω/∂k is equal to the phase velocity
c, which means that no dispersion is present.
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Fig. 1 Dispersion curves forγ ′ = 0.3: 1 – wave equation (1), 2 – Boussinesq-type equation (8).

To describe wave propagation in heterogeneous materials reflecting dispersion
effects, several modifications of the wave equation are proposed. The simplest
generalization of the wave equation is the linear version ofthe Boussinesq equa-
tion for elastic crystals (cf. [2])

utt = c2uxx+c2l2A11uxxxx, (4)

where l is an internal length parameter andA11 is a dimensionless coefficient.
Similar equations were obtained by using the homogenization of a periodically
layered medium [3–5] or using strain gradient theories [6].The dispersion relation
is obtained by using again the harmonic wave solution (2)

ω2 = c2k2
−c2l2A11k

4. (5)

Introducing dimensionless frequency and wavenumber by

η =
ω
ω0

, ξ =
ck
ω0

, (6)
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whereω0 is a characteristic frequency, and using the dimensionlessparameterγ ′
defined by

γ ′4 =
l2ω2

0A11

c2 , (7)

we can rewrite the dispersion relation (5) in the dimensionless form

η2 = ξ 2
− γ ′4ξ 4. (8)

The corresponding dispersion curve is shown in Fig. 1. Its deviation from the non-
dispersive case (the straight line) increases for higher frequencies and wavenum-
bers.
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Fig. 2 Dispersion curves forγ1 = 0.5: 1 – wave equation (1), 2 – Love-Rayleigh-type equation
(11).

Another generalization of the wave equation is the Love-Rayleigh equation for
rods accounting for lateral inertia (cf. [7], p.428)

utt = c2uxx+ l2A12uxxtt, (9)

whereA12 is again a dimensionless constant. This equation is derivedalso in [8–
11]. The corresponding dispersion equation has the form

ω2 = c2k2
− l2A12ω2k2. (10)

Its dimensionless version is written as

η2 = ξ 2
− γ2

1η2ξ 2, (11)



4

where the new dimensionless parameterγ1 is introduced

γ2
1 =

l2ω2
0A12

c2 . (12)

The deviation of the dispersive curve from the non-dispersive case (straight line)
is essentially larger than in the previous case, as one can see in Fig. 2.
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Fig. 3 Dispersion curves forγ1 = 0.5,γA = 0.6,γ ′ = 0.2: 1 – wave equation (1), 2 – combined
model (16).

A more general equation combining the two dispersion modelsgives [5,12,
13]

utt = c2uxx+c2l2A11uxxxx+ l2A12uxxtt. (13)

Similar model proposed by Engelbrecht & Pastrone [14] introduces additionally a
contribution of microstructure on slowing down of the propagation velocityc2

A

utt =
(
c2

−c2
A

)
uxx+c2l2A11uxxxx+ l2A12uxxtt. (14)

Accordingly, the dispersion relation

ω2 = (c2
−c2

A)k
2
−c2l2A11k

4
− l2A12ω2k2, (15)

has dimensionless form

η2 = (1− γ2
A)ξ

2
− γ2

1η2ξ 2
− γ ′4ξ 4, (16)

whereγ2
A = c2/c2

A. Due to three additional terms combined, the last model demon-
strates even a larger deviation from the non-dispersive case (Fig. 3).
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In its turn, the Maxwell-Rayleigh model of anomalous dispersion [2] intro-
duces in consideration the four-order time derivative

utt = c2uxx+
l2A22

c2

(
utt −c2uxx

)
tt . (17)

However, there is no dispersion unless the velocities in both wave operators are
not equal.

Four-order time derivatives are included also in the ”causal” model for the
dispersive wave propagation proposed by Metrikine [12]

utt = c2uxx−c2l2A11uxxxx+ l2A12uxxtt −
l2

c2A22utttt , (18)

and in the model based on the Mindlin theory of microstructure [15] proposed by
Engelbrecht et al [16] in the form

utt =
(
c2

−c2
A

)
uxx− p2(utt −c2 uxx

)
tt + p2 c2

1

(
utt −c2 uxx

)
xx . (19)

Here p and pc1 determine time and length scales of the microstructure, respec-
tively, c1 can be associated with the wave propagation velocity in the microstruc-
ture itself.
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Fig. 4 Dispersion curves for the ”causal” model (20) withγ1 = 0.5,γ ′ = 0.4: 1 – optical branch,
2 – acoustical branch; dotted lines correspond to asymptotes to dispersion curves.

