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MICROSTRUCTURED SOLIDS AND INVERSE PROBLEMS

Abstract. Microstructured solids are characterized by their dispersive properties and disper-
sive effects can be used for solving the inverse problems, i.e. for Nondestructive Testing. In
this paper the Mindlin-type one-dimensional model is derivedfor longitudinal wave motion
in such solids. In case of linear approximation, the inverse problems based on harmonic
waves and localized boundary conditions are posed and solved, using the measurements of
phase and group velocities and phase shifts. The full nonlinear model leads to solitary waves
due to the balance of dispersive and nonlinear effects resulting in an asymmetric solitary
wave. In this case the characteristics of wave profiles are used for solving an inverse prob-
lem.

1. Introduction

Contemporary materials are often characterized by their complex structure at various
scales. For short, such materials are refered to as “microstructured materials”. The mi-
crostructural properties influence strongly the macro-behaviour of compound materials
and/or structures, that is why stress analysis should be based on proper modelling of
possible physical effects caused by the microstructure. Two possible classes of prob-
lems must be distinguished: (i) given the properties of the material and its constituen-
cies, and external disturbance, determine the global behaviour; (ii) given the external
disturbance and the global behaviour, determine the properties of the material. The first
class is identified as direct problems, the second – as inverse problems. In technical
terms, the second class (inverse problems) is the Nondestructive Testing (NDT) with
the aim to determine the physical and/or geometrical properties of materials (speci-
mens) by measuring the wave fields at given excitations. By using ultrasound, NDT
has found wide range of applications not only in engineeringbut also in medicine.

The ideas of using ultrasound in NDT have been developed since the discovery
of the piezoelectric effect in quartz in 1880 (see [1]). The ideas were developed further
for detecting objects in water (or air) and for detecting flaws in solids. Overviews on
later applications are given in [2] - [5], for example.

Quite often in engineering applications of NDT, simplified mathematical mod-
els are used and the origin of these models, based on continuum mechanics, is for-
gotten. In [6], a simple straight-forward idea is advocated: for theoretical background
of NDT, the conservation and constitutive laws should be stated first in the full cor-
respondence to the axioms of continuum mechanics. The outcome could be rather
complicated but all the possible simplifications (approximations) of the basic model
should be based on clear procedures retaining the effects ofthe same order of accuracy.
Only then the solutions of the inverse problems reflect reality.
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In most general terms, microstructured materials mean polycrystalline solids,
ceramic composites, functionally graded materials, granular materials, etc. The exis-
tence of grains, inclusions, layers, block walls, etc. – allthat refers to microstructure.
There are powerful methods in continuum mechanics in order to describe such materi-
als or the existence of irregularities in materials starting from early studies of Cosserats
and Voigt up to contemporary formulations [7]. The straight-forward modelling of mi-
crostructured solids leads to assigning concrete physicalproperties to every irregularity
or to every volume element in a solid. This means introducingdirect dependencies of
all the physical properties on material coordinates and consequently leads to an ex-
tremely complex system. Another approach is to separate macro- and microstructure
in continua. Then the conservation laws for both structuresshould be separately for-
mulated [7, 11] or the microstructural quantities are separately taken into account in
one set of conservation laws [8].

In this paper, we present a mathematical model for microstructured solids fol-
lowing the ideas of separating macro- and microstructure [11]. The details of modelling
are described in [12, 13]. Based on that model, inverse problems in one-dimensional
(1D) setting are posed and solved by making use of wave field characteristics. Pre-
sented are the main ideas whereas the uniqueness and stability theorems are published
elsewhere [14, 15].

In Section 2 the basic assumptions are presented and the mathematical model is
derived. The physical effects described by such a model are listed in Section 3. The
focal point of this paper is Section 4 where three inverse problems are posed and their
solutions briefly envisaged. In Section 5, results are summed up.

2. Mathematical model

We start from the Mindlin model [11] for microstructured solids. This model has a clear
physical background interpreting the microstructure as deformable cells which can be
“a molecule of a polymer, a crystallite of a polycrystal or a grain of a granular material”.
The displacementu of a material particle in terms of macrostructure is defined as usual
by its componentsui ≡ xi − Xi , wherexi , Xi (i = 1,2,3) are the components of
the spatial and material position vectors, respectively. Within each material volume
there is a microvolume (microstructure) and the microdisplacementu′ is defined by
u′

i ≡ x′
i − X′

i , where the origin of the coordinatesx′
i moves with the displacement

u. The displacement gradient is assumed to be small and that permits to use the basic
assumption of the Mindlin model

(1) u′
j = x′

kϕk j (xi , t)

and consequently

(2)
∂u′

j

∂x′
i

= ∂ ′
i u

′
j = ϕi j .

Further we limit ourselves to the 1D case (see discussion in Section 5) and
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denoteu1 = u, ϕ11 = ϕ. The fundamental balance laws are formulated separately for
macroscopic and microscopic scales.

We assume that free energy functionW has the formW = W2 + W3, whereW2
is the simplest quadratic function

(3) W2 = 1

2

(

αu2
x + Bϕ2 + Cϕ2

x + 2Aϕux

)

andW3 includes nonlinearities on both the macro- and microlevel

(4) W3 = 1

6

(

Nu3
x + Mϕ3

x

)

.

Hereα, A, B,C, N andM are constants and indices here and below denote differen-
tiation. The non-quadratic potentialW3 is the first approximation towards nonlinear
theory. Then the governing equations (for details, see [12,13] are the following:

(5) ρut t = αuxx + Nuxuxx + Aϕx,

(6) I ϕt t = Cϕxx + Mϕxϕxx − Aux − Bϕ,

whereρ is the macrodensity, andI is the microinertia. It can be shown that this system
can also be interpreted as a balance of pseudomomentum [14] -for that see [16].

Let us rewrite this system (5), (6) in dimensionless variables X = x/L, T =
tc0/L, U = u/U0, whereU0 is the amplitude of an excitation, andL - the wavelength
of an excitation, andc2

0 = α/ρ. Note thatϕ is already dimensionless. We introduce
also the geometric parametersδ = l 2/L2, ǫ = Uo/L, wherel is the scale of the
microstructure. System (5), (6) yields then

(7) UT T = UX X + Nǫ

ρc2
0

UXUX X + A

ρc2
0ǫ
ϕX,

(8) δα I ∗ϕT T = δC∗ϕX X + δ3/2M∗ϕXϕX X − AǫUX − Bϕ,

whereI = I ∗ρl 2, C = C∗l 2 andM = M∗l 3.

For further analysis we eliminate microdeformationϕ from (7), (8) by making
use of the slaving principle [16, 17]. This results in the following hierarchical govern-
ing equation forU

UT T = (1 − b) UX X + µ

2
(U2

X)X + δ(βUT T − γ UX X)X X −(9)

− δ3/2λ

2
(U2

X X)X X,

where

b = A2

α B
, µ = Nε

α
, β = A2I ∗

B2
, γ = A2 C∗

α B2
, λ = A3 M∗ ε

α B3
.

This is the sought model equation for longitudinal waves in 1D setting.
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3. Direct problem: physical effects

Equation (9) is a comparatively simple model but surprisingly rich. For the sake of
further analysis we separate linear(N = M = 0) and nonlinear(N 6= 0, M 6= 0)
cases. In the linear case

UT T = (1 − b) UX X + δ(βUT T − γ UX X)X X(10)

the hierarchical structure is explicitly seen. Indeed, Eq.(10) includes two wave opera-
tors - one for macrostructure(Lmacro = UT T − (1− b) UX X), another for microstruc-
ture (Lmicro = βUT T − γ UX X). If the scale parameterδ is small thenLmicro can
be neglected; ifδ is large then on contrary the influence of macrostructure is weaker
andLmacro can be neglected; clearly the intermediate case includes both effects. The
wave speed in the compound material is affected by the microstructure (1versusb) and
clearly only A = 0 excludes this dependence. The influence of the microstructure on
wave motion is, as expected, characterized by dispersive terms. However, the double
dispersion occurs due to the different higher order terms(UT T X X andUX X X X) – cf.
[16, 18].

The dispersion analysis [12, 13] shows that the phase velocity depends strongly
on the wave number, i.e. on frequency of the excitation. Consequently, this effect could
be used for solving the inverse problem in the linear setting.

In nonlinear case of Eq. (9) with(N 6= 0,M 6= 0), dispersive and nonlinear
terms act together. From the theory of nonlinear waves it is known that if dispersive and
nonlinear effects are balanced, then solitary waves may emerge. It would be of interest
to analyse this case separately from the viewpoint of an inverse problem – can the form
of a solitary wave (if it exists) give information about the properties of microstructure?

In what follows, we present the main ideas of solving the inverse problems
in linear (Eq. (10)) and nonlinear (Eq. (9)) cases. In other words, we are going to
determine the coefficients of these equations related to physical parameters in (3), (4),
(5), (6).

4. Inverse problems

4.1. Linear case, harmonic waves

For sake of simplicity, we rewrite Eq. (10) with lower case letters

ut t = (1 − b) uxx + δ(β ut t xx − γ uxxxx).(11)

Obviously (see Eq. (3))b, δ, β, γ are positive andb < 1. If we consider the
scale parameterδ to be known, then the number of parameters to be determined for the
inverse problem is three.

Assume that Eq. (11) has a solution in the form of harmonic waves

(12) u(x, t) = exp[i (kx − ωt)],
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wherek andω are the wave number and frequency, respectively. Then the phase ve-
locity cph is determined by

(13) cph(k) =
(

δγ k2 + 1 − b

δβk2 + 1

)1/2

.

The inverse problem is the following: given three phase velocities cph(k1),
cph(k2), andcph(k3) which correspond to wave numbersk1, k2, k3 such thatk2

1 6= k2
2,

k2
1 6= k2

3, k2
2 6= k2

3, determine the parametersb, β, andγ . The qualitative behaviour
of phase velocities is shown in Fig. 1. This means solving thesystem of nonlinear
equations with three unknowns

(14) cph(k j ) =
(

δγ k2
j + 1 − b

δβk2
j + 1

)1/2

, j = 1,2,3,

 c
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Figure 1: Qualitative behaviour of phase velocities. Herecmacro andcmicro

denote the velocities in pure macro- and microstructure, respectively;c j , j =
1,2,3 are phase velocitiescph(k j ).

Actually it is possible to transform Eq. (14) to a more suitable form for practical
solution

(15) b + δk2
j c

2
ph(k j )β − δk2

j γ = 1 − c2
ph(k j ), j = 1,2,3.

The detailed analysis of uniqueness of solution to Eq. (15) is given in [14].
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4.2. Linear case, localized boundary condition

In practice of NDT, the excitations (boundary conditions) are usually localized. The
general solution to Eq. (11) satisfying the boundary condition u(0, t) = g(t) is the
following:

(16) u(x, t) = 1

2 π

∫ ∞

−∞
G(ω)exp[i (k(ω)x − ωt)] dω,

(17) G(ω) =
∫ ∞

−∞
g(t)exp(iωt)dt.

We assume now

(18) g(t) = Aexp

(

− t2

4ν2

)

exp(−iηt),

whereA, ν are given andη is the fixed frequency.

Then expression (16) yields (for details see [17])

(19) u(x, t) = Aν√
π

∫ ∞

−∞
exp

[

−ν2(ω − η)2
]

exp[i (k(ω)x − ωt)] dω.

Further on, we use an approximation and derivek(ω) into the Taylor series
aroundω = η. Keeping three first terms, we have

(20) k(ω) ≈ k(η)+ k′(η)(ω − η)+ 1

2
k′′(η)(ω − η)2,

where prime denotes differentiation. From the definition ofphase and group velocities
we determine

(21) k (η) = η

cph
, k′(η) = 1

cg

and denoted = 1
2k′′(η).

The real part of the integral (19) can now be evaluated [14] (ũ denotes the ap-
proximation):

Reũ(x, t) = A1(x)exp
[

−ν2 f1(x, t)
]

cos

[

η

(

x

cph
− t

)

+8(x)−(22)

− xd f1(x, t)] ,

(23) A1 = Aν(ν4 + x2d2)−
1
4 ,

(24) f1(x, t) = 1

4

(

x

cg
− t

)2

(ν4 + x2d2)−1,
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(25) 8(x) = arctan1
2xd

ν2
.

From (22) - (25) it follows that the amplitude of the wave is decreasing with
increasingx and the dispersion of the normal distribution ing(t) is increasing. So it is
possible to determine the numberd from the measurement.

The inverse problem stated now is the following: given the phase and group
velocitiescph, cg and the numberd, determine the parametersb, β, γ . This problem
has the unique solution providedcph 6= cg:

(26) β = 1

δm2
(4F(m)− 1),

(27) γ = cph

δm2
(4cgF(m)− cph),

(28) b = 1 + cph
[

4(cg − cph)F(m)− cph
]

with

(29) F(m) =
[

cg

cph
−

2dmc3g
cg − cph

]−1

,

wherem is the wave number corresponding to the frequencyη and the condition 0<
F−1(m) < 4 must be satisfied in order to get positiveβ.

4.3. Nonlinear case, solitary wave

As in Section 4.1, we rewrite the basic equation – Eq. (9) withlower case letters. As
far as here is no need to distinguish the wave speed components for microstructure, we
denote byb1 = 1 − b. Equation (9) reads then in terms ofv = ux

(30) vt t = b1 vxx + µ

2
(v2)xx + δ(βvt t − γ vxx)xx − δ3/2λ

2
(v2

x)xxx.

First we establish a solution to the direct problem and then analyse the possibil-
ities to solve the inverse problem. We seek the travelling waves

(31) v(xt) = w(x − ct) = w(ξ)

wherec is a free parameter (velocity of the wave) andw(ξ) satisfies the equation

(32) (c2 − b1)w
′′ − µ

2
(w2)′′ − δ(βc2 − γ )w I V + δ3/2λ

2

[

(w′)2
]′′′

= 0.

When looking for solitary waves, the conditionsω(ξ), ω′(ξ), ω′′(ξ) → 0 as|ξ | → ∞
should be satisfied. After integrating Eq. (32) three times (before the last integration
multiplying byω′), we obtain

(33)
1

2
δ
(

βc2 − γ
)

(

w′)2 − 1

3
δ3/2λ

(

w′)3 = 1

2

(

c2 − b1

)

w2 − 1

6
µw3.
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It can be proved [18] that for the existence of the solitary wave solution the following
in equalities should be satisfied

(34) βc2 − γ 6= 0, c2 − b1 6= 0, µ 6= 0.

In addition, the necessary solvability condition is

(35)
(

c2 − b1

)

/
(

βc2 − γ
)

> 0.

Now we introduce the following three parameters which have certain physical
or geometrical meaning:

(36) κ =
√

c2 − b1

δ(βc2 − γ )
, A = 3(c2 − b1)

µ
, θ = 2

[

c2 − b1

βc2 − γ

]3/2
λ

µ
.

In terms of these parameters, Eq. (33) has the form

(37) (w′)2 − θ

κA
(w′)3 = κ2w2

(

1 − w

A

)

.
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Figure 2: Solitary wave in case
θ = 0.9
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Figure 3: Solitary wave in case
θ = −0.9

The parameterκ is the exponential decay rate of the solution as|ξ | → ∞. The
inverse of decay rate 1/κ is usually referred to as the width of the wave. ParameterA
is actually the amplitude of the wave and parameterθ is related to the asymmetry of
the wave. We remind now that in our model two nonlinearities are taken into account:
on the macrolevel(µ 6= 0) and on the microlevel(λ 6= 0) – cf. Eq. (9). Ifλ = 0, i.e.
nonlinearity on the microlevel is neglected then a symmetric bell-shaped solitary wave
can be found [16, 18]

(38) w(ξ) = Acosh2
(

κξ

2

)

.
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In caseµ 6= 0, λ 6= 0, the situation is more complicated and we have used
numerical integration for finding the solitary wave. Two examples of solitary waves,
computed by means of the second-order Adams-Bashforth method, are depicted in Figs
2, 3, whereζ = κξ , y = ω/A. The results are clearly asymmetric. Let us fix same
relative levely ∈ (0,1) and consider the front and rear half-lengths of the wave at this
level – namely the quantities|ξ−(y A)| and|ξ+(y A)|. The asymmetry at this level is
the ratio of those quantities which depends on [18]:

(39)
|ξ+(y A)|
|ξ−(y A)| = Fy(θ),

whereFy(θ) is an increasing function ofθ in the interval (-1,1) andFy(0) = 1. The
details on complicated functionFy are presented in [15].

In the model equation (30) there are 5 material parameters:b1, µ, β, γ, λ which
need to be determined in the NDT. Measuring just a single solitary wave, one could
recover maximallyκ, A, andθ , i.e. only 3 parameters. That is why for solving the full
problem, one should use the measurements of two independentsolitary waves [19].
The full procedure is formed by two stages. As before, we assumeδ to be known.

The first stage is to determine the parameters of macrostructure,b1 andµ. Let
be given two solitary wavesω1 andω2 with the velocitiesc1 andc2, and amplitudes
A1 andA2.

We expect that the conditionsc2
1 6= c2

2 and henceA1 6= A2 are satisfied. Then
from expressions (36) we have the system

(40) 3b1 + A jµ = 3c2
j , j = 1,2,

which determine uniquelyb1 andµ.

The second stage is to find other unknownsβ, γ, λ. For that not only the am-
plitudesA j andc j should be known but also some additional information. We fix two
numbersw11, w12 which lie between 0 andA1 for the first solitary wave at both sides
of the maximum amplitudeA1, respectively and a numberw21 which lies between 0
andA2 for the second solitary wave. We need also to registrer time when the first wave
reachesw11, w = A1, andw12 and the second –w21 andw = A2. Then knowing
c1 andc2, the corresponding coordinatesξ11, ξ12 andξ21 can be calculated. Note that
ξ = 0 for both A1 and A2. Now the inverse problem posed is the following: given
b1, µ, the points(ξ11, w11), (ξ12, w12) with ξ11 > 0, ξ12 < 0 on the graph of the first
wave and the point(ξ21, w21) with ξ21 6= 0 on the graph of the second wave, determine
β, γ, λ. The details of solving this inverse problem with the proof of the uniqueness
and a stability estimate are given in [19].

5. Summary

It has been demonstrated how to solve the inverse problem of determining the mate-
rial parameters from wave characteristics in microstructured materials. The following
physical effects have been used: (i) the dependencies of phase and group velocities on
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wave numbers and (ii) the asymmetric structure of solitary waves. The measurements
of velocities are easily carried on, the measurements of wave profiles need higher ac-
curacy. However, the experimental studies of strain waves in microstructured materials
[20] have demonstrated the asymmetry of solitary waves. In this case tungsten-epoxy
composites were used with reference samples made of aluminium.

In practical realizations the ultrasonic transducers are used for generating waves
in samples. In principle, the generated wave beams are not one-dimensional but the
diffractional expansion in the transverse direction is rather weak. On the axis of the
wave beam, the 1D approximation is possible [21].
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DIFFERENTIAL GEOMETRY, LEAST ACTION PRINCIPLES

AND IRREVERSIBLE PROCESSES

“Les ph́enom̀enes irŕeversibles et le th́eor̂eme de Clausius ne sont pas explicables au
moyen deśequations de Lagrange”.Poincaŕe, 1908.

Abstract. This contribution is intended as both a course on differential geometry and an
illustration of the involvement of differential geometry in the calculus of variations, in articu-
lation with the occurrence of irreversibility. Potential applications in terms of the continuous
symmetries of the constitutive laws of dissipative materials shall be mentionned, leading po-
tentially to a systematic and predictive approach of the construction of the so-called master
curves.

1. Introduction

The contribution of differential forms to mathematics and physics is considerable, due
to fact that they allow the unification, generalization and conception of notions en-
countered in a wide range of disciplines: mention amongst others elementary geom-
etry, analysis, thermodynamics, continuum mechanics, electromagnetism, and analyt-
ical mechanics, (see [1, 2, 9, 11, 12, 16, 26, 28, 29, 30, 31]).The first part of the
contribution gives the essentials of differential geometry in a synthetic manner. The
proofs shall most of the time be omitted (the reader shall refer to one of the references
related to differential geometry).
The following notations shall be used in the sequel: the partial derivative of a quantity
a with respect to the variablex shall be notedax, or a,x, or ∂xa. The transpose of a
vector or a tensorA is noted with a superscriptAt . The convention of summation of
the repeated index in monomials is implicitly used (unless explicitly stated). The fol-
lowing abbreviations shall be used: w.r. for with respect to; s.t. for such that; r.h.s. for
right-hand side; iff for iff and only if; notation := stands for the definition (expressed
on the r.h.s.) of the quantity placed on the left hand-side.

2. Differential geometry: a reminder of the essential notions

2.1. Differentiable manifolds (submanifolds)

ConsiderM a set of points endowed with a topology andEn a finite dimensional vector
space (dimensionn). A local chart onM is the pair(Ui , φ) consisting of an open set
Ui of M and an homeomorphismφ: Ui −→ φ (Ui ) ⊂ En: one says thatUi is the
domain of the chart (fig1).

Since a point inM can belong to 2 distinct open setsU j , Uk, with the charts
(

U j , φ j
)

and (Uk, φk), a Cq-compatibility condition between the 2 charts is defined

171
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Figure 1: Chart of a manifold.

asU j ∩ Uk 6= ∅ ⇒ φk ◦ φ−1
j

∣

∣

∣

U j ∩Uk
is a diffeomorphism of classCq between the open

setsφ j
(

U j ∩ Uk
)

andφk
(

U j ∩ Uk
)

. Pointsp on M are conveniently labeled by local
coordinatesxi , which are the coordinates inRn of the pointφ(p). An atlas of classCq

on M is a set of charts(Ui , φi )i , s.t. the domains of the charts coverM ; all charts of
the atlas areCq-compatible.

EXAMPLE 1. Consider the sphere of radius unity in 3D space, defined by

S2 =
(

(x1, x2, x3) ∈ R
3/

3
∑

i=1

x2
i = 1

)

the stereographic projection of the North polen onto the plane defined byx3 = 0 is a
bijection betweenS2 \ {n} and this plane. A similar projection of the South Pole can
be defined.

In the following, the base of the topology ofM is supposed countable, thus the
manifold M is supposed separable. Submanifolds ofR

n+k can be defined from the
notions of submersion and immersion. ForU open inR

n, aC∞ mapψ : U → R
n+k

is an immersion if its differentialdψ(u) ∈ L
(

TuR
n → Tψ(u)Rn+k

)

is a one-to-one
map at everyu ∈ U . The linear algebra characterization of an immersion is that the
differential dψ(u) induces a one to one linear map fromRn to R

n+k (equivalently,
the differential mapdψ(u) has rankn). The dual notion of submersion is defined
in the following manner: forV open inR

n+k, and f :→ R
k a smooth map,f is a

submersionif its differential D f (x) ∈ L
(

TxR
n+k → T f (x)R

k
)

in an onto map, thus
when the matrixD f (x) has rankk.

EXAMPLE 2. Consider the casen = 2 andk = 1; for h ∈ C∞ (R) a strictly
positive function, the map which rotates the curvex = h(z) around thez axis, namely
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ψ(u, θ) = (h(u) cos(θ), h(u) sinθ,u) gives a parameterized surface of revolution. The
differential is

Dψ (u, θ) =





h′(u) cosθ −h(u) sinθ
h′(u) sinθ h(u) cosθ

1 0



 ,

the column of which being independent, thusψ is an immersion. As an example of
an submersion, let considerV =

{

(x1, x2, x3) x2
1 + x2

2 + x2
3 > 0

}

, and the function
f (x1, x2, x3) = x2

1 + x2
2 + x2

3. Its differential is D f (x1, x2, x3) = 2(x1, x2, x3),
which is not zero onV , thus f is a submersion.
Manifolds can be parametrized as curves and surfaces traditionally; considerM as
a subset ofRn+k; an n-dimensional parametrization ofM is given by a one-to-one
immersionψ : W → U ⊂ R

n+k, with U an open subset ofRn+k with U ∩ M 6= ∅,
andψ(W) = U ∩ M . The image of a 1D parametrization is a parametrized curve, and
that of a 2D parametrization is a parametrized surface. For instance, the application

θ : (0,2π) → U = R
2(1,0)

θ 7→ (cosθ, sinθ)

gives a 1D parametrization of the unit circle inR2.
The implicit function theorem gives a convenientimplicit function parametrization,
i.e. one having the special formψ (x1, . . . , xn, h1(x), . . . , hn(x)), with h an implicit
function.
For example, a 2D implicit function parametrization at the point(0,0,1) of the sphere

S2 in R
3 is given byψ(x, y) =

(

x, y,
√

1 − x2 − y2
)

, with domain

W =
{

(x, y) ∈ R
2/x2 + y2 < 1

}

and rangeW × (0,+∞).

2.2. Transformations, Lie groups and Lie derivatives

Generally speaking, transformations map a set into itself,and a mathematical structure
cam be characterized by those transformations that leaves it invariant (for instance,
Euclidean geometry is invariant under orthogonal transformations, whereas special rel-
ativity has a structure compatible with invariance w.r. to the Lorentz group). Very
often, transformations establish as a group, and the prime tool there is the infinitesimal
transformation, which is described by a vector field (an infinitesimal generator of the
group).
To each point of the manifold can be attached an n-dimensional vector space, called
the tangent space (local notion). At a pointp0 ∈ M , let define thegermof a differ-
entiable functiong as the equivalence class of differentiable functions that coincide in
an open neighborhood ofp0. Furthermore, atangent vector is an equivalence class
of curves having the same tangency atp0; the curvesc : I ⊂ R → M are tangent
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at a pointp0, if, in a given chart(Uφ), they give the same value
d

dt
(φ ◦ c)(0), with

p0 = c(0). Using further the composition of functions theorem gives the rate of varia-
tion of the functiong along the curvec (i.e. the composite mapg ◦ φ−1 : R

n → R),

as
d

dt
(g ◦ c)(0) =

n
∑

I =1

(

∂g

∂xi

)

x0

dxi

dt
(0). Thereby, the notion of tangent vector re-

ceives a second definition: the tangent vector also is derivation acting on the set of
germs of functions defined in an open neighborhood ofp0, i.e. a linear application
Xp0 : g 7→ Xp0(g) = d

dt (g ◦ c)(0). Thus, the vector fieldXp0 has the coordinates
dxi

dt
(0) (in the local basis(xi )i ), and is given intrinsically byXp0 =

(

dxi

dt

)

x0

∂

∂xi
. It

is easy to see that the value of the action ofXp0 on any function is the same for any
representant in the class of curves having he same tangent atp0.

DEFINITION 1. The tangent space to M at the point p0 is the set of equivalence
classes of tangent curves to M at p0; it is also the set of tangent vectors to M at p0. It
is noted Tp0 M, and its dimension is n. The notion of tangent space to a manifold allows
an intrinsic definition of the differential (independent from the local coordinates).

ForVn,Wm differentiable manifolds,f : Vn → Wm differentiable,X0 a tangent
vector toVn at pointx0, with z0 = f (x0) ∈ W ∈ Wm, the differential of f at x0 is the
linear applicationd fx0 : Tx0Vn → Tz0Wm; X0 7→ d fx0 X0, s.t. ∀h, d fx0 X0( f ∗h), see
fig 2. The applicationf ∗ therein is the reciprocal image

Figure 2: Differentiable functions and tangent mappings between manifolds.

The vectorZ0 := d fx0 X0 is tangent toWm at z0. In local coordinates, one
simply has

Z j = ∂ f j

∂xi
(x0) Xi
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and the matrix of elements

{

∂ f i

∂xi
(x0)

}

i, j
therein is the Jacobean matrix. This notion

obviously reminds the transformation gradient in continuum mechanics.

DEFINITION 2 (Derivation). A derivation is a first-order differential operator,
which is sensitive only to linear terms, thus a derivation X shall operate on products
of functions according to the rule X( f g) = f X(g)+ gX( f ). This defines the Leibniz
rule for derivatives that warrants X being insensitive to quadratic and higher-order
terms (as shown earlier, vector fields act as derivations).

For two vector fieldsX,Y acting on functions, the double operationXY also
maps functions to functions, but is not a derivation. As an example, any derivation
at the point(0,0) acting on the functionf (x, y) = x2 + y2 must give zero (use
Leibniz rule). But, composing∂x with itself gives∂x∂x f (x, y) = 2, thus∂x ◦ ∂x

is not a derivation (and the composition of derivations doesnot give a derivation
in general). However, the operation ofLie bracketrestores the property of being
a derivation: it is defined by[XY − Y X], which in 3-vector notation would read
[X,Y] = (X · ∇)Y − (Y · ∇) X. The Lie bracket receives an important geometric
interpretation, in connection toFrobenius Theorem: if at every point, the Lie bracket
of tangent vectors to two families of curves are a linear combination of the two vec-
tors, the curves then fit together to define a 2-surface. This can easily be generalized to
higher dimension.

DEFINITION 3. A Lie group G is a set that both has the structure of a group
and of a manifold. Thus, it is a differentiable manifold of class C∞, and the group
structure is characterized by the following operations (product and inversion)

G × G → G; (x, y) 7→ xy; G → G; x 7→ x−1.

Every neighborhood ofe is then sent byL y to a neighborhood ofy by the left
translation; the differential applicationdLy : TeG → TyG allows the definition of left
invariant vector fields:∀y ∈ G, dLy X(e) = X(y).

It can easily be shown that the left invariant vector fields onG have a vectorial
structure (same dimension asG), and that this vectorial space is isomorphic to the
tangent spaceTeG. Furthermore, the bracket of two left invariant vector fields is itself
a left invariant vector field, namely one hasdLy [X,Y] (e) =

[

dLy X,dLyY
]

(e) =
[X,Y](y). The left invariant vector fields on the Lie groupG thus have the structure of
Lie algebra.

DEFINITION 4. The Lie algebra of the Lie group G is the Lie algebra of the
left invariant vector fields. A Lie group action on a manifoldM is given by a map
µ : G × M → M; (a,q) 7→ µa(q), satisfyingµe(q) = q and the composition rule
µa ◦ µb = µab. Lie groups and Lie algebra are most of the case discussed in terms of
their matrix representations.

EXAMPLE 3. The Lorentz group action inE D space-time can be represented
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by the one-parameter family of matrices
[

chψ shψ,
shψ chψ,

]

which defines a one-dimensional group (identity element is given byψ = 0), with
group manifoldR. The group action onR2 is defined by the application

(t, x) 7→ (t, chψ + x shψ, t shψ + x chψ)

The Lie algebra is endowed with the bracket operation (of vector fields); it sat-
isfies the properties of linearity, anticommutativity([X,Y] = −[Y, X]), and the Jacobi
identity ([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0).
Once the action of a transformation on points is defined, the action on tangent vec-
tors (or more generally on elements of the tangent bundle), on tensors and differential
forms (on elements of the cotangent bundle) are determined.The change operated on
those objects is called theLie derivative. Recall that any differentiable vector fieldX
on a manifoldM generates a 1-parameter local group of diffeomorphismsφt relating
neighborhoods ofM , viz φt : M → M x 7→ φt x, that satisfies the differential equation

dφt

dt
= X (φt x)

with the initial conditionφ0(x) = x. The orbit of the group passing through point
x0 = φ(x0) is the integral curveR → M; 7→ x(t) = φt x0 tangent to the vectors
X (φt x0) of the field at each pointφt x0. Since the manifolds (contrary to the Euclidean
spaces) do not allow an easy comparison of vector fields attached at different points
(thus leaving in different vectorial spaces), a novel derivative needs to be introduced.
Considerg a differentiable function onM ; the tangent vector to the groupφt at the

point x0 is X0 =
(

d

dt
x(t)

)

t=0
=
(

d

dt
φt x0

)

t=0
. The derivative of (the germ of)

g in the direction ofX at the pointx0 is the realX0 g =
(

d

dt
( f ◦ φt ) (x0)

)

t=0
=

X I
(

∂

∂xi
g

)

x I
0

(

dxi

dt

)

0
.

• The Lie derivative of the functiong in the direction ofX at pointx0, is defined as

the directional derivativeLx0g = X0g = lim
t→0

g (φt x0)− g (x0)

t
. The operation

achieved therein means a pull-back along the orbit to the point x0, comparing the
valueg (φt x0) to the valueg (x0) at the same point. In a set of local coordinates,
one writes

Lxg = X I ∂i g

• The Lie derivative of the vector fieldY in the direction of the vector fieldX at

point x0 is L XY = lim
t→0

1

t

(

dφ−1
t Yφt x0 − Yx0

)

=
(

d

dt
dφt−1Y

)

t = 0. It can be
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proven that the Lie derivative coincides with the Lie bracket L XY = [X,Y]. In
a set of local coordinates, one writes

L XY =
(

X j ∂ j Y
I − Y j ∂ j Xi

)

∂ i .

• The Lie derivative of a

(

q
0

)

tensor field is similarly defined as

L XT := lim
t→0

1

t

(

dφ−1
t Tφt x0 − Yx0

)

• Notingφ∗
t Tφt x0 the pull-back at pointx0 of the tensorTφt x0, the Lie derivative of

a

(

0
p

)

tensor field is elaborated as

L XT := lim
t→0

1

t

(

φ∗
t Tφt x0 − Yx0

)

=
(

d

dt
φ∗

t T

)

t=0

• Similarly, for completely antisymmetrical tensors of the previous type, i.e. for
differential formsω, the Lie derivative is defined as

(L Xω)x0
= lim

t→0

1

t

(

φ∗
t ωφt x0−ωx0

)

=
(

d

dt
φ∗

t ω

)

t=0

In a set of local coordinates, one writes for the Lie derivative of a 1-form
(L Xω)I = X j ∂ jωi + ω j ∂i X j .

Properties

Only the essential properties of the differential operations so far introduced are listed
in the sequel. A vector fieldν s.t. Lwν = 0 is said to beLie-transported or dragged
along the vector fieldw. Since the Lie derivative is a local approximation, it shall
satisfy Leibniz rule, thus

Lw (a ⊗ b) = Lwa ⊗ b + a ⊗ Lwb.

Using the same rule gives the Lie derivative of a 1-formα: differentiating the function
f = α.ν renders(Lwα) .ν = d (α.ν)w − α [w, ν] , thus in terms of a set of coordi-
natesLwα =

(

αµ, θwν + αθwν, ν
)

dxν . Lie derivatives inform about symmetries of
geometrical objects; so for instance, the infinitesimal symmetries of the 1-form field

dx are given by those vector fieldsw = X
∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
, that satisfiesLwdx = 0,

thusX has to be constant.
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2.3. Calculus on differential forms

Differential forms find their origin in 1889 in the work of Elie Cartan(1869− 1951),
and in the third volume ofLes Methodes Nouvelles de la Mecanique Celesteby Henri
Poincaŕe (1854− 1912). The program of writing the laws of physics in an invariant
form (using differential forms), was started by g. Ricci-Curbastro(1853− 1925) and
his student T. Levi-Civita(1873− 1941); it provided the useful framework for A.
Einstein(1879− 1955) to develop the theory of relativity.
ConsiderM an n-dimensional manifold and(x1, x2, . . . , xn) a coordinate system on
this manifold.

DEFINITION 5. A p-form or exterior form of degree p on M is alternated or
completely antisymmetrical if it is the antisymmetrical part of a multilinear applica-
tion from M toR. Thus, for tx a p-linear form (at point x of M), the operation of
antisymmetrization renders

Ap tx (V1, . . . ,Vn) = 1

p!
∑

σ

ǫσ tx
(

Vσ(1), . . . ,Vσ(p)
)

,

with σ a permutation having the signatureǫσ .

A p-form can be built from the tensorial product of n one-forms on M , accord-
ing to the rule: the tensorial product ofp 1-forms is thep-form, the components of
which are identified with the components of the tensorial product if the p associated
vectors.

EXAMPLE 4. Considerα(x1 x2) = 3x2− x1 andβ(x1 x2) = 2x2 + x1; one then
has

α ⊗ β = (x1, x2)

[(

−1
3

)

⊗
(

1
2

)](

x1
x2

)

=

= (x1 x2)

(

−1 −2
3 6

)(

x1
x2

)

= −x2
1 + x1x2 + 6x2

2

DEFINITION 6. The exterior product (notation∧) of p 1-forms Aik , is the p-
form obtained by the anti symmetrization of the tensorial product, viz

Ai 1 ∧ Ai 2 . . . ∧ Ai p = δ
i1...i p
I1...I p

AI1 ⊗ . . .⊗ AI p

(summation of the indices Ik), with

δ
i1...i p
I1...I p

=







0 if the ik are not a permutation of the Ik

1 if the ik are an even permutation of the Ik

−1 if the ik are an odd permutation of the Ik

EXAMPLE 5. One has inR4 the equality

x3 ∧ x1 = x3 ⊗ x1 − x1 ⊗ x3 = −x1 ∧ x3
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The canonical basis of the set of p-forms of orderp ≤ n at the pointx ∈ M ,
noted�p

x (M), is given by theCp
n exterior productsxi1 ∧ . . . ∧ xi p , with the following

ordering of the indicesi1 < i2 < . . . < i p.. Thus, one can express anyp-form ω

in a basisθ i1 ∧ . . . ∧ θ i1 of �p
x (M) using thestrict componentsof the p-form ω =

ωi1...i pθ
i1 ∧ . . . ∧ θ i p , with the summation done only on the ordered indicesi1 < i2 <

. . . < i p.

EXAMPLE 6. Considerω ∈ �2
x(M); the action ofω on a couple of tangent

vectors X,Y ∈ Tx M is given byω(X,Y) = ω
(

Xi ei ,Y j ej
)

= ωi j Xi Y j , noting
ωi j ≡ ω(ei ,ej ) the action ofω on the basis vectors(ei ,ej ). Expanding the result and
using the antisymmetry of the matrixωi j + ω j i = 0, renders

ω(X,Y) =
∑

I< j

(

Xi Y j − X j Yi
)

=
∑

I< j

ωi j θ
i ∧ θ j (X,Y).

Thus, one hasω =
∑

i< j

ωi j θ
i ∧ θ j , and the productsθ i ∧ θ j , i < j , generate any

2-form.

The exterior product of forms has the following properties:the exterior product
∧ is bilinear, associative, non commutative. For two formsω of order p, andµ of
orderq, one hasω ∧ µ = (−1)pqµ∧ ω. The space exterior product of the two spaces
�

p
x (M) and�q

x(M) is then the vectorial space�p+q
x (M).

DEFINITION 7. The exterior differentiation is the application d that associates
to a p-formω a (p + 1) -form dω, satisfying:

• for a function g from M toR, the exterior derivative dg is simply the differential
of g;

it has the following properties

• d is a linear operator;

• d is2-nilpotent, viz d◦ d = 0 (iteration rule);

• d is an antiderivation, viz d(ω ∧ µ) = dω ∧ µ+ (−1)pω ∧ dµ.

A practical formula for the calculus of the exterior derivative is given in the
following

THEOREM1. Setω = ωi1...i p dxi1 ∧ . . .∧ dxi p a p-form; its exterior derivative

is given by dω = dωi1...i p ∧ dxi1 ∧ . . . ∧ dxi p =
∂ωi1...i p

∂xr
dxr ∧ dxi1 . . . ∧ dxi p .

EXAMPLE 7. OnR
3, consider the 2-formω = x3 x1 dx2 ∧ dx3. One has

dω = x3 dx1 ∧ dx2 ∧ dx3.
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It is interesting to relate exterior differentiation onR
3 to classical vector cal-

culus. Given a vector fieldX = ξ1
∂
∂x + ξ2

∂
∂y + ξ3

∂
∂z, one defines the work form

and the flux form ofX respectively, asωX := ξ1 dx + ξ2 dy + ξ3 dz, andφX :=
ξ1 dy dz+ ξ2 dz dx+ ξ dx dy. These coinages come from the fact that the line integral
of a one-form along a path measures the work done byX, while the surface integral of
the flux form measures the flux of the field through the surface.Lastly, let define the
density form of a smooth functionf on the open setU ⊂ R

3, asρ f := f dx dy dz.
The table 2.1 then gives the correspondence between the differential formsωX , φX ,
ρ f , and the vector components given as components of the exterior derivatives ofωX ,
φX .