The last two equations differ from each other in two aspects:(i) the latter
accounts for the slowing down of the propagation velocity inthe microstructured
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medium in comparison with that without microstructure and (ii) higher-order deri-
vatives appear as derivatives of wave operators in the latter model in contrast to
the former one. If the explicit expression for the slowing down of the propagation
velocity can be an advantage of the latter model, then the appearance of the higher-
order terms only as derivatives of the wave operator is not desirable.
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Fig. 5 Dispersion curves for the Mindlin-type model (21) withγ1 = 0.5,γA = 0.6: 1 – optical
branch, 2 – acoustical branch; dotted lines correspond to asymptotes to dispersion curves.

It is instructive to compare the dispersion properties of two last models. The
corresponding dispersion equations can be represented as

η2 = ξ 2+
(
η2

−ξ 2)(η2
− γ2

1ξ 2)
− γ ′4ξ 4, (20)

for the causal model (18) and

η2 =
(
1− γ2

A

)
ξ 2+

(
η2

−ξ 2)(η2
− γ2

1ξ 2) (21)

for the Mindlin-type model (19). Dispersion curves for bothmodels have the
acoustical as well as optical branches (Figs. 4,5), but dispersion curves for the
so-called ”causal” model [12] deviate from asymptotes withthe increase of the
parameterγ ′.

All the models listed above are based either on homogenization [3,4,10], or
on continualisation [5,9,12], or on generalized continuumtheories [6,13,14,16],
which means that all the models are of the mechanical origin.An alternative ap-
proach to the description of microstructural effects is provided by the internal
variable theory, which is intimately related to thermodynamics. The use of inter-
nal variables in the description of the behavior of materials with microstructure
has a long tradition and nowadays it is commonly accepted (cf. [17]).
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The thermodynamic theory of internal variables presented by Coleman & Gur-
tin [18] had presupposed first-order evolution equations for the internal variables
and did not include their gradients. Accounting for the gradients leads to the
weakly nonlocal theory [9,19], which can be also enriched bythe extra entropy
flux [20]. The complete theory of the internal state variables is presented recently
by Maugin [21]. Moreover, the limitation of evolution equations by only first-order
ones is got over by the concept of dual internal variables [22].

Given the plethora of models, there is a clear need to understand their structure
and characteristics from a unified viewpoint. In this paper,the internal variable ap-
proach is applied consecutively to the description of non-dissipative processes of
linear dispersive wave propagation. We start in Section 2 with the governing equa-
tions in the material formulation of continuum mechanics [23]. After demonstrat-
ing the role of internal variables in Section 3, we introducedual internal variables
(Section 4) and derive evolution equations for them. As a result, we arrive at the
known dispersive wave equations for micro- and macromotion(Sections 5 and 6)
depending on the choice of the free energy function. The different dispersive wave
equations are unified in Section 7. Some conclusions are given in the last Section.

2 Governing equations

In the linear case, the one-dimensional motion of the thermoelastic conductors of
heat without body forces is governed by local balance laws for linear momentum
and energy [24, e.g.]

∂
∂ t

(ρv)−
∂ σ
∂x

= 0, (22)

∂
∂ t

(
1
2

ρv2+E

)
−

∂
∂x

(σv−Q) = 0, (23)

and by the second law of thermodynamics

∂S
∂ t

+
∂
∂x

(
Q
θ
+K

)
≥ 0. (24)

Here t is time, ρ is the matter density,v = ut is the physical velocity,u is the
displacement,σ is the Cauchy stress,E is the internal energy per unit volume,Sis
the entropy per unit volume,θ is temperature,Q is the material heat flux, and the
”extra entropy flux”K vanishes in most cases, but this is not a basic requirement.

Our main goal is the description of wave propagation in solids with microstruc-
ture. The existence of the microstructure generally means that the medium is inho-
mogeneous. The most consistent way to treat the inhomogeneities is the material
formulation of continuum mechanics [23].