Differential formω Exterior derivativedω Vectorial
operator

f = f (x, y, z) d f = ωgrad f = grad
f,xdx + f,ydy + f,zdz

Work form dωX = φcurl X = curl

ωX := ξ1 dx + ξ2 dy + ξ3 dz

(

∂ξ3

∂y
− ∂ξ2

∂z

)

dy dz+
(

∂ξ1

∂z
− ∂ξ3

∂x

)

dzdx+
(

∂ξ2

∂x
− ∂ξ1

∂y

)

dx dy

Flux form dφX = ρdivX = Di v

φX:= ξ1dydz+ ξ2dzdx+ ξ3dxdy

(

∂ξ1

∂x
+ ∂ξ2

∂y
+ ∂ξ3

∂z

)

dxdydz

f dx dy dz 0

Table 2.1: exterior differentiation of forms and vector calculus

The set of differential forms of arbitrary order on a manifold M defines the
exterior algebraon M , otherwise called the Grasmann algebra. The exterior algebra
�x(M) at M is the direct sum�x(M) = �0

x(M)⊕�1
x(M)⊕ . . .⊕�n

x(M). Elements
in �0

x(M) are functions, and the maximum order isp = n (having only one element,
the volume form). The dual to the tangent space to a manifold is called thecotangent
space; it consists of the 1-forms (otherwise calledcovectorsor covariant vectors - the
tangent vectors being called contravariant) acting on the tangent space.
Another notion of differentiation of forms is given in the following

DEFINITION 8. The vertical differential of a function f= f (qi , q̇i ) (notation

dν) expresses locally as dν f = ∂ f

∂q̇i
dqi , with dν(dqi ) = 0 = dν(dq̇i ).

The inverse operation of decreasing the order of forms is given in the following

DEFINITION 9. Consider a vector field X defined on M, and a p-form
ω = ωi1...i p dxi1 ∧ . . . ∧ dxi p . The interior product ofω by X, noted iXω, is the
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(p − 1)-form iXω := 1

(p − 1)! ωki2...i p Xk dxi2 ∧ . . . ∧ dxi p .

EXAMPLE 8. consider onR2 the 1-formω = x2 dx1 and the vector field

X = x2
∂

∂x1
+ ∂

∂x2
;

the direct application of previous definition givesi X ω = ωk Xk = x2
2.

Properties

The following identity is often referred to asCartan identity

Lνω = iνdω + d (iνω) .

One further list some basic properties (without proof):

iν(ω ∧ v) = (iνω) ∧ v + (−1)pω ∧ (Iνv)

Lνdω = dLνω; Lν (iuω) = i [ν,µ]ω + iuLvω;
L f να = f Lνα + d f ∧ (iνα)

Lν(ω ∧ v) = (Lνω) ∧ v + ω ∧ (Lνv) .
The pullback of a p-formω defined on the manifoldWm by the differentiable function
f : Vn → Wm; x 7→ z = f (x) is theinduced p-form, f ∗ : �p (Wm) → �p (Vn), s.t.

∀x ∈ Vn,∀V1, . . . ,Vp ∈ TxVn,
(

f ∗ω
)

x

(

V1, . . . ,Vp
)

= ωz
(

d fxV1, . . . ,d fxVp
)

The representation off ∗ω in local coordinates is given by

f ∗ω = ω j1... j p (z(x))
D
(

z j1, . . . , z j p
)

D
(

x j1, . . . , x j p
) dxi1 ∧ . . . ∧ dxi p

with
D
(

z j1,...,z j p
)

D
(

x j1,...,x j p
) the Jacobean of the transformation from the

(

xi
)

i to the
(

z j
)

j . The

operatorsd and f ∗ commute, vizd ◦ f ∗ = f ∗ ◦ d.

EXAMPLE 9. The pullback of the 3-formdx dy dz(omitting here the symbol
∧) under the change of coordinatesx = r cosθ , x = r sinθ , z = z (cylindrical coordi-
natesr, θ, z) is f ∗(dx dy dz) = d(r cosθ)d(r sinθ)dz ≡ r dr dθ dz (the Jacobean
is thusr ).

The pullback of forms is used to evaluate integrals on manifolds (change of
variables). Both the differential and the pullback operation find simple interpretations
in terms of the Jacobean matrix: supposeω = A1 dy1 + . . . + A1 dym is a 1-form on
the open setV ⊂ R

n, andη = φ∗ω expresses asη = B1 dx1 + . . . + Bn dxn as an
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1-form on the open setU ⊂ R
n, with φ : U → V a diffeomorphism. Representingω

andη as the row vectorsEω = [A1, . . . , Am] andEη = [B1, . . . , Bn] then gives

[B1, . . . , Bn] = [ A1, . . . , Am]





D1φ
1 . . . Dnφ

1

. . . . . . . . .

D1φ
m . . . Dnφ

m





Thus, the pullback of a 1-form corresponds to matrix post-multiplication. As an appli-
cation, whenp = n = m, one recovers the change of variable formula used in the the-
ory of integration, vizω = A

(

dy1 ∧ . . . ∧ dyn
)

⇒ φ∗ω = |Dφ| A
(

dx1 ∧ . . . ∧ dxn
)

.
The exterior derivative of a 1-form corresponds to the pre-multiplication by the Ja-
cobean matrix, since the operation corresponds to the tangent mapping associated to
the differential. The pullback of 1-forms is related to the dual operation of the push-
forward of vector fields: forX a vector field onU , thepush-forwardof X underφ is
defined as the vector fieldφ · X onV , s.t.φ · X(y) = dφ(x)

(

X
(

φ−1(y)
))

The pullback
of the 1-formω then relates to thepush-forwardof X as:(φ∗ω) .X(x) = ω.φ · X(y).

Figure 3: Diagrammatic representation of the pullback operation.

These two operations find useful applications in continuum mechanics, see [1].

The Hodge star operator

Let Vn be ann-dimensional vector space equipped with an inner product〈., .〉. Since
dim

(

�n−p (Vn)
)

= dim(�p (Vn)), for p ≤ n, one can define a natural isomorphism
between both these spaces. For anyλ ∈ �p (Vn), and assuming a given choice of
the orientation of space has been done, there exists a uniqueelement - noted∗λ ∈
�n−p (Vn) - s.t.∀µ ∈ �n−p (Vn) , λ∧µ = 〈∗λ, µ〉n−p σ , with σ the volume form on
Vn. The Hodge star operator is the application that sendsλ →∗ λ.
As an application, the correspondence between the exterioralgebra and the 3D vector
algebra is shown in the following Table.

Further applications of the Hodge star operator shall be given later on. Note
lastly that differential forms receive a geometrical interpretation [31]. So, for instance,
a 1-form can be represented by two parallel lines (planes in 3D) in 2D, representing
the density of lines being cut. Just think of the gradient of afunction as the 1-form
giving the intensity of the slope between neighboring contours on a topographic map
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Vector algebra expression Exterior algebra expression

Cross product(u × v) ∗ (u ∧ v)

Triple productu. (v × w) ∗ (u ∧ v ∧ w)

|u × v|2 = |u|2|v|2 − (u.v)w 〈u ∧ v, u ∧ v〉 = 〈u, u〉〈v, v〉 − 〈u, v〉2

u × (v × w) = (u.w)v − (u.v)w u ∧∗ (v ∧ w) = 〈u, w〉 (∗v)− 〈u, v〉 (∗w)

Table 2.2: relation between the exterior algebra and the 3D vector algebra

[31]. The gradient of the functionf (here the height of the contour) is orthogonal to
the 1-form representation. The conditionivd f = 0 for a vectorv then means thatv
is orthogonal to the componentsgrad f of the 1-formd f . In electricity, a 2-form in
3D space (represented by a box aligned by the current flow direction) gives the current
density (section of the box).

2.4. Contact structures and symplectic mechanics

The contact structure is a manifold suitable for the description of unparameterized
curves. The line element contact bundle, called CM in the sequel, consists of a pair,
namely a point in the manifold and a line element at that point. The line element itself
gives the local approximation of the unparameterized curve, as a tangent vector of
unspecified length (in fact a class of equivalence of tangentvectors, under the relation
v ∼ kv). Considering a submanifold - the pair(N, ψ) - as being represented by a map
ψ : N → M (s.t. bothψ and its differential are one-to-one), the first order contact
between two submanifolds(N, ψ) and(N′, ψ ′) at a common pointψ(p) = ψ ′(p′)
is traduced by the equality of tangent mappingsTψ

[

Tp(N)
]

= Tψ ′ [Tp′(N′)
]

(this
is not a point by point equality, but rather an equality between sets). The equivalence
class of submanifolds in contact at a pointq ∈ M is called acontact elementat q, and
is noted[N, ψ ], for any submanifoldN; it is in fact a linear subspace of the tangent
space. Note that this notion of contact is weaker than the related notion of tangency.
The contact structure is both a bundle (it has a projection onto the base space) and it has
a contact structure: for each n-dimensional submanifold(N, ψ) in M , one can define
the natural liftσ : M(M, n); q 7→ (q, [N, ψ ]), with [N, ψ ] a contact element.

A simple chart forC(M, N) is given by selecting n of the coordinates ofM
(labeledqµ), and considering the remaining(m − n) coordinatesYa as functions of
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Figure 4: the geometric structure of the contact bundle (from [31]).

theqµ. The contact elements are then represented by the partial derivatives pa
µ = ∂Ya

∂qµ

(note that the index position is here coherent with that chosen for the manifoldsC M
andC∗M).

DEFINITION 10. Note that not all curves are lifts; a lifted submanifold is a sub-
manifold for which the paµ coincide with the partial derivatives, as written above. This
condition can be expressed using the1-formsθa = dya − pa

µdqµ, that we pull-back
onto a submanifold of C(M, N), with ψ : N → C(M, N); q 7→ (q, Y(q), P(q)).
Using the pull-backsψ∗ · dq = dq = dq; ψ∗ · dya = ∂Ya

∂qµ dqµ, one getsψ∗ · θa =
(

∂Ya

∂qµ
− Pa

µ

)

. These pull-backs do vanish when N is a lifted submanifold; these lifted

submanifolds shall then be called integral submanifolds ofthe contact ideal.

EXAMPLE 10. Consider functions on the plane as the mapsF : R
2 → R.

The graphs of these functions are the sections described by the mapψ : R
2 → R

3;
(x, y) 7→ (x, y, F(x, y)), that define 2-sumanifolds onR3. A contact element at the
point
p (x0, y0, F (x0, y0)) is an equivalence class of 2-submanifolds that have first order
contact atp. It can be represented by the linear submanifold

(x, y) 7→
(

x, y, F + ∂F

∂x
(x − x0)+ ∂F

∂y
(y − y0)

)

The partial derivatives (here evaluated at the point(x0, y0)) are natural coordinates for
the contact elements; the coordinates for the jet bundle arehere

(

x, y, f, fx fy
)

, in
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which fx, fy are coordinates of the contact element (and not partial derivatives). The
pull-back of the contact 1-formθ := d f − fxdx − fydy onto a submanifold defined
by the applicationψ : (x, y) 7→

(

x, y, F, Fx Fy
)

givesψ∗ · θ = ∂F
∂x dx + ∂F

∂y dy −
Fxdx − Fydy, which vanishes whenFx = ∂F

∂x ; Fy = ∂F
∂y . The geometric approach to

the calculus of variations presents some interest because of its originality, compared to
the standard approach. The standard formulation of the classical mechanics of uncon-
strained conservative systems states the existence of a Lagrangian functionL, depend-
ing upon the state variables and possibly upon time, such that the action integral

∫

L dt
is extremized. On the contact bundle of the configuration space, having the natural
coordinates(t, q, q̇), the integrand

∫

L dt is a one-form. The possible motions of the
system are then described by the curves in the contact bundleon which the contact 1-
formsα := dq− q̇ dt pull back to zero. The variation of the action integral around the

extrema is further performed, using the vector fieldv = Q(t)
∂

∂q
+ Q̇(t)

∂

∂q̇
, restricting

to isochronal variations. Restricting further to variations with fixed end conditions, the
variation is given by

∫

Ŵ

Lv (L dt) =
∫

Ŵ

iv (dL dt) =
∫

Ŵ

[

Q
∂L

∂q
dt + Q̇

∂L

∂q
dt

]

In order now for the variations to satisfy the previous constraint condition, the vector
field v has to move the initial path into a path that is parallel to theα; instead of
pushing the path forward, one can equivalently pull back the1-formsα, asα(ǫ) =
α+ǫLvα. The condition that the 1-formα(ǫ) pulls backs to zero on the integral curve,
viz i γ̇ α(ǫ) = 0, rendersi γ̇ Lvα = 0, thusi γ̇

(

d Q − Q̇ dt
)

= 0. Since integration over
the optimal path is equivalent to contracting the integrandwith γ̇ , using the previous
equation allows to replacėQ dt by d Q, thus

Lv

∫

Ŵ

L dt =
∫

Ŵ

[

Q
∂L

∂q
dt + ∂L

∂q̇
d Q

]

Integrating the second term by part and omitting the perfectdifferential (since we con-
sider fixed ends) renders

Lv

∫

Ŵ

L dt =
∫

Ŵ

Q

[

∂L

∂q
dt + d

(

∂L

∂q̇

)]

The arbitrariness in the choice of the functionsQ(t) then leads to the condition

i γ̇

{

∂L

∂q
dt + d

(

∂L

∂q̇

)}

= 0

for γ̇ to be tangent to the path.
This condition together with the constraint

I γ̇ (dq − q̇dt) = 0

gives 2n relations for the 2n components of the line element.
SinceL dt is not a general 1-form (its exterior derivativedL dt being in the differential
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ideal generated byL dt) , anddα also is in the ideal generated byL dt, a more general
viewpoint is needed. Let then enlarge the previous considerations, starting first from the
extemum condition of unconstrained integrals of the formI =

∫

γ
ω, with the smooth

enough 1-formω defined on a manifoldM , andŴ a curve inM (between two pointsA
andB) s.t. the integralI does not vary at the first order asŴ is deformed. Considering
a curve parameterized bys, the tangent vector to the curvėγ expresses as the push

forward of the basis vector
∂

∂s
, viz γ̇ = Ŵ∗.

(

∂

∂s

)

. Let then continuously deform the

curveŴ by a vector fieldv; the previous condition that the integralI does not change
under this deformation expresses as

∫

Ŵ

Lvω

Using the properties of the Lie derivatives further renders
∫

Ŵ

iv dω +
∫

Ŵ

iv ω = 0

Sincev vanishes at the end points (A andB being fixed), the boundary term vanishes.
From the definition of a line integral, we further have

∫

Ŵ

iv dω =
∫ b

a
Ŵ∗.

(

iv
(

i γ̇ dω
))

ds = 0,∀v,

thus the local conditioniv
(

i γ̇ dω
)

= 0, ∀v, that further givesi γ̇ dω = 0, which is an
ordinary differential equation forŴ.
Using the local coordinatesxµ = xµ(s) along the curve, one can further elaborate
previous condition: the integralI =

∫

ωµ dxµdsrenders the Euler-Lagrange equations

ωµ,v ẋ
µ − d

ds
ωv = 0 thus giving the Schwarz condition

(

ωµ,v − ωv,µ
)

ẋµ = 0. A first

insight into Noether’s theorem can here be given: suppose aninfinitesimal symmetry

exists, having the vector fieldk, such thatLkω = 0. This clearly gives
∫

Ŵ

Lkω = 0;

along any piece of a curve that satisfies the Euler-Lagrange equations, the condition
i γ̇ dω = 0 gives

∫

Ŵ

Lkω =
∫

Ŵ

d (ikω)+
∫

Ŵ

ikdω =
∫

Ŵ

ikω = 0

which means that the quantityikω is constant along the solution curves. This is an il-
lustration of Noether’s theorem, articulating infinitesimal symmetries and conservation
laws.
The case of constrained variations is next treated, wherebythe constraint is expressed
by the vanishing of some functionφ : M → R, in the case of holonomic variations:
we require that the variation of the integralI =

∫

Ŵ
ω vanishes, vizLv

∫

Ŵ
ω = 0, for all

deformations of the curve that satisfy the constraintLvφ = ivdφ = 0. Summarizing,
the variation of the integral must vanish at any point, viziv

(

i γ̇ dω
)

= 0, ∀v, for all v
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satisfying the conditionivdφ = 0. This implies the existence of a multiplier function
λ = λ(s), s.t. the following condition holds along the curve:i γ̇ dω = λdφ, where
φ = 0.
This condition forms a set of determining equations for the curve and the Lagrange
multiplier λ. In the case of anholonomic variations, the constraints canbe expressed
in the form i γ̇ α = 0, for a set of prescribed 1-formsα. The extension of the vector
field γ̇ off the curve is done using the conditionLv γ̇ = 0, thus the constraint condition
i γ̇ Lvα = Lv

(

i γ̇ α
)

= 0.
The optimal pathŴ is again determined by the conditioni γ̇ d (ω + λα) = 0, along with
i γ̇ α = 0. To be complete, one can evidence a Lagrange multiplierλ s.t. an uncon-
strained minimum exists for the problem having the one-formω+λα, see e.g [31]. For
that purpose, a vector fieldw is selected s.t. the deformation of the curve can be written
in the formv = vc+ξw, wherevc satisfies the constraint, andξ is a scalar function that

restores the degree of freedom lost in the constraint: it is foundξ = i γ̇ Lvǫ

i γ̇ (iwdα)
, under

the conditioniwdα 6= 0 (with dα 6= 0, otherwise the constraint would be integrable).
Using next Cartan identity and neglecting the exact differentials gives the multiplier

λ = − i γ̇ (iwdω)

i γ̇ (iwdα)
.

EXAMPLE 11. The dynamic equations of motion of a conservative systemde-
scribed by a LagrangianL (q, q̇, t) is given as the stationary conditions of the func-
tional

∫

Ŵ
L (q, q̇, t) dt, under the constraintsi γ̇ (q̇dt − dq) = 0. Application of pre-

vious general methodology renders the multiplierλ = −∂L

∂q̇
, and the equivalent un-

constrained problem is
∫

Ŵ

[

Ldt − ∂L

∂q̇
(q̇dt − dq)

]

, the Euler-Lagrange equations of

which being

i γ̇
{

dLdt − d
(

∂L
∂q̇

)

(q̇dt − dq)− ∂L
∂q̇

}

= i γ̇
{

∂L
∂q dq dt− d

(

∂L
∂q̇

)

(q̇dt − dq)
}

= 0.

It holds true that

i γ̇ dq dt= i γ̇ (dq − q̇dt) dt=− (dq − q̇dt)dt=− (dq − q̇dt)
(

i γ̇ dt
)

the previous equation then gives

i γ̇
{

dLdt−d
(

∂L
∂q̇

)

(q̇dt − dq)− ∂L
∂q̇ dq̇dt

}

= i γ̇
{

∂L
∂q dqdt−d

(

∂L
∂q̇

)

(q̇dt−dq)
}

=0

i γ̇

{

∂L

∂q
dt −

(

∂L

∂q̇

)}

(q̇dt − dq) = 0

Consequently, the extremals are the integral curves of the 1-forms
∂L

∂q
dt − d

(

∂L

∂q̇

)

anddq − q̇dt.
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The invariance of the constrained problem under infinitesimal symmetries again
leads to the evidence of a conservation law: let indeed the vector k be an infinitesimal
symmetry of both the variational principle and of the constraint, viz Lvω = 0 and
Lvα = 0. Thus, the Lie derivative of the one-formα has to be in the ideal generated
by α (sincei γ̇ α = 0). Incorporating the multiplier into the Lie differentiation then
gives the conditionLk (ω + λǫ) ⊂ I [α], which traduces into a differential format
as
∫

Ŵ
{d (ω + λα)+ ikd (ω + λα)} = 0. The second term is identified as the Euler-

Lagrange equation (it vanishes), thus one obtains the conservation lawikd (ω + λα) =
constant, along the extremals.

3. Lagrangian formalism and irreversibility

3.1. Differential structure of thermodynamics

A few words related to the geometrical setting of thermodynamics are first in order.
Thermodynamic systems are described in the contact bundle sustained by the following
coordinates:

• The total energy and entropy;

• the extensive variables (such as the volume, the number of particle, or the electric
charge), that are the measurable degrees of freedom;

• the intensive associated variables, which are forces or potentials that describe the
energy transfer between the various extensive variables.

EXAMPLE 12. An ideal gas is described in a 2D state space, with coordinates
entropy and volume. An open gaseous system would require theadditional coordinate
of the amount of gas present in the system.

A thermodynamic system shall then be described by a linear structure, a contact
structure and a convexity structure: thelinear structureis a model for the physical
idea of short-range interactions and existence of homogeneous systems with a scaling
symmetry. Thecontact structureis associated with the energy conservation (first law
of thermodynamics), while theconvexity structureaccounts for the Second Law and
the entropy increase due to mixing. As a starting point, thefundamental equation
consists of the expression of the stored internal energy of the system for all possible
states, versus the set of state variables. For instance, thefundamental equation of an
aggregate ofN molecules of an ideal gas is

U (S V) = N5/3V−2/3 exp(2S/3N K) ,

with k the Boltzmann’s constant. Linear structures rely on the assumption that the sys-
tem size is much larger than the range of its interactions, thus the internal energy is
proportional to the size of any subsystem (the shape of the subsystem does not matter):
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by Euler’s theorem (traducing here the homogeneity of degree one), this scaling sym-

metry givesU = S
∂U

∂S
+ V

∂U

∂V
. Contrary to the status of the extensive variables, the

intensive variables do not change versus size (homogeneityof degree zero). The graph
of the fundamental equation is an n-surface in an(n−1)-space, with the potentials (par-
tial derivatives of the internal energy w.r. to the extensive variables) the components of
the contact elements to that surface. The contact bundle consists of the(2n + 1)-space
with coordinates the extensive variables, their associated intensive variables, and the
internal energy. The contact ideal is generated by the 1-form

α = dU +
∑

(forces)d (extensive variables) .

EXAMPLE 13. The previously introduced ideal gas is modeled in the 5-dimen-
sional contact bundle with coordinates(U, T, S, P, V), and a contact ideal generated
by the 1-formα = dU − T dS+ Pdv, with P = −∂ − VU; T = ∂SU . The previous
homogeneity condition becomesU = T S− PV, which is theGibbs-Duhem relation.
In addition to the fundamental equation, the equation of state expressing the intensive
variables has to be specified. As an example, consider the ideal gas, which obeys the
relation PV = NkT, together with the internal energy expressionU = 3/2NkT. In
the contact manifold, the system is described by the following map

ψ : (S, V) 7→ (U, T, S, P, V) = (U (S, V) , T (S, V) , S, P (S, V) , V)

which expresses as

ψ : (S, V) 7→ (U, T, S, P, V) = (3/2NkT, T (S, V) , S, NkT/V, V) .

The functionsU , Y, P shall satisfy the two previous conditions, as well asψ∗.θ = 0,
with the 1-formθ = dU −UV dV − up d P = dU − T dS+ PdV. Accounting for the
pullbacks

ψ∗.dU = (3/2) Nk

(

∂T

∂S
dS+ ∂T

∂V
dV

)

; ψ∗.dS= dS; ψ∗.dV = dV

one obtains

ψ∗.θ = (3/2) Nk

(

∂T

∂S
dS+ ∂T

∂V
dV

)

− T dS+
(

NkT

V

)

dV ≡ 0

The independence of the differential elements(dV, dT) then implies

1

T

∂T

∂S
= 2/3Nk; 1

T

∂T

∂V
= −2/3V

The integration of these two equations givesT = AV−2/3exp(2S/3Nk), thus we re-
cover the fundamental equationU (U, V) = N5/3V−2/3exp(2S/3Nk). Note that the
factor N5/3 therein ensures the satisfaction of the homogeneity condition of U (a sys-
tem of twice the volume, with twice the number of molecules has twice the energy).
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Having so far developed what could be called a differential thermodynamics [31], the
use of Frobenius theorem closes the characterization of thestructure of thermodynam-
ics: consider for instance the energy 2-surface as the mapR

2 → R
3; (S, V) 7→

(U, S, V), with the intensities given byT = ∂SU and−P = ∂VU . The symmetry
of the partial derivatives also leads to∂V T + ∂SP = 0. The system can locally be

described by a 2D surface element, spanned by the two vectorsA = a
∂

∂U
+ ∂

∂T
+

b
∂

∂S
+ c

∂

∂P
and A = d

∂

∂U
+ ∂

∂T
+ e

∂

∂S
+ f

∂

∂V
, that must lie in the zero surface

of α, thus the conditions:i Aα = 0 = i Bα. This givesa = bT andd = eT − f P.
The fact that it is a differential ideal also implies thatdα is one generator of the ideal,
thus i B (i Adα) = 0. Combining the previous relations gives the Maxwell relation

(cV − CP) /T +
(

dV

dT

)

P

(

d P

dT

)

V
= 0, with CV , CP the heat capacities at constant

volume and pressure respectively.

3.2. Differential geometric setting for dynamical systems

Noether’s theorem embodies the fact that to every symmetry is associated a conserva-
tion law. For an exterior differential system, a conservation law is a differential form
whose restriction to the integral manifold is closed. Any closed generator of the ideal
leads to a conservation law.

EXAMPLE 14. [31] The heat-equationκ
∂2φ

∂x2
+ ∂φ

∂t
= 0 (with φ = φ(x, t) the

temperature,κ the specific thermal diffusivity), can be equivalently rephrased as the

first order systemu = κ
∂φ

∂x
;
∂u

∂x
− ∂φ

∂t
= 0. The last equation of this system rewrites

asdα = 0, having defined the 1-formα = φ dx + u dt, that represents theheat flux.
T hus, the equationdα = 0 describes theconservation of energy. The geometrical
picture of the heat transport equation can be given, using the following sharp operator:

♯dx = ∂

∂x
; ♯dt = 0, leading to the Hodge star operator∗1 = dx dt; ∗dt = 0;

∗dx = dt; ∗dx dt = 0. We then have∗α = φ dt; d∗α = φ,xdx dt. The heat flux
can further be writtenu = i ∂

∂t
α. Therefore, the geometric form of the heat equation is

given by the following differential system

∣

∣

∣

∣

dα = 0
dκ∗α = i∗λα

Note that the 1-form fieldα describes a field of conserved flux lines, but the 1-form
∗α is not the gradient of any function, thus the flux lines are notcut by a regular
family of orthogonal hypersurfaces. The problem can further be formulated as the
integral submanifold of the ideal generated by the two 2-formsω = dφ dx+du dt and
β = u dx dt−κ dφ dt: for a 2D submanifoldψ : (t, x) 7→ (t, x, φ, u), the condition
of zero pull-back, vizφ∗β̇ = 0, traduces the relationshipu = κ φ,x. Note that the ideal
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generated by the previous 2-forms is a differential ideal, due to the relationship

dβ = du dx dt= −dx ∧ ω.

In the ideal defined by the formsω, β, the formω is closed, and the 1-formj := i Sω

satisfies the differential identityd j = LSω − i Sdω which vanishes for every isovec-
tor S, sincedω pulls back to zero. This leads to conservation laws, for instance the
conservation of heat, viz

i
φ ∂
∂φ

+u ∂
∂u
ω = φ dx + u dt.

One of the approaches suitable for the generalization of theLagrange formalism
to dissipation is the differential geometry of manifolds: the interest of this generalized
Lagrangian formulation lies in the fact that it follows fromthe structure of the chosen
manifold, and naturally introduces the notion of a Rayleighpotential. In order to illus-
trate this method, let consider a discrete system ofn punctual massesmI , having the
d.o.f. q = {qI (t), I = 1 . . . 3n} in 3D Euclidean space. Such a mechanical system is
characterized by (Godbillon):

• a differentiable manifold generated by the d.o.f.q = {qi (t), i = 1 . . . 3n}, called
configuration manifold (the integerm = 3n is the number of d.o.f.);

• a differentiable functionK on the tangent space toM (here notedT(M)), called
kinetic energy;

• a pfaffianπ (differential form of degree one) defined onT(M), that takes the
form of the workπ = Fi (q, q̇) dqi of the forceFi . The fundamental form
of the mechanical system is defined as the exterior differential of the vertical
differential of K , viz

ω = ∂2K

∂qk∂q̇i
dqk ∧ dqi + ∂2K

∂q̇k∂q̇i
dq̇k ∧ dqi

Assuming this 2-form is closed and regular, and introducingthe Liouville vector field

v = q̇i
∂

∂q̇i
, the manifold structure implies the following

THEOREM 2. There is a unique vector field X= ai
∂

∂qi
+ bi

∂

∂q̇i
defined on

T(M) s.t.

i Xω = ∂2K

∂qk∂q̇i
ak dqi − ∂2K

∂qk∂q̇i
ai dqk + ∂2K

∂q̇k∂q̇i
bk dqi

− ∂2K

∂q̇k∂q̇i
ai dq̇k = d (K − vK )+ π
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The integral curve of X (as a dynamical system) are solutionsof the Lagrange
equations

d

dt

∂K

∂qi
− ∂K

∂qi
= Fi (q, q̇)

The force fieldπ is further decomposed into a contribution due to conservative
forcesFC

I , deriving from a potential energyV , according to

−dV = Fc
i dqi → Fc

i = − ∂V

dqi
, and a non conservative contributionFnc

i dqi , viz

π = −dV + Fnc
i dqi .

Introducing the Lagrangian of the system given byL := K − V , previous equation
rewrites as

d

dt

∂L

q̇i
− ∂L

∂qi
= Fnc

i (q, q̇)(1)

EXAMPLE 15. Differential geometry of the oscillatory mass
In the case of single massm evolving on a straight line, with positionq = q(t), sub-

mitted to an elastic forceFc = −kq = −∂V

∂q
(with clearlyV = 1

2
kq2) and a viscous

force Fnc = −λq̇ (with λ a constant), the kinetic energy isK = 1

2
mq̇2, and the force

field associated toFc andFnc is π = −λq̇ dq− k q dq. Thus, the fundamental form
ω and the Liouville vector field are respectively given by

ω = m dq̇ ∧ dq; v = q̇
∂

∂q̇
.

Application of previous Theorem then leads to the search of avector fieldX under the
form

X = a (q, q̇)
∂

∂q
+ b (q, q̇)

∂

∂q̇

satisfying the differential form identity

i Xω = −m a(q, q̇)dq̇ + −m b(q, q̇)dq̇

= d (K − vK )+ π = −mq̇dq̇ + (−λq̇ − kq) dq.

The identification of the coefficients of the one-formsdq anddq̇ then leads to

X = q̇
∂

∂q
−
(

λ

m
q̇ + k

m
q

)

∂

∂q̇

The integral curves ofX are the solutions of the differential system
dq

dt
= dq̇;

dq̇

dt
= − λ

m
q̇ − k

m
q that condenses into the dynamical equation of motion

mq̈ + λq̇ + kq = 0.
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Defining the Lagrangian as the differenceL = K−V = 1

2
mq̇2−1

2
kq2, the equivalence

between the Lagrange equation and the integral curves ofX easily appears:

d

dt

∂L

∂q̇
− ∂L

∂q
= Fnc ⇔ mq̈ + kq = −λq̇

Previous theorem can be considered as a generalization of the Lagrangian formalism,
since the previous equation (1) results from the Lagrange-d’Alembert principle

(2) δ

∫ t1

t0
L (q, q̇) dt +

∫ t1

t0
Fnc

i (q, q̇) δqi dt = 0 ⇒ d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fnc

i (q, q̇)

In the conservative case(π = −dV), previous equation resumes to the station-
ary condition of the action integral. Note furthermore thatthe non conservative forces
are usually supposed to derive from a pseudo-potential dissipation (also called Rayleigh

potential)R, asR = −1

2
λq̇2 ⇒ Fnc

i = ∂R

∂q̇i
(= −λq̇)

The application of the Lagrange-d’Alembert principle alsoshows that the variation of

the action integral
∫ t1

t0
L (q, q̇) dt does not vanish, evidencing thereby a closure defect

of the pfaffianL (q, q̇) dt along its extremal (topological torsion of the configuration
manifold, according to [21]).

The notion of Rayleigh potential introduced in the dynamicsevokes the nearby
concept of dissipation potential, that plays a role essentially in the thermomechanics
of continuous media. Various attempts towards the formulation of the state laws and
evolution equations of a viscoelastic and / or viscoplasticsolid under a Lagrangian
form have been addressed in the literature. Those approaches rely on the setting up of
the Helmholtz free energy - here notedψ that essentially depends upon two types of
variables:

• observable variables (one can measure them), being in general the temperature
T and a deformation like variableǫ;

• hidden variables that describe the internal state of the material. These variables
are otherwise called internal variables, here notedα (of a scalar or tensorial
nature).

Accordingly, the potential takes a priori the general expressionψ = ψ (ǫ, α, T), from
which the state laws follow from the use of Clausius-Duhem inequality, as

σr = ρ0ψ,ǫ; A = −ρ0ψ,α; s = −ρ0ψ,T

with ρ0 the density in the reference configuration,σr the reversible part of the stress,A
the thermodynamical affinity (conjugated to the internal variables), ands the entropy
density. These state laws shall be completed in the case of dissipative media by the
information related to the irreversible behavior, via a pseudo potential of dissipation
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�(ǫ̇), s.t. the irreversible part of the stress is given byσir = �,ǫ̇ , considering the
additive decompositionσ = σr + σir . Adopting a viscoelastic behavior, the affinityA
derives from a second pseudo-potential8(α̇), asA = 8,α̇.
The Lagrangian formalism established in [33] relies on the definition of a pseudo-
potentialD, being the sumD = �(ǫ̇) + 8(α̇). The author next defines a functional
S = S[u, u̇, α, T ] with

S :=
∫ t1

t0

(

∫

V

[

1

2
ρ0

(

du

dt

)2

− ρ0ψ (ǫ (u) , α, T)

]

dV

)

dt

+
∫ t1

t0

(

λ

∫

Sf

Td.u dS

)

dt

with Td the given imposed traction on the portion of boundarySf , andλ a loading
parameter that explicitly depends upon time. The variational principle associated to
the extremality conditions ofS can be viewed as a generalization of the Lagrange
d’Alembert principle to continuous dissipative media; itsformulation w.r. to the sole
displacement is

δS+
∫ t1

t0

[∫

V

(

∂D

∂ǫ̇
ǫ δu

)

dV

]

dt = 0

leading to a relation analogous to (2):

∂L

∂u
− d

dt

∂L

∂u̇
= ∂D

∂ǫ̇
ǫ

This equation in turn leads to the dynamical equations of equilibrium

div (σr + σir ) = ρ0
d2u

dt2
; (σr + σir ) .n = λTd

with n the outward normal toSf . The complementary information relative to the ther-
modynamic forces (that traduces the internal evolution of the body) is given by the
Lagrange equations relative to the internal variables, viz

∂L

∂α
= ∂L

∂α̇
⇔ A = −ρ0

∂ψ

∂α
= ∂8

∂α̇

One shall note the strong analogy between the description ofthe dynamics of a dis-
crete system of dissipative punctual masses and the writingof the Lagrange equations
in presence of non conservative forcesFnc: the first involves a Rayleigh potentialR,
while the second approach requires the functionalS to be supplemented by the pseudo-
dissipation potentialD.
Going further in that direction, an attempt to extend the Lagrange formalism for dissi-
pative media is further elaborated, in connection with the associated variational sym-
metries.
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4. Lagrange formalism and TIP

Following the axioms of classical thermodynamics as statedin [4], let assume the exis-
tence of a functionalE, called the internal energy, being extensive w.r. to its arguments,
viz E = (E (Vǫ, S, N), whereby the introduced arguments reflect the different forms
of energy:

• mechanical energy (we here focus on small deformationsǫ, with a nearby con-
stant volumeV);

• calorific energy, represented by the total entropyS;

• chemical energy, represented by the number of molesN = {Nk, k = 1 . . . n} of
the various species.

The extensity ofE (homogeneity of degree one) expresses as (Euler’s theorem):

E (λVǫ, λS, λN) = λE (Vǫ, S, N) , ∀λ ∈ R

Deriving previous equation w.r. toλ atλ = 1 leads to the Euler identity

∂E

∂ (Vǫ)
: (Vǫ)+ ∂E

∂S
S+ ∂E

∂N
N = E (Vǫ, S, N) ⇒

E (Vǫ, S, N) = σ (Vǫ, S, N) : (Vǫ)+ T (Vǫ, S, N) S+ µ (Vǫ, S, N) .N

wherein the intensive quantities conjugated to the independent intensities have been
introduced: the stressσ (Vǫ, S, N), the temperatureT (Vǫ, S, N), and the chemical
potentialsµ (Vǫ, S, N). Accounting for these relationships then leads to the funda-
mental Gibbs relation:

d E = σ : d (Vǫ)+ T dS+ µ.d N

The differentiation of Euler’s identity leads to the Gibbs-Duhem relation

(Vǫ) : dσ + SdT+ N.dµ = 0

Both the Gibbs and Gibbs-Duhem relations are at the roots of thermodynamics; Gibbs-
Duhem relation expresses the adjustment of the intensive variables during the variation
of the extensities. When sufficient mechanical energy is brought to the system as in-
put, may lead to a change of the internal configuration of the body, due to the fact
that the system escapes from equilibrium. Assuming that theinternal energy still has
the status of a potential function, and replacing the variables Nk by extensive inter-
nal variables�i , one hasE = E (Vǫ, S, �). The thermodynamic driving forceA (or
affinity in the language of De Donder) associated to the internal variableα expresses as

Ai (Vǫ, S, �) = −∂E (Vǫ, S, �)

∂�i
. In the sequel, we shall rather work with densities,

thus writing the generalized fundamental Euler’s relationas

e(ǫ, s, α) = σ (ǫ, s, α) : ǫ + T (ǫ, s, α) s − A (ǫ, s, α) .α
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here introducing the energy and entropy densityeands respectively, and the density of
the internal variables extensities�, notedα. The Gibbs-Duhem relation then rewrites
as

ǫ : dσ + sdT− α.d A = 0

The state laws that give the constitutive behavior of the body then express in rate form
as

(3)





σ̇

Ṫ
−Ȧi



 =





e,ǫǫ e,ǫs e,ǫαk

e,sǫ e,ss e,sαk

e,αkǫ e,αks e,αkαk



 .





ǫ̇

ṡ
−α̇k



 ,

In the vicinity of equilibrium, the matrix of second order partial derivatives can be
considered as made of constant entries. In order to be synthetic, let introduce the vector
y = (ǫ, s)t of the controlled extensities (their densities), being conjugated to the dual
observable, notedY = (σ, T)t . Previous system then rewritesP = 0, with

P :=
{

PY(y, α) = Y − e,yy.ẏ − e,yα.α̇ = 0
PA(y, α) = −Ȧ − e,αy.ẏ − e,αα.α̇ = 0

(4)

Elementary calculations show that the previous system satisfies the self-adjunction con-
dition of the Frechet derivative ofP, viz Dp = D∗ P, being equivalent to the Maxwell’s
relations for the internal energye [19, 32]. Recall that theFrechet derivativeof a vector
of functionsPi

(

x, u(n)
)

, depending upon the independent variablex and the depen-
dent variableu, up to its derivatives to the ordern, is the differential operatorDp given

by
(

Dp
)

i j =
∑

J

∂Pi

∂u j,J
DJ, i = 1 . . . r, j = 1 . . .q. The multiindexJ of dimension

k consist of a set ofk indices each less than 4, vizJ = ( j1, . . . , jk) , 1 ≤ jk ≤ 4.

Accordingly, one expresses the partial derivativeui, j = ∂kui

∂x j 1. . . . ∂x jk
.

EXAMPLE 16. ForP = u + u2
x, one hasDp = ∂P

∂u
+ ∂P

∂ux
Dx = 1 + 2ux Dx,

with Dx the total derivative operator w.r. tox.

THEOREM 3. The adjunct of the Frechet derivative is the matrix of differential

(

D∗ P
)

i j =
∑

J

(−D)J
∂Pj

∂ui,J
, i = 1 . . .q; j = 1 . . . r

Given the scalar products of two elements P=
{

Pi
(

x, u(n)
)}

, Q =
{

Qi
(

x, u(n)
)}

as〈P, Q〉 :=
∫

�

q
∑

I =1

Pi Qi dx, the adjunct satisfies the following condition

〈P, DQ〉 = 〈Q, D∗ P〉, ∀P =
{

Pi

(

x, u(n)
)}

, ∀Q =
{

Qi

(

x, u(n)
)}
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EXAMPLE 17. For D = d

dt
the operator acting on functions with compact

support in� =]0, 1[, one writes

〈u, Dv〉 =
∫ 1

0
v

dv

dt
dt = −

∫ 1

0
u

dv

dt
dt + [uv]10 = 〈v, D∗u〉,

thus the adjunctD∗ ≡ − d
dt .