2.1 Canonical form of the energy conservation

To derive the canonical energy equation, the free energy perunit volumeW :=E−

Sθ is introduced into the energy balance (23), and the balance of linear momentum
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(22) is multiplied byv. The canonical form of the energy conservation follows
from the combination of the obtained equations:

∂ (Sθ )
∂ t

+
∂Q
∂x

= hint , hint := σεt −
∂W
∂ t

, (25)

where the right-hand side of Eq. (25)1 is formally an internal heat source [21]. The
second law of thermodynamics (24) gives then

−

(
∂W
∂ t

+S
∂ θ
∂ t

)
+σεt +

∂
∂x

(θK)−

(
Q
θ
+K

)
∂ θ
∂x

≥ 0, (26)

whereε = ux is the one-dimensional strain measure. The dissipation inequality
(26) can be also represented as follows:

S
∂ θ
∂ t

+

(
Q
θ
+K

)
∂ θ
∂x

≤ hint +
∂
∂x

(θK). (27)

2.2 Canonical (material) momentum conservation

The canonical balance of momentum is derived by the multiplication of the bal-
ance of linear momentum (22) byux (cf. [23])

ux
∂
∂ t

(ρv)−ux
∂ σ
∂x

= 0. (28)

Defining then the material momentumP, the material Eshelby stressb, the mate-
rial inhomogeneity forcef inh, and the material internal forcef int by [23]

P :=−ρutux, b :=−

(
1
2

ρv2
−W+σε

)
, (29)

f inh :=

(
1
2

v2
)

∂ ρ
∂x

−
∂W
∂x

∣∣∣∣
expl

, f int := σuxx−
∂W
∂x

∣∣∣∣
impl

, (30)

we can represent the Eq. (28) in the canonical form [23]

∂P
∂ t

−
∂b
∂x

= f int + f inh. (31)

Here the subscript notationsexplandimpl mean, respectively, the derivative keep-
ing the fields fixed (and thus extracting the explicit dependence onx), and taking
the derivative only through the fields present in the function.

The canonical equations for energy and momentum (25) and (31) are the most
general expressions we can write down without a postulate ofthe full dependency
of the free energyW [21]. Together with the dissipation inequality, they provide a
consistent framework for the introduction of internal variables.
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3 Single internal variable

As it was mentioned, the introduction of an internal variable associated with the
distributed effect of the microstructure is not a new idea. It is expected that in-
ternal variables extending the state space represent some microscopic material
structural characteristics [18,19,29,30] which are not explicitly determined like
in the Mindlin theory [15] based on the notion of a ”deformable cell”. The most
comprehensive theory of thermomechanics with internal variables is presented re-
cently by Maugin [21]. We remind here its one-dimensional version and focus on
its consequences for wave propagation.

In the one-dimensional case, the free energyW is specified as a general suffi-
ciently regular function of the strain, temperature, the internal variable,ϕ, and its
space gradient [21]

W =W(ux,θ ,ϕ,ϕx). (32)

Then the equations of state determine the macroscopic stressσ , the entropyS, the
internal stressη, and interactive internal forceτ by

σ =
∂W
∂ux

, S=−
∂W
∂ θ

, τ :=−
∂W
∂ ϕ

η :=−
∂W
∂ ϕx

. (33)

The non-zero extra entropy fluxK is represented in the form

K =−θ−1ηϕt , (34)

following the scheme originally developed in [20] for materials with diffusive
dissipative processes described by means of internal variables of state.

The canonical equations of momentum and energy keep their form

∂P
∂ t

−
∂ b̃
∂x

= f th+ f̃ intr , (35)

∂ (Sθ )
∂ t

+
∂ Q̃
∂x

= hth+ h̃intr , (36)

provided the new definitions are introduced [21]:

τ̃ ≡−
δW
δϕ

:=−

(
∂W
∂ ϕ

−
∂
∂x

(
∂W
∂ ϕx

))
= τ −ηx, (37)

b̃ :=−

(
1
2

ρv2
−W+σux−ηϕx

)
. (38)

In this case, the ”internal” material force and heat source each are split in two
terms according to

f int = f th+ f̃ intr , hint = hth+ h̃intr , (39)

where thethermal sourcesand the”intrinsic” sources are given by [21]

f th := Sθx, hth := Sθt , (40)
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f̃ intr := τ̃ϕx, h̃intr := τ̃ϕt , (41)

so the dissipation inequality reads

Φ = h̃intr
−

(
Q−ηϕ̇

θ

)
∂ θ
∂x

≥ 0. (42)

The dissipation inequality (42) is automatically satisfiedin the isothermal case
under choice

τ̃ = kϕt , k≥ 0, (43)

since
Φ = kϕ2

t ≥ 0. (44)

The fully non-dissipative case corresponds tok= 0.