The existence and construction of a Lagrangian for a system described by a set
of PDE’s is expressed in the following

THEOREM 4. [27] A system of PDE on the dependent variables u of the form
P(u) =

{

Pi
(

x, u(n)
)

, I = 1 . . .q
}

= 0 realizes the extremum of a functional integral
S =

∫

�
L d�, i.e. Pi = Ei (L), with Ei (.) the Euler-Lagrange operator, iff its Frechet

derivative is self-adjunct. In this case, a possible Lagrangian is given by the line inte-

gral
∫ 1

0

q
∑

i=1

ui .Pi (λu)dλ. Equivalent Lagrangian are obtained up to the generalized

divergence of a vector P= {Pt , PX, PY, Pz}, defined as Div P =
4
∑

i=1

∂Pi

∂xi
.

EXAMPLE 18. (The vibrating string) The transverse vibrations of a string of
lengthl0 are described by the PDEλut t −T uxx = 0, withλ the lineic mass, andT the
tension applied to the string. It is immediate to see that this EDP is self-adjunct, and a

possible Lagrangian is set up asL = 1

2
u
(

λu,t t − T u,xx
)

, however lacking a physical

significance. It can further be worked out as

L = −1

2
λu2

,t + 1

2
T u2

,x + d

dt

(

1

2
λu u,t

)

− d

dx

(

1

2
T u u,x

)

.

An equivalent Lagrangian isL = 1

2
λu2

,t − 1

2
T u2

,x, thus the action integral

S =
∫ τ

0
dt
∫ l0

0

(

1

2
λu2

,t − 1

2
T u2

,x

)

dx = K − V,

difference of the kinetic energyK =
∫ τ

0
dt
∫ l0

0

(

1

2
λu2

,t

)

dx and of the potential

energyV , which itself results from the linearization of the expression

V = T (l − l0) ≡ T

(∫ l0

0

√

1 + u2
xdx − l0

)

.

Application of the previous theorem shows that the self-adjunction condition of
the state laws is satisfied, thus the Lagrangian

L =
∫ 1

0
[y.PY (λy, λα)+ α.PA(λy, λα)] dλ.
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Accounting for the homogeneity of degree -1 of the second order partial derivatives of
e(y, α), and the homogeneity of degree zero of the intensitiesY(y, α) and A(y, α)
then leads to

L = y.Ẏ − α.Ȧ + e,y.ẏ + e,α.α̇ − d

dt

(

e,y.y + e,α.α
)

The last contribution can be removed (it is a total derivative), and the first contribution
vanishes, according to Gibbs-Duhem relation, thus an equivalent Lagrangian is given
by L = e,y.ẏ + e,α.α̇, as independently obtained in [23].The stationarity of theaction
integral

S =
∫

e,y.ẏ + e,α.α̇ =
∫

de

dt
≡ e[y, α]

(it is indeed a functional, due to the history dependence of the potentiale = e(y, α)
upon the internal variablesα) simply means that the internal energy keeps its status of
potential function during the evolution of the system. The postulate of existence of a
thermodynamic potentialE outside equilibrium thereby generates a stationarity prin-
ciple, equivalent to the state laws. Note that adapted potentials can be built using the
Legendre transformation, when a given set of control variables have been chosen. The
Lagrangian so far established incorporates the thermodynamical information related
to the state laws, but it does not consider the evolution lawsof the internal variables.
These can be written for GSM (generalized standard material) as the following subd-
ifferential identities:(−α̇) = ∂Aφ

∗ (σ, T, A), with φ∗ (σ, T, A) the pseudo-potential
of dissipation [14]. Thus, using this last equation as a constraint via a set of Lagrange
multipliers yields the unconstrained problem:

δ

∫ t

t0

[

ė+
n
∑

k=1

λk
(

α̇k − ∂Akφ
∗ (σ, T, A)

)

]

dt = 0

where the subdifferential is taken w.r. to the affinityAk, for the augmented Lagrangian

ė+
n
∑

k=1

λk
(

α̇k − ∂Akφ
∗ (σ, T, A)

)

sum of a thermodynamic LagrangianL thermo := ė and a kinetic Lagrangian

Lkin :=
n
∑

k=1

λk
(

α̇k − ∂Akφ
∗ (σ, T, A)

)

.

Note that the subdifferential reduces to the partial derivative in a ’smooth’ case.

4.1. Continuous symmetries of dissipative constitutive laws and master curves

A reminder of variational symmetries is first in order: when adifferential problem
admits a variational formulation in terms of the stationarity of a functional, Noether’s
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theorem associates to each variational symmetry a conservation law. Recall that the
one-parameter (µ is the parameter) Lie group of transformationsG : x̄i = x̄i (x, u, µ);
ūi = ūi (x, u, µ) is a symmetry group for the functional integral

S =
∫

�

L
(

x, u(n)
)

d�

iff Skeeps the same value in the set of transformed variables, viz

S̄ =
∫

�̄

L̄
(

x̄, ū(n)
)

d� = S =
∫

�

L
(

x, u(n)
)

d�

The vector field (symmetry generator)

v =
4
∑

k=1

ξk(x, u)
∂

∂xk
+

q
∑

k=1

φk(x, u)
∂

∂uk
≡

4
∑

i=1

∂ x̄i

∂µ|µ=0

∂

∂ui

defines a variational symmetry group iff the following condition is satisfied:

pr (n) + Ldiv ξ = 0.

The prolongation of the vector fieldv, alias pr (n), is defined as the extended vector
field

pr (n)v = v +
q
∑

k=1

∑

J

φ J
k

(

x, u(n)
) ∂

∂uk,J

φ J
k

(

x, u(n)
)

= DJ

(

φk −
4
∑

I =1

ξi uk,i

)

+
4
∑

I =1

ξ
∂

∂xi

(

DJuk
)

J being an arbitrary multiindex or order less than 4.

THEOREM 5 (E. Noether, [20]).Whenv generates a symmetry group for the
functional S[u] =

∫

�
L
(

x, u(1)
)

d�, the conservation law

Di v P = D1P1 + · · · + D4P4 = 0

is satisfied, with the quadruplet{Pi , i = 1 . . . 4} given by

Pi =
q
∑

k=1

4
∑

j =1

ξ j uk, j
∂L

∂uk, j
−

q
∑

j =1

φ j
∂L

∂u j,i
− ξi L , ∀x ∈ �.

Going back to the finding of the variational symmetries associated to the La-
grangianL = L thermo+ Lkin, the group generator

v = ξ∂t + φǫ∂ǫ + φT∂T + φαk∂αk + φσ ∂σ + φS∂S + φAk∂Ak

maybe elaborated in such a way that the variational symmetryfor L thermo is automati-
cally satisfied: just compute the components of the intensive variables s.t. they satisfy
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the state laws. Previous symmetry condition then simplifiesto [19, 32]

pr(n)v + LkinDi vξ = 0 with divξ ≡ Dtξ

Using TIP and the elegant formalism of differential geometry, balance laws
for intrinsically dissipative continuous media can then beformulated, in articulation
with symmetries. These can be obtained in the following manner: the variation of the
functionalSunder an arbitrary group of transformations expresses as

δS=µ
∫

�

(

∂L

∂uk
−Di

∂L

∂uk,i

)

(

φk−ξ j uk, j
)

d�+ µ

∫

∂�

(

LξI +
(

φk−uk, j ξ j
))

ni d(∂�)

This form can be transcribed into the compact differential form identity (Cartan for-
mula):

L Xω = i X dω + d (i Xω)

which allows a condensed writing of Noether’s theorem: under the conditionsL Xω =
0 (invariance of

∫

�
ω ≡

∫

�
L dx dt by the group generated byX) and i Xdω = 0

(validity of the Euler-Lagrange equations), the followingconservation law is obtained:

Di v

(

Lξi +
(

φk − uk, j ξ j
) ∂L

∂uk,i

)

= 0

This identity appears as a balance law for dissipative media, wherein the Lagrangian
describes the kinetics of evolution of the internal variables (according to previous de-
velopments). This approach seems more natural compared to the work in [5], since the
authors do not truly consider dissipative media per se.

EXAMPLE 19. (Conservation of Deborah number in linear viscoelasticity) As
a simple illustrative example, let consider the linear viscoelasticity law relating the
Cauchy stress ratėσ to the strain and strain rates, written as the following firstorder
PDE with initial condition:

Delta :=
∣

∣

∣

∣

∣

∂σ
∂t − E0ǫ̇ + σ−E∞ǫ(t)

τ (T) = 0
σ(0) = 0

whereinτ(T) is a temperature dependent relaxation time, andE0, E∞ denote the
instantaneous and relaxed moduli respectively. The parametersτ , ǫ are here considered
as dependent variables, whereas the timet is the independent variable. An equivalence
principle is defined as the prescription of two groups of transformationsG1, G2, s.t.

G1 (t, σ, µ1) = G2 (t, σ, µ2)

whenµ1 = µ2, with σ solution of1. In terms of the generators, previous condition
is rephrased aspr (1)v1(1) = pr (2)v2(1), when1 = 0. As a specific generator
that satisfies the previous condition together with the initial conditionσ(0) = 0, one
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obtains the time dilatation group (expressing the equivalence principle and integrating
the resulting system of ODE satisfied by the coefficients of the two selected generators

v1 = ξ (t, τ, ǫ̇)
∂

∂t
+ α (t, τ, ǫ̇)

∂

∂ǫ̇
and v2 = β (t, τ, ǫ̇)

∂

∂t
,

having the generators

v1 = t
∂

∂t
− ǫ̇

∂

∂ǫ̇
; v2 = −τ ∂

∂τ
.

They correspond to the two symmetry groups

G1 (t, σ, µ) :=

∣

∣

∣

∣

∣

∣

∣

∣

t̄1 = eµt

τ̄1 = τ
¯̇ǫ1 = e−µǫ̇
σ̄1 = σ

andG2 (t, σ, µ) :=

∣

∣

∣

∣

∣

∣

∣

∣

t̄2 = t
τ̄2 = e−µτ

¯̇ǫ2 = ǫ̇

σ̄2 = σ

denoting the transformed variables with an over bar. Traducing the equivalence condi-

tion asσ̄1
(

t̄1, σ̄1, ¯̇ǫ1
)

= σ̄2
(

t̄2, σ̄2, ¯̇ǫ2
)

gives the relationσ

(

t

α
, ατ, ǫ̇

)

, withα = eµ.

Thereby, it appears that an identical response of the material is obtained, when a time
contraction and a strain rate dilatation are operated, withthe factors 1/α andα re-
spectively. This equivalence between time and strain rate leads to the conservation of
Deborah number, defined as the ratio of the internal relaxation time (microscopic time)
to the observer (macroscopic) time scale, viz

nD := τ

tobs
= τ

ǫ/ (αǫ̇)
≡ ατ

t

Applications of this methodology to the time-temperature equivalence princi-
ples have been further done [19], within a thermodynamic framework of relaxation [6].
Thereby, a systematic and predictive methodology for the setting up of master curves of
dissipative media has been elaborated. Note that the symmetry groups act in the space
of both independent variables (space and time) and dependent variables (that itself de-
pend upon the selected thermodynamic framework); these symmetries shall further be
exploited.
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G.A. Maugin

BASICS OF THE MATERIAL MECHANICS OF MATERIALS

(M3) FOR ARBITRARY CONTINUA

Abstract. It is shown that the canonical balance of momentum of continuummechanics
can be formulated in a general way, but not independently of the usual balance of linear
momentum, even in the absence of specified constitutive equations. A parallel construct
can be made for the accompanying time-like canonical energy equation. On specifying the
energy, previous particular cases can be deduced includingpure elasticity, inhomogeneous
thermoelasticity of conductors, and the case of dissipativesolid-like materials described by
means of a diffusive internal variable (such as in damage or weakly nonlocal plasticity). A
redefinition of the entropy flux is necessarily accompanied bya redefinition of the Eshelby
stress tensor.

1. Introduction

There exist two opposite viewpoints concerning the status of the equation of material
(or canonical) momentum in continuum mechanics. The viewpoint of the author [1]-
[2] is that this equation is never independent of the classical (physical) equation of
linear momentum, in Cauchy or Piola-Kirchhoff form, being essentially deduced from
the latter by a complete pull-back to the reference configuration whenever constitutive
equations are known for the material. It is, therefore, an identity at all regular material
points - but it still is extremely useful on any singular manifold [3]. This is in agree-
ment with the application of Noether’s identity [4] when oneconsiders a variational
formulation for a nondissipative material, a point of view shared by J.D.Eshelby in his
original works, e.g.,[5]. The second viewpoint is that of Gurtin [6] who claims that this
equation is an a priori statement independent of the classical balance laws although in
the end it is, for sure, always shown to be related to the physical balance of momentum
so that Gurtin’s statement is somewhat inappropriate.

Let us be more inclusive. Several phantasms and fallacies are at work in the field
that is our concern. The present work has for main purpose to correct these by pon-
dering the basics of the material formulation of continua. First, it was for long thought
that canonical equations of motion or equilibrium such as obtained initially by Eshelby
can be deduced only when a variational formulation is at handto start with, i.e., in
the absence of dissipation and when the kinetic and potential energies are prescribed
since a Lagrangian density is needed to start with. This is the belief of, if we may
say, those who know “too much”. Indeed these authors know elements of field theory
including the celebrated theorem of Noether [4] according to which a “conservation
law” is associated with any of the parameters describing thefield theory under study
when a variational basis is considered to formulate balancelaws. One must obviously
distinguish between thefield equations(one for each scalar component of the involved
fields) - these are the Euler-Lagrange equations of motions,and theconservation laws
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that follow from Noether’s identity. In pure continuum mechanics the fields are the ac-
tual components of the placement or of the displacement. Thedescription parameters
are a set of coordinates - usually the so-called material coordinates in order to avoid
any confusion with any other system of coordinates-, and Newtonian time, a scalar.
Infinitesimal variations of the latter generate the so-called equation of canonical - or
material momentum - and the equation of energy conservation(Maugin and Trimarco
[7]). If there are more fields, then there are more field equations, as many as fields,
but the space-time parametrization remaining unchanged, the canonical conservation
equations are still four in number (the three components of the canonical momentum
equation, and the scalar energy equation). Accordingly, ingeneral and working in
Newtonian physics, there may be 3 + n field equations and 4 scalar conservation laws.
In classical continuum mechanics where the medium involvesno inner structure (such
as in micropolar, Cosserat or micromorphic media), it happens that the three field equa-
tions left for the displacement and the material momentum equation can, at all regular
material points, be placed in a one-to-one correspondence by the operations of mate-
rial convection (pull-back and push-forward). Accordingly, one has the correct feeling
that nothing is gained from having a conservation of canonical momentum -as a pure
identity - in addition to that of momentum in physical space.The situation is altogether
different when (i) there exist material points in the spatial domain of interest where the
fields suffer a singularity of an appropriate order. The writing of the global canonical
balance laws will then make additional terms emerge that correspond to the driving
force (amaterial or configurational force acting on the singularity set - this may be a
line or a surface) and an energy sink (so-calledenergy-release rate) such as at a crack
tip line or at a surface of phase change) [8]-[9]. The situation is also more interesting
even in the case (ii) where there are more fields than three butno singularity present,
because both the canonical momentum conservation, then remaining essentially three
dimensional, and the energy equation, as it should, but simultaneously with the canon-
ical momentum conservation, involve all fields. This fact isexploited in perturbations
of solutions of systems of partial differential equations (such as in soliton theory) [10]
and also for checking the accuracy of numerical schemes of various nature [11]. Notice
that when there are more fields than the classical placement,the canonical momentum
equation is obtained by constructing a linear combination of field equations, each of
these being first multiplied in the appropriate way by the material gradient of the cor-
responding field. In that sense the “canonical momentum” concept is additive and will
include contributions from all fields including those of an electromagnetic nature [1] or
even more surprisingly, rotational internal degrees of freedom although the canonical
momentum itself reflects a translational invariance in material space (this is most nicely
illustrated by the case of polar continua [12] and liquid crystals [13]). All these aspects
have been duly examined in works by the author and co-workers. Still, one keeps on
mind that constitutive equations have been suggested, perhaps only through a proposed
dependence of the potential energy, in the relevant construct.

The view point of Gurtin [6] adopted by some authors is that there exists a priori
a balance of configurational forces, in a sense, a new law of physics. We would say
that this represents the view point of the philistines because they seem to ignore that
the number of descriptive parameters, and therefore the number of balance laws of



Basics of the material mechanics of materials (M3) for arbitrary continua 207

classical continuum mechanics, is limited so that there should not exist a balance law
of the momentum type independently of the one already and generally first written in
the spatial framework. These authors generally ignore these rules of invariance that are
the tenets of modern physics. They are thus led to introducing the energy pressure-like
term in the Eshelby material stress through a dubious argument. They claim, to their
defense, that this is a way to arrive at the material momentumequation, or its jump in
the case of a singular surface, without previous knowledge of the constitutive equations
of the medium, and, therefore, even in the presence of dissipation.

Here we expand the view that the balance of canonical or material momentum,
albeit following from the balance of physical momentum, canbe formulated indepen-
dently of any constitutive behavior. Moreover, accountingfor the fact that this equation
is the space-like equation associated with a particular form of the energy equation, it is
shown that the former and the latter can be used in parallel tobuild a consistent ther-
momechanics of many behaviors, especially in the presence of dissipation. It in fact
is dissipative terms that help us construct a true invariantthermomechanics of rather
general continua. In other words we would like to show how farone can first proceed
in the construction of canonical material conservations laws without previous special-
ization to a certain behavior, it being understood that dissipation is not an obstacle to
the formulation of such equations.

2. Reminder of classical local balance laws of continuum mechanics

We shall use the standard notation of nonlinear continuum mechanics such as in Erin-
gen [14] and Eringen and Maugin [15], and a fortiori in Maugin[1]-[2]. In particular,
x = x̄ = (X, t) is the time-parametrized motion mapping of material space onto phys-
ical Euclidean space.∇R anddiνR denote the referential (material) nabla and diver-
gence, andd/dt = ∂/∂t |X or a superimposed dot denote the material time derivative.
We suppose that the following three local balance laws have been deduced from a
global statement for sufficiently smooth fields (see any bookon the thermomechanics
of continua). Here we consider the Piola-Kirchhoff formulation of the balance of mass,
physical (linear) momentum, and energy (no external supplyof energy apart from that
related to the body force) at any regular material point X in acontinuous body in the
presence of a body forcef0 per unit reference volume

(1)
∂ρ0

∂t

∣

∣

∣

∣

X
= 0

(2)
∂(ρ0v)
∂t

∣

∣

∣

∣

X
− diνRT = f0

(3)
∂(K + E)

∂t

∣

∣

∣

∣

X
− ∇R(T.v − Q) = f0.v,
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whereρ0 is the mass density,v = ∂ x̄∂t |X is the physical velocity,T is the first Piola-
Kirchhoff stress,K = ρ0v

2/2 is the kinetic energy,E is the internal energy per unit
reference volume, andQ is the material heat flux. This is complemented by the second
law of thermodynamics written as

(4)
∂S

∂t

∣

∣

∣

∣

X
+ ∇R.S ≥ 0, S = (Q/θ)+ K ,

whereS is the entropy density,θ is the absolute temperature(θ > 0, inf θ = 0), and
S is the entropy flux. The “extra entropy flux”K vanishes in most cases. We note
F = ∂ x̄/∂X|t = ∇Rx̄ the deformation gradient.

3. Canonical balance laws of momentum and energy

3.1. A canonical form of the energy conservation

First we shall formulate an interesting form of the energy conservation equation. A
part of the reasoning is standard. In effect, taking the scalar product of both sides of
eqn. (2) byv and performing some elementary manipulations we obtain theso-called
theorem of the kinetic energyas

(5)
dK

dt
− ∇R.(T.v)+ T :Ḟ − f0.v = 0.

Combining this with the first law of thermodynamics (3) we obtain the so-calledtheo-
rem of internal energy:

(6)
d E

dt
− T :Ḟ + ∇R.Q = 0.

Further, in the case whereK = 0, introducing the Helmholtz free energy function by
W = E − Sθ , we transform the inequality (4)1 into the celebratedClausius-Duhem
inequality

(7) −
(

dW

dt
+ S

dθ

dt

)

+ T :Ḟ − S.∇Rθ ≥ 0.