3.1 Dispersive wave equation I

Now we have to prescribe the free energy function to be more specific. The sim-
plest free energy dependence is a quadratic function (cf. [16])

W =
ρc2

2
u2

x +Aϕux+
1
2

Bϕ2+
1
2

Cϕ2
x , (45)

where coefficientsA,B, andC depend on the material.
The corresponding stresses (33)1,4 are calculated as follows:

σ =
∂W
∂ux

= ρc2ux+Aϕ, η =−
∂W
∂ ϕx

=−Cϕx, (46)

and the interactive internal forceτ is, respectively,

τ =−
∂W
∂ ϕ

=−Aux−Bϕ. (47)

The balance of linear momentum (22) takes the form

ρ0utt = ρ0c2uxx+Aϕx, (48)

and the evolution equation for the internal variable (43) inthe fully non-dissipative
case (withk= 0) reduces to

τ̃ = τ −ηx =Cϕxx−Aux−Bϕ = 0. (49)

Evaluating the first space derivative of the internal variable from the last equation

ϕx =
C
B

ϕxxx−
A
B

uxx, (50)

and its third space derivative from Eq. (48)

A
ρ0

ϕxxx=
(
utt −c2uxx

)
xx, (51)
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we will have, inserting the results into the balance of linear momentum (48)

utt = c2uxx+
C
B

(
utt −c2uxx

)
xx−

A2

ρB
uxx. (52)

Obtained equation is similar to that for the microstructuremodel (13) derived in
[14]. It should be noted that higher-order derivatives appear in the dispersive wave
equation (52) ”en bloc”, i.e., as derivatives of the wave operator, and cannot be
eliminated separately. This means that Eq. (52) cannot be reduced either to Eq.
(4) or to Eq. (9). The difference in the models is related to distinct free energy
dependencies.

3.2 Dispersive wave equation II

In fact, choosing the free energy in the quadratic form

W =
ρc2

2
u2

x +A′ϕxux+
1
2

Bϕ2+
1
2

Cϕ2
x , (53)

we have for the corresponding stresses

σ =
∂W
∂ux

= ρc2ux+A′ϕx, η =−
∂W
∂ ϕx

=−A′ux−Cϕx. (54)

Note that there the coupling is described differently compared with Eqs. (45), (46).
Therefore, the balance of linear momentum is rewritten as follows:

ρ0utt = ρ0c2uxx+A′ϕxx, (55)

and the evolution equation for the internal variable (43) inthe fully non-dissipative
case (withk= 0) reduces to

τ̃ = τ −ηx =Cϕxx+A′uxx−Bϕ = 0. (56)

By means of Eq. (55) the latter relation can be represented inthe form

ϕ =
C
B

(
ρ0utt −ρ0c2uxx

)
+

A′

B
uxx. (57)

If coefficientC vanishes then we arrive at the strain-gradient model

ϕ =
A′

B
uxx, (58)

which results in the equation of motion of the form (4)

ρ0utt = ρ0c2uxx+
A′2

B
uxxxx. (59)
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It should be noted that in the terms of stresses the first-order strain-gradient model
(58) coincides with the second-order strain-gradient model in the spirit of Aifantis
[25,26], since, following (54)1 and (58),

σ = ρc2ux+
A′2

B
uxxx. (60)

Accordingly, in the case of a non-zero value of the coefficient C the more general
model (13) is obtained

utt = c2uxx+
C
B

(
utt −c2uxx

)
xx+

A′2

ρ0B
uxxxx, (61)

but without explicit slowing down of the propagation velocity.
As one can see, the material formulation of continuum mechanics provides a

thermodynamically consistent framework for the derivation of equations of mo-
tion in the medium with microstructure described by internal variables. How-
ever, the considered dispersion effects correspond to higher-order space deriva-
tives only. Remaining dispersive wave equations with higher-order time deriva-
tives (17), (18), and (19) require further consideration. We are able to go on fol-
lowing the recent generalization of the internal variablestheory [22].