As we know, this is exploited as a constraint in the formulation of thermodynamically
admissible constitutive equations, while the “conservation equation ” (6) is the equation
governing heat propagation in a disguise. This can be given several transformed forms.
A most interesting form is obtained straightforwardly by noting that E = W + Sθ ,
yielding

(8)
d(Sθ)

dt
+ ∇R.Q = hint , hint := T :Ḟ − ∂W

∂t

∣

∣

∣

∣

X

This is of special interest because of the expression in the right-hand side which a pri-
ori appears as aninternal heat source. Indeed, for a typically thermodynamically re-
versible behavior such as pure nonlinear elasticity (hyperelasticity), whereW = W̄(F)
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depends only onF, we have from the exploitation of (7),

(9) T = ∂W

∂F
⇒ hint ≡ 0

Note that in the situation where (8) holds good, the inequality (7) can also be written
in the following enlightening form

(10) Sθ̇ + S.∇Rθ ≤ hint

We claim that (8)1 in fact is the most interesting form of the energy conservation equa-
tion for our purpose (i.e., establishing canonical equations). This we discover by con-
structing the canonical equation of momentum as follows.

3.2. Canonical (material) momentum conservation

Guided by what is valid for pure finite-strain elasticity (Noether’s identity; see Maugin
[1]), we applyF to the right of eqn. (2) and note that (T = transpose)

(11)

(

∂(ρ0v)
∂t

)

.F = − ∂P
∂t

∣

∣

∣

∣

X
− ∇R

(

1

2
ρ0v2

)

+
(

1

2
v2
)

(∇Rρ0),

and

(12) (diνRT).F = diνR(T.F)− T : (∇RF)T ,

where we have set

(13) P := −ρ0v.F

the material momentum. Introducing plus and minus the material gradient of an (un-
specified) free energy densityW = W̄(., ., ...,X), we then check that eqn. (2) yields
the following material balance of momentum

(14)
dP
dt

− diνRb = fint + fext + finh,

in which we have defined the materialEshelby stressb, the materialinhomogeneity
forcefinh (cf. [1]-[2] for this notion), the materialexternal(or body) forcefext, and the
materialinternal forcefint by

(15) b = −(LW1R + T.F), LW := K − W

(16) finh := ∂LW

∂X

∣

∣

∣

∣

expl
≡ ∂LW

∂X

∣

∣

∣

∣

f i xed f ields
= (v2/2)∇Rρ0 − ∂W̄

∂X

∣

∣

∣

∣

expl
,

(17) fext := −f0.F, fint := T : (∇RF)T − ∇RW|impl ,
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where the subscript notationsexpl and impl mean, respectively, the material gradient
keeping the fields fixed (and thus extracting the explicit dependence onX), and taking
the material gradient only through the fields present in the function.

Equation (14) is thecanonicalbalance of momentum of continuum mechanics
in the absence of specification of constitutive equations. It is a mathematically strict
conservation equation only when all source terms in its right-hand side vanish. Here the
new notion is that ofmaterial internal forcewhich appears in parallel and total analogy
with the internal heat source (8)2 , the action of the material gradient replacing that of
the material time derivative. We note that there is no “time-like” scalar equivalent to
finh in equation (8)1 because this inhomogeneity force which is automatically captured
by that equation, has no dissipative nature. An explicit dependence ofW on time (in a
nonholonomous system) would yield a nonzero termhinh, but this is hardly considered
in continuum mechanics except perhaps in growing and ageingmaterials such as soft
tissues (inhomogeneity of the material in time!). Similarly, there is no equivalent to the
external material forcefext in (8)1 because this equation governs essentially the internal
energy. It would be easy to rewrite eqns. (8)1 and (14) as a single four-dimensional
space-time equation (see [8]) but this serves no special purpose, except for an aesthetic
satisfaction, in engineering applications. Still theconsistencybetween the space-like
co-vectorial equation (14) and the time-like equation (8)1 is a fundamental requirement
in the thermodynamical study of the progress of singularitysets (e.g., defects).

Still, in the present approach, in order to proceed further we need to specify the
full functional dependence ofW. The general expressions (8)1 and (14) are the most
general canonical equations for momentum and energy we can write down without a
postulate of the full dependency ofW. However, just like for other equations if contin-
uum mechanics, we could also write the jump relations associated with (8)1 and (14)
at a singular surface by using elements of the theory of hyperbolic systems or a more
naive method such as the pill-box method. But since the “conservation laws” (8)1 and
(14) already exhibit source terms in the bulk (i.e., they arenot conservation laws in
a strict mathematical sense), the associated jump relations will also contain surface
source terms. The latter, a priori unknown but responsible for the dissipation at the sin-
gularity, have to be computed with the help of the standard jump relations associated
with eqns. (1)-(3).

3.3. Case K6= 0

Without reporting the whole algebra, starting with (4)2, we let the reader check that the
thermodynamical inequality (7) is replaced by

(18) −
(

dW

dt
+ S

dθ

dt

)

+ T :Ḟ + ∇R.(θK)− S.∇Rθ ≥ 0,

whereS is still give by the general expression (4)2. Equations (8) and (14) are left
unchanged:

(19)
d(Sθ)

dt
− ∇R.Q = hint , hint := T :Ḟ − ∂W

∂t

∣

∣

∣

∣

X
,



Basics of the material mechanics of materials (M3) for arbitrary continua 211

(20)
dP
dt

− diνRb = fint + fext + finh;

On account of (18), eqn. (10) is replaced by

(21) Sθ̇ + S.∇Rθ ≤ hint + ∇R.(θK).

Now let us illustrate these general equations by specific cases; some trivial, and some
nontrivial ones.

4. Examples without body force

4.1. Pure homogeneous elasticity

In that caseρ0 = const., andW = W̄(F) only. We havehint ≡ 0, fint ≡ 0 since
(9) holds good, and alsofinh = 0, Q ≡ 0 since the body is homogeneous and non
conducting. Equations (8) and (14) reduce to the following [in fact Hamiltonian for a
(3+1)-dimensional canonical momentum(P, θ0S)] system(θ0 = const.):

(22)
dP
dt

− diνRb = 0, θ0
dS

dt
= 0.

In four-dimensional form this is the formulation of Kijowski and Magli [16].

4.2. Inhomogeneous thermoelasticity of conductors

In that caseρ0 = ρ̄0(X), andW = W̄(F, θ; X). We have the constitutive equations

(23) T = ∂W̄

∂F
, S = −∂W̄

∂θ

that follow from a standard exploitation of the Clausius-Duhem inequality. Accord-
ingly, we obtain that

(24) fint ≡ fth, hint ≡ hth := Sθ̇

where

(25) fth := S∇Rθ

is the material thermal force first introduced by Bui in smallstrains [17] and indepen-
dently by Epstein and Maugin in their geometrical considerations [18], so that (8) and
(14) are replaced by the following canonical (non-Hamiltonian) system of balance of
momentum and energy:

(26)
dP
dt

− diνRb = finh + fth,
d(Sθ)

dt
+ ∇R.Q = hth,

as first found in by Maugin [8].
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4.3. Homogeneous dissipative solid material described by means of a diffusive
internal variable

Let α the internal variable of state whose tensorial nature is notspecified. This may
relate to damage, or anelasticity of some sort with a possible diffusion of the said
variable so that its material gradient must be taken into account (e.g., in strain-gradient
plasticity). This is in the spirit of the thermodynamics developed at length in a book
[19]. ThenW is specified as the general sufficiently regular function

(27) W = W̄(F, θ, α,∇Rα).

First we assume thatK vanishes. Theequations of state(in a sense, mere definitions
of the partial derivatives of the free energy) are given byGibbs’equationas

(28)

T = ∂W̄

∂F
S = −∂W̄

∂θ

A := −∂W̄

∂α
B := − ∂W̄

∂(∇Rα)

Accordingly, we find that

(29) fint = fth + fintr , hint = hth + hintr ,

where the thermal sources have already been defined and the “intrinsic” sources are
given by

(30) fintr := A(∇Rα)
T + B

(

∇R (∇Rα)
T
)T
, hintr := Aα̇ + B.(∇Rα̇)

T ,

so that we have the following consistent (non-Hamiltonian)system of canonical bal-
ance laws:

(31)
dP
dt

− diνRb = fth + fintr ,
d(Sθ)

dt
+ ∇R.Q = hth + hintr ,

while the dissipation reads

(32) 8 = hintr − S.∇Rθ ≥ 0, K ≡ 0.

Here the thermodynamical forcesA andB are purely dissipative by virtue of the “in-
ternal” character of the state variableα.

This approach withK=0 favors thecontinuum mechanics(Coleman-Noll)stan-
dard viewpointby accepting the classical relationship between heat and entropy flux,
and assuming thatα and its material gradient are essentially independent. A morefield-
theoreticviewpoint is to envisage the set of eqns.(18) through (21) asholding true and
selecting the non-zeroK such that the divergence term in (18) be identically zero, after
computation ofdW/dt on account of (27), i.e.,

(33) K = −θ−1Bα̇.
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This follows the scheme originally developed in [20] for materials withdiffusivedissi-
pative processes described by means of internal variables of state.

We let the reader check that eqns. (31) and (32) are then replaced by the follow-
ing equations:

(34)
dP
dt

− diνRb̃ = f th + f̃ intr ,
d(Sθ)

dt
+ ∇R.Q̃ = hth + h̃intr ,

and

(35) 8 = h̃intr − S̃.∇Rθ ≥ 0, h̃intr := Ãα̇

where we have introduced the new definitions

(36) Ã ≡:= −δW̄
δα

:= −
(

∂W̄

∂α
− ∇R.

∂W̄

∂(∇Rα)

)

= A − ∇R.B,

S̃ := θ−1Q̃, Q̃ = Q − Bα̇

and

(37) b̃ = −(L1R + T.F − B.(∇Rα)
T ), f̃intr := Ã (∇Rα)

T .

The two thermodynamical approaches just illustrated are tobe compared to the recent
constructive comments of Ireman and Nguyen Quoc-Son [21]. Here we additionally
show that alteration in the entropy flux definition goes alongwith a parallel alteration in
the expression of the Eshelby stress tensor, thus reinforcing the space-like complemen-
tarity of eqn. (34). More on this with the possible interpretation ofα as an additional
degree of freedom when it is equipped with its own inertia in arecent work [22].

5. Conclusion

The above-reported formal developments had for main purpose to show that, guided by
an admissible form of the energy conservation, we are naturally led to the construction
of the corresponding canonical equation of conservation for the material momentum,
with no specific information on the functional dependence ofthe free energy. This
obviously accommodates a large spectrum of dissipative behaviors, in particular when
we adopt the thermodynamics of internal variables to formulate complex irreversible
behaviors. This generality is encapsulated in the general expression (27). For instance,
in finite-strain elastoplasticity, we would select only theelastic deformation “gradient”
Fe instead of the fullF = Fe.Fp and the set of internal variablesα can be built up of
the plastic deformation gradientFp itself and a setβ of hardening variables, yielding a
sufficiently general framework.

The resulting canonical equations of conservation of material momentum and
energy are those to be exploited to determine the driving forces on defects in materially
homogeneous or inhomogeneous materials, including appropriate generalizations of
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theJ integral of fracture and the driving force on shock waves of different types (true
shock waves and phase-transition fronts). To do this one canfollow the line taken in
a paper by Dascalu and Maugin [23] for cracks and the author [3], [9] for singularity
surfaces.

What we finally learn from the above analysis is to make a clear distinction
between various concepts of field theory applied to continuum mechanics. These con-
cepts are those of (i) field equations, (ii) balance laws, (iii) conservation laws, and (iv)
strict conservation laws. The first type are those equationswhich govern the fields, the
latter being understood in the sense of field theory, i.e., selected form the start. This
procedure is particularly well defined in the Lagrangian-Hamiltonian variational ap-
proach. The second type relates to a scrupulous examinationof what makes a basic
physical quantity (which is not necessarily a basic field) vary in time and space on ac-
count of prescribed external actions in the bulk and at the surface of a body. The result
of this generally is a partial differential equation exhibiting a time derivative, a diver-
gence term, and source terms. A conservation law in the present setting is generated
by a variation in the describing parameters of the fields. This is related to an invariance
requirement. A strict conservation law involves no source terms and is typically written
as a four-dimensional space-time divergence. The four types of equations have been
illustrated in this paper on the case of continuum mechanics. In some problems such
as in the theory of exactly integrable systems in soliton theory, the number of balance
equations is usually small, the (scalar) components of the field equations may usually
be few, and the conservation laws may be infinite in number! (see, e.g., [24]). The
relationship between some of the members of this infinite series and the conservation
equations addressed in the present paper has been examined by the author in the context
of the wave mechanics of solids (see, e.g., [25]).
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ANALYTICAL SOLUTIONS AND UNSTEADY PROCESSES

GOVERNED BY NON-LINEAR NON-INTEGRABLE

EQUATIONS

Abstract. The benefit of finding particular exact and asymptotic solutions of non-integrable
non-linear partial differential equations is considered.It is shown how explicit analytical
solutions predict important features of the waves behavior even outside their formal applica-
bility. In particular, an arbitrary initial pulse splits ina numerical solution into the train of
localized waves each described by the analytical travelling wave solution. This happens both
for the bell-shaped and kink-shaped localized waves. Also numerical simulations demon-
strate an incident wave amplification/attenuation to a stable wave with the amplitude and
velocity defined by the relationships obtained via an asymptotic solution. Physically reason-
able equations are used to illustrate above mentioned statements.

1. Introduction

It would be nice to obtain an analytical solution of a governing non-linear equation.
Most of the mathematical work in the realm of non-linear phenomena refers to inte-
grable equations and their exact solutions. In this case rather general methods may
be employed to obtain general solutions, see, e.g., [1, 2, 3]. Unfortunately, most of
non-linear equations are non-integrable, and only particular solutions may be found.

Of special interest are the solutions that keep their shape on propagation. One
of them is a bell-shaped solitary wave, see Fig. 1(a), that arises thanks to a balance be-
tween nonlinearity and dispersion. Another one is a shock wave or a kink-shaped wave,
see Fig. 1(b), that usually appears due to a balance between nonlinearity and dissipa-
tion. One can find a lot of papers where particular exact solutions of these kinds are
obtained. However, most of them do not consider an application of the solutions to the
real physical problems. Indeed, exact travelling wave solutions of non-integrable equa-
tions are obtained as a rule. Hence, they require specific initial conditions. Moreover,
some solutions do not contain free parameters, and special relationships between the
equation coefficients are needed for their existence. Asymptotic solutions of non-linear
equations are not travelling wave ones without fail. However, they usually describe a
particular process, e.g., evolution of a single solitary wave [1]. Real physical problem
requires a more general solution, in particular, evolutionof an initial pulse of arbitrary
shape. Usually such a problem may be solved only numerically. That is why people
prefer to deal with numerical simulations. However, a solution of a non-linear equation
is very sensitive to the values of the equation coefficients and to the initial conditions;
this may be missed in a numerical modelling. Also numerical results may happen to be
unusual, and its justification is needed. So, a natural question arises: may one employ
particular analytical solutions to predict a behavior in the general problem when only
numerical solution may be obtained? May the relationships between the coefficients
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Figure 1: Various profiles of travelling wave solutions: a) bell-shaped solitary wave; b)
kink-shaped wave; c) oscillatory vanishing solitary wave ;d) ”fat” solitary wave.

of the equation obtained via analytical solutions describethe conditions when one or
another stable profile of permanent shape is realized in numerics?

An attempt is done in this paper to answer these questions. Since the size of the
paper does not allow to study the whole problem, the presentation is designed using
some instructive examples that illustrate main ideas. First, the employment of exact
solutions is considered. Usually exact solutions of nonlinear non-integrable partial dif-
ferential equations are obtained using various direct methods. Here the attention is paid
to one of them- the method of an ansatz. It looks the most efficient for non-integrable
equations and rather simple in use. More information and useful references regarding
direct methods may be found in [1, 2, 3, 4, 5]. Some exact solutions are presented
to illustrate the power of the ansatz method. Then it is shownhow the solutions ob-
tained may help to understand some results of numerical simulations. Next section is
devoted to the employment of asymptotic solutions in the same manner. The procedure
used for finding asymptotic solutions is familiar [1, 5], hence it is not explained here in
details. Instead, again some examples are considered wherethe asymptotic solutions
describe important numerical results. The evolution of thebell-shaped solitary wave
is studied on the basis of one seismic waves model. Then the attention is paid to the
use of the kink-shaped solutions of the Burgers equation modified by weak dispersion
and higher-order nonlinearity. It is important to mention that the moderate values of
the small parameter responsible for the weak dissipation ordispersion may be formally
used in numerics. It is found that even in this case the features of the asymptotic solu-
tions remain valid.
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2. Exact solutions

2.1. Direct methods for finding exact solutions

Sometimes, a solution may be obtained using a transformation of variables that allows
us to reduce our equation to an equation whose solution is known. Another method,
method of ansatz, allows us to reduce our differential equation to algebraic equations
for the parameters of the solution.

Important steps in employment of these methods are:

• Reduce non-linear partial differential equation (PDE) to an ordinary differen-
tial equation (ODE) considering only travelling wave solutions (or self-similar);

• Reduce the obtained ODE to an ODE whose solution is already known, by
means of a suitable transformation of variables or

• Reduce ODE to coupled algebraic equations for the parameters of the solution
by means of a suitable ansatz.

As an example, consider the double-dispersive equation (DDE) [4, 5],

(1) ut t − α1 uxx − α2 (u2)xx − α3 uxxtt + α4 uxxxx = 0.

that describes, in particular, longitudinal strain waves evolution in an elastic rod. Its
travelling wave solution depending on the phase variableθ = x − V t is obtained
from the ODE reduction of Eq.(1),

(2) (V2 − α1)uθθ − α2 (u
2)θθ + (α4 − α3 V2)uθθθθ = 0

Using substitution of variables,

u = 6(α3V2 − α4)

α2
v(θ)+ V2 − α1

2α2
,

equation (2) is transformed to the Weierstrass equation,

(3) {v′(ζ )}2 = 4v3 − g2v − g3, g2 = (V2 − α1)
2

12(α4 − α3V2)

whose known exact solution is expressed through the elliptic Weierstrass function,
v = ℘(θ, g2, g3).

In order to transform the problem of finding exact solutions of ODE to the
problem of finding solutions of algebraic equations, it would be nice to express an
ansatz through the functions whose derivatives are expressed only through these func-
tions. That is why various elliptic functions are widely used to obtain periodic so-
lutions. One possibility is to use the set of the Weierstrassfunction ℘ and its first
derivative℘θ . Indeed, we have℘θθ = 6℘2 − 0.5g2, ℘θθθ = 12℘θ etc. An
important limit of the Weierstrass function corresponds tothe choiceg2 = 8k4/3,
g3 = −8k6/27. In this case℘ = k2/3 − k2Sech2(kθ) that accounts for a bell-
shaped solitary wave solution. Also the solitary wave solutions are obtained directly
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using the hyperbolic functions for an ansatz. One can find a lot of papers where the
hyperbolic tangent is employed. Indeed, we have Tanh(kθ)θ = k(1 − Tanh(kθ)2),
Sech2(kθ)θ = 2(Tanh3(kθ)− Tanh(kθ)) etc. A more complicated ansatz through the
Ricatti functions was suggested in [6]. These functions satisfy the Riccati equations,

(4) σ
′ = −στ, τ ′ = −τ2 − Aσ + 1.

Certainly any derivatives of the Riccati functionsσ andτ are expressed through them-
selves. Eqs. (4) possess the exact solution that allows us toexpress the Riccati func-
tions through the hyperbolic functions,

(5) σ = 1

A + C1Cosh(kθ)+ C2Sinh(kθ)
, τ = C2Cosh(kθ)+ C1Sinh(kθ)

A + C1Cosh(kθ)+ C2Sinh(kθ)

A power series in Tanh or/and in Sech is often used to construct the ansatz. Use
of the power series in the Riccati functions allows us to lookfor a solution as a rational
function of the hyperbolic functions while power series approximation in terms of the
hyperbolic functions appears as a special case. Indeed, when C1 = A, C2 = 0, we
get from Eq. (5)

σ = 1

2A
Sech2(

kθ

2
), τ = Tanh(

kθ

2
).

However, substitution of an infinite power series into the equation yields a com-
plicated algebra to find the coefficients of the series. Further simplification may be
done using the pole analysis of the solution to define the functional form of the ansatz.
One can see that the critical points of the elliptic and hyperbolic functions are poles (in
the complex plane). Let us consider the DDE (1), for example,and assume that its so-
lution possesses a pole of ordern, u ∼ θ−n. Thenu2

θθ ∼ θ−2n−2, uθθθθ ∼ θ−n−4.
Comparing higher order derivative (dispersion) and nonlinear terms one findsn = 2.
This provides a balance between nonlinearity and dispersion required for existence of
localized bell-shaped solitary wave solution. Then the ansatz may be suggested,

(6) u = B Sech2(kθ).

Substituting (6) into (2) integrated two times one obtains

Sech2(kθ)B[α1 − V2 − 4k2(α4 − α3V2)]+

Sech4(kθ)B[α2 B + 6k2(α4 − α3V2)] = 0

Equating to zero combinations at each power of Sech, one obtainsalgebraicequations
for B, andk whose solutions are

(7) B = 3(V2 − α1)

2α2
, k2 = α1 − V2

4(α4 − α3V2)
.

There may be more than one higher-order derivative or non-linear terms in the
equation. Consider the Korteweg-de Vries-Burgers (KdVB) equation,

(8) ut + u2
x + b uxx + s uxxx = 0,
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In this case we getn = 2 comparing nonlinearity and dispersionuxxx andn = 1
comparing nonlinearity and dissipationuxx. We have to satisfy both possibilities in
order to provide a common balance between nonlinearity, dispersion and dissipation.
Hence the solution should contain both the second and the first order poles. The suit-
able ansatz is

(9) u = B Sech2(kθ)+ F Tanh(kθ)+ C.

It allows us to find the well-known kink-shaped solution of the KdVB equation with
parameters defined by

B = 6k2 s, F = 6b k

5
, C = ±3b2

25s
, k = ± b

10s
, V = ±6b2

25s
.

More examples regarding the method of ansatz may be found in Refs. [3, 4, 5].

2.2. Exact bell-shaped solitary wave solutions

Following the procedure described before one can find exact solutions to many non-
integrable equations. However, most of them are single travelling wave solutions that
require special initial conditions. In particular, the form of the initial condition for the
exact solitary wave solution of the DDE is defined by Eq. (6), (7) with t = 0 in θ .
What happens when an initial condition differs from the ”Sech” shape? Certainly, it is
unlikely to describewholeevolution of an arbitrary input analytically. But if we find
such a solution numerically, what is the reason for finding special exact travelling wave
solution?

Numerical simulation of the DDE has been performed in [5]. Itwas found that
for α2 > 0 rather arbitrary initial pulse with positive amplitude splits into a train
of solitary waves with different amplitudes while negativeinput is dispersed, and no
travelling localized wave appears. The higher is the amplitude of the wave, the larger
is its velocity. The distance between the localized waves increases in time, hence the
waves interaction becomes weaker and weaker. Hence each wave may be considered
as a single travelling wave and comparison with the exact solution may be done. It
is found that each localized wave generated by positive input evolves according to the
exact travelling wave solution (6), (7). Moreover, realityof the parameters in (7) gives
rise to the conclusion that only positive amplitude solitary waves may exist forα2 > 0.
Similarly, negative amplitude solitary waves arise from a negative amplitude input for
α2 < 0 Hence exact solution allows us to choose suitable sign of the input amplitude
to provide generation of localized stable solitary waves and to describe each solitary
wave thus confirming numerical results.

Sometimes numerical simulations yield rather unusual results. Recently, the
Gardner equation,

(10) ut + a u2
x + cu3

x + buxxx = 0,

was studied in [8]. It was found that a train of solitary wavesappears from certain initial
pulse. However, there is an input that produces rather wide solitary wave followed by
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a sequence of usual bell-shaped waves. These results may be explained using known
solitary wave solution of the Gardner equation [7]:

(11) us = 3b k2

a(B1Cosh(kθ)+ 1)
,

where

B1 =
√

1 + 9bck2

2a2
, θ = x − bk2 t.

The solution has an interesting feature for negativec: tendency to the extensive or ”fat”
shape atk →

√

−2a2/(9b c). The amplitude of the wave tends to the limiting value
equal to−2a/3c, while the width growths without limits, see Fig.1(d). Likein the case
of the DDE, numerical simulations are successfully checkedby the exact solution (11)
both to account for the usual bell-shaped waves and the ”fat”solitary wave [8].

Even more interesting unusual profiles appear studying numerically the equa-
tion

(12) ut + 2b u ux + 3c u2ux + r u uxxx + s ux uxx + d u3x + f u5x = 0,

which is often called the extended KdV equation [5, 9]. A review of its exact bell-
shaped solitary wave solutions may be found in [3, 5]. An appearance of the solitary
waves described by the exact solutions from rather arbitrary input was studied numer-
ically in [5, 9]. It was found that sometimes there is a good agreement with the exact
solutions, namely, in the shape of generated solitary wavesand in dependence of their
parameters upon the equation coefficients. Also the conditions required for existence
of exact solutions were realized in numerics. At the same time, the localized waves
were obtained that differ from those described by the analytical solutions. In particu-
lar, an oscillatory vanishing at infinity, see Fig.1(c), anda multi-humps localized waves
have been discovered in [5, 9] as well as the ”fat” solitary wave [9]. One has to note
that all known exact solutions of Eq.(12) either do not contain free parameters or exist
under special relationships between the equation coefficients. So the absence of free
parameters or additional restrictions do not allow us to useexact solutions so efficiently
as in the case of the DDE whose solution (6) contains the free parameterV and in the
case of the Gardner equation having free parameterk.

2.3. Kink-shaped solutions

The Burgers equation

(13) ut + (u2)x + buxx = 0,

is widely used in many physical problems [10, 11]. In particular, it possesses the well-
known shock-wave solution (or a kink),

(14) u0 = b p Tanh(p(x − V t))+ V/2.
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Figure 2: Evolution of the exact solution of the Burgers equation for b < 0.

where p and V are free parameters to be defined by the boundary conditions for x.
The Burgers equation is integrable, and a more general solution of the Cauchy problem
may be obtained. However, integrability fails for most of its generalizations caused by
an inclusion of the additional terms like dispersion, higher-order non-linearity etc.

Figure 2 shows stable movement of the kink wave of permanent shape (14).
This is because the shock-wave solution of the Burgers equation arises as a result of a
balance between nonlinearity and dissipation.

The same simulations for the KDVB equation (8) yield a profiledifferent from
that of the exact solution since it contains oscillations onthe upper or on the lower parts
of the step depending upon the sign ofs, see Fig.3. A possible reason of it lies in the
fact that the exact solution of the KDVB equation (9) does notcontain free parameters
in contrast to the two-parameter solution of the Burgers equation (14).

In order to check this idea let us add an additional non-linear term to the KdVB
equation,

(15) ut + u2
x + b uxx + s uxxx + q u2

xx = 0.

Its exact kink-shaped solution

(16) u0 = s p

q
Tanh(p(x − Wt))+ W/2,

contains is a free parameterp and fixed velocity

W = s − b q

q2
.
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Figure 3: Evolution of the initial Burgers shock wave forb < 0, s > 0.

The solution (16) never coincides with the Burgers kink solution (14) since the equality
in the amplitudes,b = s/q yields W = 0 for the velocity in the solution (16).
Now numerical simulation of Eq.(16) demonstrate almost identical to the Burgers kink
evolution for certain values ofs andq. However, the amplitude in the solution (16) does
not depend on the value ofb. It means that the wave shown in Fig.2 might propagate
for positive values ofb, and this prediction of the exact solution is realized also.There
exist domains of the values ofs andq where initial Burgers kink evolves like in the case
of the KdVB equation with oscillations on the profile, see Fig.3. Another scenario is
the smoothness of the initial profile shown in Fig.4. It is very likely that oscillations are
caused by dispersion while higher-order nonlinearity is responsible for the smoothness,
and observed deviations in the kink shape are caused by breach of the balance between
dispersion and higher-order nonlinearity. So, addition ofthe higher-order nonlinearity
allows us to provide two balancesseparately, between nonlinearity and dissipation and
between higher-order nonlinearity and dispersion. In contrast to it, the solution (9) of
the KdVB equation should satisfy two balancessimultaneouslythat fixes its parameters
and prevents the appearance of the solution from an arbitrary input.

3. Asymptotic solutions

The balance between nonlinearity and dispersion may be destroyed due to the influence
of dissipation and/or accumulation. When this influence is weak, asymptotic solutions
may be obtained to account for the bell-shaped solitary waveevolution. Introduction
of the fast (usually phase) and slow (time or space) variables allows us to study more
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Figure 4: Smoothness of the initial Burgers shock wave.

general processes than those described by exact travellingwave solutions. In particular,
asymptotic solutions may account for an amplification or attenuation of a wave. The
ODE describing the solitary wave amplitude variation may predict the case when an
increase or a decrease in the amplitude happens to some finitevalue defined by the
values of the coefficients of the original PDE. We call this process the solitary wave
selection. Selection frombelowis accompanied by the growth of the initial amplitude
while selection fromaboveis provided by the decrease of the initial solitary wave
amplitude.

Similarly the case may be studied when the balance between nonlinearity and
dissipation is destroyed by the presence of dispersion and higher-order nonlinearities.
In this case, the asymptotic solution allows us to account for a propagation of a kink
with stationary deviations on its front and to establish a connection between the shape
of these deviations and the structure of the perturbation terms in the equation. Both
for the bell-shaped and kink-shaped waves the features of the asymptotic solutions are
realized in numerics even when the small parameter characterizing weak perturbations
achieves moderate values.

3.1. Evolution of the bell-shaped waves

The asymptotic solution allows us to describe seismic wavesselection on the basis of
the model equation obtained in [12]:

(17) ut + u ux + d uxxx = −ε
(

a1u − a2u2 + a3u3
)

,
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a1, a2, a3 are positive constants andε is a small parameter. One can see that Eq.(17) is
nothing but the disturbed KdV equation that possesses exactbell-shaped solitary wave
solution in the absence of disturbances. In the general case, Eq. (17) may describe an
appearance of microseisms. Following [5, 13] assume the function u depends upon a
fast variableξ and a slow timeT , such as

ξx = 1, ξt = −V(T), T = ε t.

The asymptotic solution is sought of the form

(18) u(ξ, T) = u0(ξ, T)+ ε u1(ξ, T)+ ...

The bell-shaped solitary wave solution of the KdV equation arises in the leading order,

(19) u0 = 12d k(T)2Sech2 (k(T) ξ)

However, now its parameters depend upon the slow timeT . Next order solution yields
the equation for the wave amplitudeQ = 12d k(T)2 of the form [5, 13]:

(20) QT = − 4

105
Q(24a3Q2 − 28a2Q + 35a1).

The behavior of the solitary wave amplitude,Q, depends on the value ofQ0 ≡
Q(T = 0). Indeed,Q will diverge atQ0 < Q1, whenQ1 < Q0 < Q2, Q will grow
up to Q2, while if Q0 > Q2, it will decrease byQ2. HereQ1 < Q2 are the roots of
equation 24a3Q2 − 28a2Q + 35a1 = 0. Hence parameters of the solitary wave tends
to the finite values prescribed by the equation coefficientsai , and theselectionof the
solitary wave takes place.

Despite this solution requires special initial condition,numerical simulations
[5, 13] confirm the behavior of the wave predicted by the theory even when an initial
condition is arbitrary or in the presence of solitary waves interaction. In the former
case, the situation is close to that of the DDE when the input is transformed into the
train of solitary waves each separately being described by the asymptotic solution. In
the latter case, it is found that the interaction does not prevent solitary waves amplifi-
cation, vanishing or selection that are realized for the coefficients of Eq.(17) prescribed
by the asymptotic solution. It is important that the amplitudes of the resulting localized
waves in the numerical solution are equal to those of the selected waves obtained from
the asymptotic solution. Moreover, the value of the amplitude of the selected solitary
wave remain valid whenε is not small.

Similarly the amplification, attenuation and selection of the bell-shaped nonlin-
ear waves may be studied using an equation

vt t − vxx − εα1( v
2)xx − γα2 vxxt + δ(α3 vxxxx − α4 vxxtt)+

(21) γ δ(α5 vxxxxt + α6 vxxttt)+ γ 2α7vxxtt = 0,

that appears to account for the strain wavesv(x, t) in a microstructured medium [5,
14]. Whenδ = O(ε), γ << 1, this equation is nothing but the DDE disturbed by
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Figure 5: Influence of the weak dispersion on the Burgers kinkfor b < 0: a)s > 0;
b) s < 0.

dissipative/active terms. Its asymptotic solution is obtained in [5, 14] similar to the
solution of Eq. (17).

The same procedure may be applied to study the bell-shaped localized wave
evolution in the two-dimensional case. An example of the two-dimensional selection
of the lump of the Kadomtsev-Petviashvili equation may be found in [15].

3.2. Evolution of the kink-shaped waves

Let us consider the KdVB equation

(22) ut + (u2)x + buxx = −δsuxxx,

whenδ is a small parameter. The asymptotic solution accounting for the perturbation
of the kink-shaped wave is sought in the form

u(θ) = u0(θ)+ δu1(θ)+ ...

whereθ = x − V t, andu1 → 0 for θ → ±∞. Substituting this series into Eq.(22) we
obtain in the leading order an ordinary differential equation (ODE)

(−V u0 + u2
0 + b u0,θ )θ = 0,

which is satisfied by the travelling wave solution of the Burgers equation (14). In the
next order an inhomogeneous linear ODE appears for the function u1,

(−V u1 + 2u0u1 + b u1,θ )θ = −su0,θθθ ,

whose solution is
u1 = 2p2s Sech2(pθ)Log(Cosh(p θ)).

Figure 5 demonstrates affect of the weak dispersion on the shape of the Burgers shock
wave,u = u0 + δu1. Here and in the following the unperturbed solution is shownby
dashed line. One can note non-symmetric influence on the upper and lower parts of the
wave. For positives, a ”hat” appears at the upper part while the lower one is subjected
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Figure 6: Evolution of the initial Burgers shock wave fors > 0 and smallδ.

to a smoothness of the wave front. The mirror profile appears for negative values ofs.
We see that all deviations are concentrated around the wave front.

Our travelling wave asymptotic solution requires special initial condition in the
form of already perturbed kink,u(t = 0). However, one can check numerically that
the Burgers unperturbed kink transforms into another one whose shapes agrees well
with that described by our solution, see Fig. 6. One can see that perturbations of the
shock wave profile are stable, they are located near the wave front and do not evolve
far from it. Moreover, even forδ = O(1), the initial Burgers kink wave still evolves
into the profile predicted by the asymptotic solution which is not valid in this case in a
strict mathematical sense (δ is not small). Typical evolution is shown in Fig.3, where
this new wave continues to propagate with one and same velocity and the shape. Hence
asymptotic solution explains what was not covered by the exact solution (9).

Next equation to be considered is similar to the extension ofthe KdVB equation
(15),

(23) ut + (u2)x + buxx = −δ(suxxx + qu2
xx).

Its asymptotic solution is

u = u0 + δp2Sech2(pθ)
[

2(s − b q)Log(Cosh(p θ))− V q θ
]

An influence of the higher-order quadratic nonlinearity is seen in Fig. 7 fors = 0. A
smoothness is achieved forq < 0 the same happens for the numerical solution shown
in Fig. 4. Again the asymptotic solution reveals the features was not discovered by the
exact solution (16).

Similarly one can study an influence of the higher-order dissipationuxxxx and
other linear and non-linear perturbations on the kink solution of the Burgers equation.
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Figure 7: Influence of the weak higher-order nonlinearity onthe Burgers kink for
b < 0: a)q > 0; b)q < 0.

4. Conclusions

One can see that exact travelling solitary wave solutions with free parameters arise in
a more general numerical solution, they may predict important features of an arbitrary
input evolution. However, exact solutions with fixed parameters are not necessary real-
ized in computations. In the case when exact solution with free parameters is unlikely
to find, an asymptotic solution depending upon the fast and the slow variables may help
to understand the behavior of the wave, in particular, amplification and selection of the
bell-shaped solitary wave.

Even more special,travelling waveasymptotic solutions predict deviations in
the profile of the Burgers shock wave that are realized in numerical simulations of
unsteady processes. Like for the bell-shaped waves, these predictions remain valid
even outside the formal applicability of the asymptotic solution at moderate values of
the small parameter.

Both the exact and asymptotic solutions provide us with the relationships be-
tween the coefficients of the equation required to achieve one or another kind of the
wave evolution. One can use this information in advance for adesign of numerical
study, it does not allow us to miss one or another scenario of the waves localization.
On the other hand, analytical solutions may be used as a testing point for a design of
numerical scheme. To sum up, they deserve time required for their finding.
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THERMOELASTIC STRESS ANALYSIS FOR LINEAR

THERMOELASTIC BODIES

Abstract. The thermoelastic stress analysis for linear thermoelastic bodies is developed as
a mathematical support to the infra-red radiometric method (SPATE) applied to structures
under cyclic loading conditions.

1. Introduction

The use of high-tech materials for structural applicationshas shown in recent years that
the study of mechanical behaviour of such materials is ofteninadequate. Studies on
the interaction between mechanical and thermal effects in solid bodies have therefore
received considerable attention.

Thermographic stress analysis has been adopted as a particularly convenient
mean of experimental stress analysis based on the thermoelastic effect. The thermoe-
lastic stress analysis tecnique is based upon the use of the SPATE (Stress Pattern Anal-
ysis by the measurement of Thermal Emission) equipment for the radiometric monitor-
ing of the temperature changes induced by cyclic loading in the elastic range [1], [2],
[9], [10], [11].

In [8] a theoretical analysis of the thermoelastic effect has been developed in
order to provide a mathematical model as a support to SPATE and the results of tests
carried out on concrete and mortar [1] are reported as experimental evidences of the
theory described.

The aim of this paper is to generalize the results obtained in[8] : the intrinsic
formulation of the linear theory of thermoelasticity is adopted [3] and the linear rela-
tions given in [8] between the variation of temperature and the variation of stress are
obtained after suitable assumptions.

In Section 2, within the linear theory of elasticity for an isotropic continuum
body, we deduce from the First Law of Thermodynamics a differential equation which
gives a relation between stress and temperature.

In Section 3 we integrate this equation and we remark that if the principal stress
components are two and three the solution depends on the firstand the second invariant
of the stress while the second invariant vanishes in the caseof one component of the
principal stress.

In Section 4 we show that if we linearize the equations obtained in Section 3,
we get, at least for the case of dimension one, the same results of [9].

∗This work was supported by the Italian M.U.R.S.T. research project “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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In Section 5 we apply the results obtained in Section 3 to the SPATE model
considering sinusoidal principal components of stress.

2. The mathematical equations

Let us consider a continuum body as defined in [4] and let us assume the bounded
regular region of space occupied by the body in a fixed reference configuration be
closed with respect to mass transfer and open with respect toenergy transfer. The body
can be considered a thermodynamical closed system.

According to [3] we recall that the local form of the First Lawof Thermody-
namics for the system considered is:

(1) ρė = S · Ḟ − divq + ρr,

wheree is the internal energy per unit mass,q is the heat flux vector per unit surface
area and unit time,r is the heat supply per unit mass and unit time,ρ is the mass density,
S and F are respectively the first Piola-Kirchhoff stress tensor and the deformation
gradient.

If η is the entropy per unit mass andϑ the absolute temperature, we introduce
the free energy per unit mass [3]

(2) ψ = e− ηϑ.

If we assume that the body is elastic, the Second Law of Thermodynamics im-
plies the following restrictions:

(3) ψ = ψ̂(F, ϑ), S = Ŝ(F, ϑ), η = η̂(F, ϑ)

(4) Ŝ(F, ϑ) = ρ∂Fψ̂(F, ϑ), η̂(F, ϑ) = −∂ϑ ψ̂(F, ϑ).

If we differentiate (2) and (3)1 with respect to time, by means of (4), from (1)
we get:

(5) ρηϑ̇ = −divq + ρr.

Defining the finite strain tensorD by [3], [4]:

(6) D = 1

2

(

FT F − 1
)

,

where1 is the unit tensor, the restrictions (3) and (4) are substituted by:

(7) ψ = ψ̃(D, ϑ), S = FS̃(D, ϑ), η = η̃(D, ϑ)

and

(8) S̃(D, ϑ) = ρ∂Fψ̃(D, ϑ), η̃(D, ϑ) = −∂ϑ ψ̃(D, ϑ),
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as a consequence of material frame indifference [3], [4].