4 Dual internal variables

Let us consider the free energyW as a (sufficiently smooth) function of two inter-
nal variablesϕ,ψ and their space derivatives

W =W(ux,θ ,ϕ,ϕx,ψ,ψx). (62)

In this case the equations of state are given by

σ :=
∂W
∂ux

, S:=−
∂W
∂ θ

, τ :=−
∂W
∂ ϕ

, η :=−
∂W
∂ ϕx

, (63)

ξ :=−
∂W
∂ ψ

, ζ :=−
∂W
∂ ψx

. (64)

The non-zero extra entropy flux is included into consideration similarly to the case
of one internal variable

K =−θ−1ηϕt −θ−1ζ ξt . (65)

The canonical equations of momentum and energy keep their form

∂P
∂ t

−
∂ b̃
∂x

= f th+ f̃ intr , (66)

∂ (Sθ )
∂ t

+
∂ Q̃
∂x

= hth+ h̃intr , (67)
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with the modified Eshelby stress tensor

b̃=−

(
1
2

ρv2
−W+σux−ηϕx−ζ ψx

)
(68)

and intrinsic source terms

f̃ intr := τ̃ϕx+ ξ̃ψx, h̃intr := τ̃ϕt + ξ̃ψt . (69)

In the above equations the following definitions are used

τ̃ ≡−
δW
δϕ

:=−

(
∂W
∂ ϕ

−
∂
∂x

(
∂W
∂ ϕx

))
= τ −ηx, (70)

ξ̃ ≡−
δW
δψ

:=−

(
∂W
∂ ψ

−
∂
∂x

(
∂W
∂ ψx

))
= ξ −ζx, (71)

S̃= θ−1Q̃, Q̃= Q−ηϕ̇ −ζ ψ̇, (72)

which are similar to those in the case of one internal variable.
The corresponding dissipation is determined by

Φ = h̃intr
− S̃θx = τ̃ϕt + ξ̃ψt − S̃θx ≥ 0. (73)

In the isothermal case the dissipation inequality reduces to the intrinsic part de-
pending only on internal variables

Φ = h̃intr = τ̃ϕt + ξ̃ψt = (τ −ηx)ϕt +(ξ −ζx)ψt ≥ 0. (74)

It is easy to see that the choice

ϕt = R(ξ −ζx), ψt =−R(τ −ηx), (75)

whereR is an appropriate constant, leads to zero dissipation. Therefore, the dis-
sipation inequality (74) is satisfied automatically with the choice (75). The latter
two evolution equations express the duality between internal variables: one inter-
nal variable is driven by another one and vice versa.

5 Microstructure model I

Having the evolution equations for internal variables in the non-dissipative case,
we can derive a microstructure model. We keep a quadratic free energy depen-
dence

W =
ρc2

2
u2

x +Aϕux+
1
2

Bϕ2+
1
2

Cϕ2
x +

1
2

Dψ2, (76)

where, as before,c is the elastic wave speed in the medium without microstructure,
A,B,C, andD are material parameters characterizing microstructure influence.

Here we include for simplicity only the contribution of the second internal
variable itself. In this case, the stress components are calculated as follows:

σ =
∂W
∂ux

= ρc2ux+Aϕ, η =−
∂W
∂ ϕx

=−Cϕx, ζ =−
∂W
∂ ψx

= 0, (77)
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and the expression for the interactive internal forceτ is not changed

τ =−
∂W
∂ ϕ

=−Aux−Bϕ. (78)

The derivative of the free energy with respect to the dual internal variable gives

ξ =−
∂W
∂ ψ

=−Dψ. (79)

Therefore, the evolution equation for the primary internalvariableϕ (75)1 can be
rewritten as

ϕ̇ =−RDψ. (80)

Time differentiation of Eq. (80) and the evolution equationfor the dual internal
variable (75)2 lead to the hyperbolic equation for the primary internal variable

ϕ̈ = R2D(τ −ηx). (81)

This allows us to represent the equations of motion both for macro- and mi-
crostructure in the form, which includes only the primary internal variable

ρ0utt = ρ0c2uxx+Aϕx, (82)

Iϕtt =Cϕxx−Aux−Bϕ, (83)

whereI = 1/(R2D). In terms of stresses introduced by Eq. (77), the same system
of equations is represented as

ρ0
∂ 2u
∂ t2 =

∂ σ
∂x

, (84)

I
∂ 2ϕ
∂ t2 =−

∂ η
∂x

+ τ. (85)

It is worth to note that the same equations are derived in [27]based on different
considerations.

As in the case of single internal variable, the constructed model describing the
influence of microstructure by means of dual internal variables is non-dissipative.
Equations of motion at both macro- and microlevels are hyperbolic. The hyper-
bolicity of the equation of motion at the microlevel is a direct consequence of
the non-dissipativity requirement. The thermodynamic consistency of the model
is provided, as before, due to the use of the canonical framework of continuum
mechanics.
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5.1 Single wave equation

To derive the single wave equation, we can determine the firstspace derivative of
the internal variable from Eq. (83)

ϕx =−
I
B

ϕttx+
C
B

ϕxxx−
A
B

uxx, (86)

and its third derivatives from Eq. (82)

A
ρ0

ϕxxx=
(
utt −c2uxx

)
xx,

A
ρ0

ϕttx =
(
utt −c2uxx

)
tt . (87)

Inserting the results into the balance of linear momentum (82), we obtain a more
general equation [28]

utt = c2uxx+
C
B

(
utt −c2uxx

)
xx−

I
B

(
utt −c2uxx

)
tt −

A2

ρB
uxx. (88)

Identifying A2 = c2
ABρ,C = Ic2

1,B = I/p2, we see that the obtained equation is
nothing else but the general model of the dispersive wave propagation (19). The
Maxwell-Rayleigh model of anomalous dispersion (17) corresponds to a special
case of the latter equation withC= 0.

The dispersion analysis of the dispersive wave equation (88) is given in [16].

6 Microstructure model II

It may be instructive to construct another microstructure model based on distinct
free energy dependence similarly to the case of a single internal variable (cf. Eq.
(53)). Here we apply the free energy in the form

W =
ρc2

2
u2

x +A′ϕxux+
1
2

Bϕ2+
1
2

Cϕ2
x +

1
2

Dψ2. (89)

Note that the coupling between macromotion and microstructure is described by
the termA′ϕxux while in the microstructure model I this coupling is different,
described by the termAϕux (cf. also Eqs. (45), (53)).

In this case, the stress components are calculated as follows:

σ =
∂W
∂ux

= ρc2ux+A′ϕx, η =−
∂W
∂ ϕx

=−A′ux−Cϕx, ζ =−
∂W
∂ ψx

= 0, (90)

while the interactive internal forceτ is reduced to

τ =−
∂W
∂ ϕ

=−Bϕ. (91)

The evolution equation for the primary internal variableϕ is the same as previ-
ously

ϕ̈ = R2D(τ −ηx), (92)
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and the equations of motion both for macro- and microstructure include only the
primary internal variable

ρ0utt = ρ0c2uxx+A′ϕxx, (93)

Iϕtt =Cϕxx+A′uxx−Bϕ. (94)

In terms of stresses introduced by Eq. (90), the same system of equations is still
represented as previously by

ρ0
∂ 2u
∂ t2 =

∂ σ
∂x

, (95)

I
∂ 2ϕ
∂ t2 =−

∂ η
∂x

+ τ. (96)

6.1 Single wave equation

To obtain a single wave equation from Eqs. (93) and (94), we determine the second
space derivative of the internal variable from Eq. (94)

ϕxx =−
I
B

ϕttxx+
C
B

ϕxxxx+
A′

B
uxxxx, (97)

and its fourth derivatives from Eq. (82)

A′

ρ0
ϕxxxx=

(
utt −c2uxx

)
xx,

A′

ρ0
ϕttxx =

(
utt −c2uxx

)
tt . (98)

Inserting the results into the balance of linear momentum (93), we obtain the
fourth-order equation

utt = c2uxx+
C
B

(
utt −c2uxx

)
xx−

I
B

(
utt −c2uxx

)
tt +

A′2

ρB
uxxxx. (99)

The higher-order dispersive wave equations (88) and (99) generalize the dispersive
wave equations derived in Sec. 3.1 and 3.2, respectively. These equations differ
from each other only by the last term in the right hand side. However, this differ-
ence is essential, because the second-order space derivative in Eq. (88) exhibits
the slowing down the velocity of propagation, whereas the fourth-order derivative
in Eq. (99) does not. At the same time, derivatives of the waveoperator in Eq.
(88) cannot be rearranged, whereas it is possible in Eq. (99)due to the additional
fourth-order space derivative.
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7 Unification

The both approaches to derive the dispersive wave equationscan be united by
choosing the free energy function in the form

W =
ρc2

2
u2

x +Auxϕ +A′uxϕx+
1
2

Bϕ2+
1
2

Cϕ2
x +

1
2

Dψ2. (100)

The corresponding stresses combine contributions from both cases mentioned
above

σ =
∂W
∂ux

= ρc2ux+Aϕ +A′ϕx, η =−
∂W
∂ ϕx

=−A′ux−Cϕx, (101)

and the interactive internal force is the same as in the first case

τ =−
∂W
∂ ϕ

=−Aux−Bϕ. (102)
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Fig. 6 Dispersion curves for the unified model (110) withγ1 = 0.5,γA = 0.6,γ ′ = 0.25: 1 –
optical branch, 2 – acoustical branch; dotted lines correspond to asymptotes to dispersion curves.

Accordingly, the balance of linear momentum results in

ρ0utt = ρ0c2uxx+Aϕx+A′ϕxx, (103)

and the evolution equation for the primary internal variable gives

Iϕtt =Cϕxx+A′uxx−Aux−Bϕ. (104)
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The first derivative of the internal variable can be determined from Eq. (104)

Bϕx =−Iϕttx +Cϕxxx+A′uxxx−Auxx. (105)

The third mixed derivativeϕttx follows from Eq. (103)

Aϕttx =
(
ρ0utt −ρ0c2uxx

)
tt −A′ϕttxx. (106)

The appeared fourth-order mixed derivative the internal variable is calculated by
means Eq. (104)

Iϕttxx =Cϕxxxx+A′uxxxx−Auxxx−Bϕxx, (107)

and, in its turn, the fourth-order space derivative is determined again from Eq.
(103)

A′ϕxxxx=
(
ρ0utt −ρ0c2uxx

)
xx−Aϕxxx. (108)

Collecting all the results (105) - (108) and substituting them into Eq. (103) we
arrive at the dispersive wave equation

utt = c2uxx+
C
B

(
utt −c2uxx

)
xx−

I
B

(
utt −c2uxx

)
tt +

A′2

ρB
uxxxx−

A2

ρB
uxx, (109)

that unifies and generalizes both approaches.
The dispersion equation for the unified model (109) reads

η2 =
(
1− γ2

A

)
ξ 2+

(
η2

−ξ 2)(η2
− γ2

1ξ 2)
− γ ′4ξ 4. (110)

The dispersion curves for the unified model represented in Fig. 6 are similar to
those in the Mindlin-type model [16]. However, they start dodeviate from asymp-
totes with increasing of the parameterγ ′.

8 Conclusions

The general 3D theory of microstructured materials in termsof internal variables
is presented in [32]. Here the 1D setting is used in order to demonstrate explicitly
how the structure of the governing equation depends on constitutive free energy
function.

The earlier analysis of the Mindlin-type equation [13] has explicitly demon-
strated the need to involve micro-elastic and micro-inertial characteristics into the
physically acceptable models. The consistent analysis of gradient-type theories is
given in [5,31]. Here we demonstrated that several well-known models (see [9],
for example) together with generalization of the Mindlin-type models [14,16] can
be derived by using internal variables. The adopted phenomenological approach is
based on the material formulation of continuum mechanics [23] and provides the
full thermodynamic consistency due to the dual internal variables concept [22].
So, Eq. (109) is rather general and well-grounded. Its typical feature is that be-
sides the fourth-order derivatives it includes also the changes in the velocity of
wave propagation at macroscale due to the coupling - a slowing down effect. This
effect is also demonstrated by direct numerical computations [16,24] for regular
and random microstructure distribution. The fourth-orderdispersive terms in Eq.
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(109) are explicitly related to various terms in free energyfunction and reflect
the effects of micro-elasticity and microinertia. The coupling between macromo-
tion and microstructure deformation is taken into account by last two terms of Eq.
(109).

Equation (109), first time derived in this paper, could be used as a basis for
further generalizations. First, even more higher-order derivatives can appear in
the model (cf. [13,31]). Second, using perturbation technique, Eq. (109) can be
reduced to a ”hierarchical equation” which includes one wave operator for the
macromotion and another for the microstructure [16]. Third, the generalization
to multiple microstructures is also possible [33]. At last,introduction of nonlinear
terms, i.e. cubic terms in a free energy function, is described elsewhere for simpler
models [14,34].
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