By differentiating (8)2 with respect to time and introducing the specific heat at
constant deformation [3]:

(9) c = ϑ∂ϑ η̃(D, ϑ),

from (5) we get:

(10) −ϑ∂ϑ S̃ · Ḋ + ρcϑ̇ = −divq + ρr.

Now we assume that the gradient displacement∇u and its rate of change∇u̇
are small and that the body is subjected to small increment oftemperature.

Nevertheless the stress tensorS̃depends on the temperature through the material
functions which appear in the constitutive equations.

Therefore, introducing the infinitesimal strain tensor [3], [4]:

(11) E = 1

2

(

∇u + ∇uT
)

,

if

(12) F = 1 + ∇u,

from (6) we get:

(13) D = E + 1

2
∇uT∇u.

If we assume that the body is isotropic, then the constitutive equation is [3]:

(14) S = 2µE + [λtrE − β(ϑ − ϑ0)]1.

In the above equationλ andµ are the Laḿe moduli, whileβ is related to the
coefficient of linear thermal expansionα by [11]:

(15) β = (3λ+ 2µ)α

From the experimental data we deduce thatλ andµ are functions of the tem-
peratureϑ ([6], [11]).

Moreover from (13) and the assumption of linear approximation for the gradient
displacement we can obtain:

(16) Ḋ ∼= Ė

Therefore by substituting (14) in (10), with the use of (16) we get the following
equation:

(17) ρcϑ̇ = −divq + ρr + ϑ {2∂ϑµE + [∂ϑλtrE − ∂ϑβ(ϑ − ϑ0)− β]1} Ė
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Let us assume that the thermodynamical process is adiabaticwithout internal
heat sources, that is [3]:

(18) −divq + ρr = 0

From experimental results and from the analysis of the orderof magnitude we
can deduce that∂ϑβ(ϑ − ϑ0) is negligible with respect toβ, while ∂ϑµE and∂ϑλtrE
are relevant, therefore, with the use of (18), equation (17)can be written as:

(19) ρc
ϑ̇

ϑ
= 2∂ϑµE · Ė + [∂ϑλtrE − β] trĖ.

Equation (19) represents the thermoelastic coupling between strain and temperature.

Let us now deduce from (19) a similar expression in terms of stress. Because of
the isotropy of the material we can assume thatµ > 0, 3λ+ 2µ > 0 [5]. Therefore the
constitutive equation (14) can be inverted in

(20) E = 1

2µ
S− λ

2µ(3λ+ 2µ)
trS 1+ α(ϑ − ϑ0)1.

Let us now recall the well known relations between the Lamé moduliλ, µ and
the Poisson’s ratioν and the Young’s modulusE:

(21)



















λ = Eν

(1 + ν)(1 − 2ν)

µ = E

2(1 + ν)

By means of (21) we get∂ϑλ and∂ϑµ in terms of∂ϑE and∂ϑν, then with the
use of (20) and the assumptions that both(ϑ−ϑ0) and its time-derivative are negligible,
from (19) we deduce:

(22)
ϑ̇

ϑ
= −

[

α

ρc
− Ŵ1trS

]

trṠ+ Ŵ2S · Ṡ

where

(23)























Ŵ1 = 1

ρc

[

− ν

E2
∂ϑE + 1

E
∂ϑν

]

Ŵ2 = 1

ρc

[

1 + ν

E2
∂ϑE − 1

E
∂ϑν

]

Let us now set:

(24)















σ = I1 = trS
σ̇ = trṠ
σi = (S)i
σ̇i = (Ṡ)i

with i = 1,2,3
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where(S)i are the principal stresses with respect to an orthonormal basis (ei ). If we

recall thatS · Ṡ =
3
∑

i=1

(S)i (Ṡ)i , with the use of the (24), the relation (22) becomes:

(25)
ϑ̇

ϑ
= −

[

α

ρc
− Ŵ1σ

]

σ̇ + Ŵ2

3
∑

i=1

σi σ̇i

3. Stress-temperature relations

In order to get from (25) a relation between temperature and stress we must suppose
that:

i) the mass densityρ is constant during the thermodynamical process;

ii) the partial derivatives with respect to temperatureϑ of the Poisson’s ratioν and
of the Young’s modulusE are constant with respect to time and temperature.

It follows therefore thatŴ1 andŴ2 given by (23) are constant. If we introduce
the “thermoelastic constant”

(26) k = α

ρc

and we denote withτ the second invariant of the stress tensor:

(27) τ = I2 = σ1σ2 + σ1σ3 + σ2σ3,

under the assumption thatϑ = ϑ0, σ = σ0 andτ = τ0 for t = 0, the integration of
(25) with respect to time gives:

(28) ln
ϑ

ϑ0
= −k(σ − σ0)+ 1

2
(Ŵ1 + Ŵ2)

(

σ 2 − σ 2
0

)

− Ŵ2(τ − τ0).

It is interesting to remark that in the two-dimensional casethat is when the
principal stresses are:

(29) σ1 6= 0, σ2 6= 0, σ3 = 0

equation (28) still holds assumingi = 1,2 in (24) and replacing (27) by

τ = I2 = σ1σ2,

while in the one-dimensional case in which

(30) σ1 6= 0, σ2 = σ3 = 0 andσ1 = σ

the second invariant of the stress tensor vanishes and (28) is replaced by:

(31) ln
ϑ

ϑ0
= −k(σ − σ0)+ 1

2
(Ŵ1 + Ŵ2)

(

σ 2 − σ 2
0

)

.

Let us remark that the solution of (25) shows a non linear dependence on the
first invariant of the stress in all the cases (see (28) and (31)) while only in two and
three-dimensional cases a linear dependence on the second invariant appears.
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4. The linear case

In classical theory [2], [7] from the generalised heat conduction equation, by assuming
that straining occurs adiabatically with no conduction of heat and with no heat supply,
the Kelvin formula has been deduced:

(32)
1ϑ

ϑ0
= −k1σ

with k thermoelastic constant defined in (26).

We shall prove that, from (28) and (31) of the previous section, after suitable
linearizations, it is possible to get linear relations between the variation of temperature
and the variation of stress which are comparable to (32).

Infact, let us define the average values of the principal stresses, of the stress
invariants and of the temperature by the following linear relations:

(33)

σim = 1

2
(σi + σi 0), σi 0 = σi for t = 0, i = 1,2,3

σm = 1

2
(σ + σ0), τm = 1

2
(τ + τ0), ϑm = 1

2
(ϑ + ϑ0)

We assume moreover that the principal stresses, the stress invariants and the
temperature are related to their variations by:

(34)
σi = σim +1σi , i = 1,2,3

σ = σm +1σ, τ = τm +1τ, ϑ = ϑm +1ϑ

From (33) with the use of (34) we get:

(35)
σi − σi 0 = 21σi i = 1,2,3

σ − σ0 = 21σ, τ − τ0 = 21τ, ϑ − ϑ0 = 21ϑ

By using the relations (33), (34) and (35) and linearizing the logarithm, as usu-
ally done if|21ϑ/ϑ0| < 1:

(36) ln

(

ϑ

ϑ0

)

= ln

(

1 + 21ϑ

ϑ0

)

≈ 21ϑ

ϑ0

we obtain from (29) and (31) the linearized equations:

(37)

1ϑ

ϑ0
= [−k + (Ŵ1 + Ŵ2) σm]1σ − Ŵ21τ

1ϑ

ϑ0
= [−k + (Ŵ1 + Ŵ2)σm]1σ
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Let us remark that (37)2 can be compared with the Kelvin’s formula but the
coefficient of1σ is the thermoelastic constant plus a coefficient depending on σm

and on an elasticity modulus [9]. We remark also that (37)1 shows a dependence on
the variation of the first and the second invariant of the stress and on the Poisson and
Young moduli .

5. SPATE model results

The SPATE model allows us to obtain the temperature variation related to the elastic
deformation by spectroscopical experimental analysis.

The fundamental ipothesis of the SPATE model are the following:

1) the deformation must be adiabatic,

2) there must not exist other heat sources.

Now the relations obtained in Section 3 will be applied to SPATE model, analysing a
cyclic loading [11] in which the temperature variation(ϑ − ϑ0) is small compared to
the initial temperatureϑ0. We assume that the principal stress are:

(38) σi = σim + ai sin(ωt), i = 1,2,3

whereσim, with i = 1,2,3, denote the average stresses andai , with i = 1,2,3, are
arbitrary constants. Let us set:

(39) σm =
3
∑

i=1

σim, a =
3
∑

i=1

ai

The equation (28), with the use of (36), (37)1, (38) and (39), becomes:

(40)
21ϑ

ϑ0
= Asin(ωt)+ B[1 − cos(2ωt)]

where

(41)



























A = −ka + Ŵ1σma + Ŵ2

3
∑

i=1

σimai

B = 1

4
(Ŵ1 + Ŵ2)a2 − 1

2
Ŵ2(a1a2 + a1a3 + a2a3)

Formulas (40), (41) are the generalization of the results given in [11] and include the
particular cases of dimension 1 and 2. Infact, ifi = 1,2 formulas (38)-(41) are valid
replacing (41)2 by

B = 1

4
(Ŵ1 + Ŵ2)a2 − 1

2
Ŵ2a1a2;
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if i = 1 then

(42) σ1 = σ = σm + a sin(ωt), σm = σ1m, a = a1,

(39) and (40) still hold, with:

(43)











A = −ka + (Ŵ1 + Ŵ2) σma

B = 1

4
(Ŵ1 + Ŵ2)a2

Let us remark that, in the case of dimension 1, from (43) and (23) we deduce that
the elastic behaviour of the material is described by the Young modulus, while in the
cases of dimension 2 and 3 both Poisson and Young modulus are involved, as it turns
out from (41) and (23). Moreover in case of dimension 1 it is possible to analyze the
relation between the temperature variation and the stress variation. According to [1],
let us replace in (42), (43) the constant a by the variation ofstress1σ and let us assume
in (43)1 that the thermoelastic constantk be relevant with respect to the other terms.
Then from (40) we observe that according to the first addendumof the right member
there is a loss of temperature for an increase of stress and anincrease of temperature
for a reduction of stress. The second addendum of the right member of (40) is relevant
only for large variation of stress. In [1] a detailed discussion of tests performed on
various specimens is reported and the conclusions are in agreement with our remarks.

6. Conclusions

The assumption of the dependence of the Poisson and Young moduli of elasticity from
the temperatureϑ allows us to get a relation between the temperature variation and the
stress variation. This relation presents coefficients which are not only the thermoelastic
constant, as in the classical Kelvin’s formula, but depend on the average stress, on the
first and second invariant of the stress and on the modulus of elasticity. This result is
supported by experimental results [11]. The application ofour results to the SPATE
model gives a solution which is the superposition of two cyclic functions with a phase
difference ofπ/2 one with respect to the other. The relation between the tempera-
ture variation and the stress variation obtained can be compared with the experimental
results given in [1].
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NONLINEAR WAVES IN PLANE COSSERAT SOLIDS

Abstract. As it is well known, the propagation of nonlinear strain waves may be governed
by a nonlinear dispersive-dissipative equation. In this work we study models in one or two
dimensions. The final purpose is to apply the analytic technique developed by Samsonov [7]
to dynamic equations arising in the theory of microstructuredsolids. To do this we search to
reduce the 2 or 4 Euler-Lagrange equations of the model to 1 or 2p.d.e. each depending only
on one field variable.

1. Introduction

Nonlinear wave dynamics in dissipative solids has been discussed in two recent books
by A. Porubov [6] and A. Samsonov [7], with the same goal of obtaining and exploiting
physically and mathematically meaningful results relatedto the propagation of solitary
waves mostly in complex wave guides. In particular in [7] it is presented a method
of reduction of the dynamic p.d.e. to a second order Lie equation, hence to the Abel
equation, but only for the 1D-case.

Now, we want to apply the same passages even for the 2D-case. This is possible
if, after, we have reduced the 4 Lagrange equations to a couple of partial differential
equations each depending only on one field variable. This reduction is the main purpose
of this work, and it is used in one-dimensional or bi-dimensional models.

We want to remark that in our model the non linearity is due to astrain en-
ergy density which depends on the deformation variables, both macro and micro, the
dissipation is introduced trough a linear combination of strain velocities.

2. Method of reduction

The aim of this work is to find the travelling wave solution (TW)of the initial p.d.e., that
depends only upon the phase variablez = ±V t and describes the wave propagation
along the x-axis in timet and velocityV . The process used can be resumed in two
principal steps. In the first we reduce the Euler-Lagrange equations to one or two p.d.e.
equations each depending only on one field variable. To do this we choose a suitable
form of the potential energy W, we calculate the Euler-Lagrange equations (two for
the one-dimensional case and four for the two-dimensional case) and then we reduce
this system to the wanted partial differential equation using the method of the “slaving
principle”, (for a general treatment of this principle, see, for instance, [4]).

The second step requirs to distinguish the one- from the two-dimensional case.
For the one-dimensional case we introduce the phase variable z = x + V t, where V is

∗This work was supported by the Italian M.U.R.S.T. research project “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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the wave’s velocity. We consider the vector

r = r(x, t) = u(x, t)i

for the macrostructure and the vector

d = d(x, t) = ϕ(x, t)i

for the microstructure. So we transform the function u(x,t)in a function u(z) that
depends only on the variable z:

u(x, t) = u(z)

For the two-dimensional case, the procedure is a bit more difficult. To simplify it, we
suppose that the components of vectorsr and of vectord depend only on one direction,
such that we have:

r(x, y, t) = u(x, t)i + v(y, t)j

and
d(x, y, t) = ϕ(x, t)i + χ(y, t)j .

Hence two phase variablesz andz′

z = x ± V t, z′ = y ± V ′t

and two new functionsu(z) andv(z′) are introduced:

u(x, t) = u(z), v(y, t) = v(z′)

Thereafter, we reduce the starting partial diferential equation to an ordinary differential
equation using the funtionu(z) for the one-dimensional case andu(z) andv(z′) for the
two-dimensional case. Then we reduce this ordinary differential equation to a second
order Lie equation, we pass to an Abel equation, a first order equation, and, last step,
we reduce, if possible, the Abel equation to the Weierstrassequation and we integrate
it to find the solution called “soliton”.

3. One-dimensional case

We consider now an example of model in one dimension. We deal with the vectorr
andd defined above and we choose the following form for the kineticenergyK and for
the strain energyW:

K = 1

2

[

ρu̇2 + I ϕ̇2
]

W = 1

2
αu2

x + 1

6
βu3

x − Aϕux + 1

2
Bϕ2 + 1

2
Cϕ2

x + 1

6
Dϕ3

x

With the above mentioned formulas, the Euler-Lagrange equations which in general
read
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





















ρut t =
(

∂W

∂ux

)

x
− ∂W

∂u

I ϕt t =
(

∂W

∂ϕx

)

x
− ∂W

∂ϕ

become

(1)







ρut t = αuxx + βuxuxx − Aϕx

I ϕt t = Cϕxx + Dϕxϕxx + Aux − Bϕ

To reduce this system to one partial differential equation depending only on the
funtion u, we introduce the dimensionless form of the variablesu, x, t and two new
parameters:

U = u

U0
, X = x

L
, T = c0t

L
, δ =

(

l

L

)2

, ǫ =
(

U0

L

)

whereL is the wave’s length,l is the size of the microstructure. We suppose
also thatI , C andD verify the following equalities

I = ρl 2I ∗, C = l 2C∗, D = l 2D∗

Now we use the slaving principle. It means thatϕ is determined in terms ofUx

using a power expansion:ϕ = ϕ0 + δϕ1 + δ2ϕ2 + .... The dimensionless form for
equation (1)2 yiels this expression forϕ:

(2) ϕ = ǫ
A

B
UX + δ

B

(

C∗ϕX X − α I ∗ϕT T + D∗

L
ϕXϕX X

)

We evaluateϕ0 andϕ1 in terms ofU and its partial derivatives obtaining:

ϕ0 = ǫ
A

B
UX ϕ1 = ǫ

A

B2

(

C∗UX X X − α I ∗UXT T + D∗ Aǫ

BL
UX XUX X X

)

Inserting them into the governing equation (1)2 in its dimensionless form, we get finally
the single differential equation forU :

UT T = UX X + βǫ

α

(

U
2

X

)

X
− A2

αB
UX X − δA2

αB2
C∗UX X X X+

+ δA2

αB2

[

α I ∗UX XT T − D∗ Aǫ

BL

(

UX XUX X X

)

X

]
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To apply the second step in a simple way we supposeD = 0 in the previous
model. In this case the microstrutured part of the strain energy depends only onϕ and
ϕ2

x, andW is written as

W = 1

2
αu2

x + 1

6
βu3

x − Aϕux + 1

2
Bϕ2 + 1

2
Cϕ2

x

Let us introduce three positive dimensionless parameters:

• ǫ := V << 1 accounting for the elastic strain;

• δ := l 2

L2
<< 1 characterizing the ratio between the microstructure sizeand the

wave lenght;

• γ := d

l
characterizing the influence of the dissipation.

We assume the dissipation is weak and we introduce the functionsν = ux. Then the
governing nonlinear p.d.e. for the macrostrainν(x, t) is:

νt t −νxx−ǫα1(ν
2)xx−γα2νxxt+δ(α3νxxxx−α4νxxtt)+γ δ(α5νxxxxt+α6νxxttt) = 0

whereα1, ..., α6 are given in [2]. Whenǫ = O(δ) nonlinearity and dispersion are in
balance. If in additionγ = 0 we have the non-dissipative case governed by the double
dispersive equation:

νt t − νxx − ǫ
[

α1(ν
2)xx − α3νxxxx + α4νxxtt

]

= 0

Using the functionν(z) = ν(x, t) and the boundary conditions
∂kν

∂zk
→ 0 for |z| → ∞,

k = 0,1,2,3 we obtain the Abel equation:

v′ = (V2 − 1)

ǫα3 − ǫV2α4
νv3 − ǫα1

ǫα3 − ǫV2α4
ν2v3

and the Weierstrass equation.

(ν′)2 = (V2 − 1)

ǫα3 − ǫV2α4
ν2 − 2ǫα1

ǫα3 − ǫV2α4

ν3

3

The exact bell-shaped travelling solitary wave solution arises as a result of balance
between nonlinear and dispersive terms and it is given by:

ν(z) = 3(V2 − 1)

2ǫα1
sech2



2

√

ǫα3 − ǫV2α4

V2 − 1
(z − c)




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4. 2D-case

Now we try to do the same thing for a two-dimensional model. Inthis case, we suppose
that the vectorsr andd are written in this form

r = r(x, y, t) = u(x, t)i + v(y, t)j

d = d(x, y, t) = ϕ(x, t)i + χ(y, t)j

We can see that in this caseu andϕ depend only on the directioni andv andχ depend
on the directionj . We choose the strain energy in terms ofux, vy, ϕ, χ, ϕx, χy as
follows:

W = 1

2
Au2

x + 1

2
Bv2

y + 1

2
Cϕ2 + 1

2
Dχ2 + 1

2
Eϕ2

x + 1

2
Fχ2

y + 1

2
Gu2

xϕ + 1

2
Hv2

yχ

Then the Euler-Lagrange equations become:

(3)



















































ρut t = Auxx + Guxxϕ + Guxϕx

ρvt t = Bvyy + Hvyyχ + Hvyχy

I ϕt t = Eϕxx − Cϕ − 1

2
Gu2

x

I χt t = Fχyy − Dχ − 1

2
Hv2

y

To obtain two partial differential equations, each one depending only on one field vari-
able, we couple equation (3)1 to (3)3 and equation (3)2 to (3)4.

As in the one-dimensional case, we introduce the dimensionless variables and
parameters

U = u

U0
, V = v

V0
, X = x

L
, Y = y

L
, T = c0t

L
, δ =

(

l

L

)2

, ǫ =
(

U0

L

)

and we also suppose thatI , E andF verify the following equalities:

I = ρl 2I ∗, E = l 2E∗, F = l 2F∗

Now we must determineϕ in terms ofUx andχ in terms ofVy. We expand them in
powers ofδ and we use the slaving principle in the same way as in the 1D-case. We
get (from eqs. (3)):
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

















UT T = UX X + G

A

(

UX Xϕ + UXϕX

)

ϕ = −Gǫ2

2C
U2

X
+ δ

C
(E∗ϕX X − AI ∗ϕT T )



















VT T = VY Y + H

B

(

VY Yχ + VYχY

)

χ = − Hǫ2

2D
V2

Y
+ δ

D
(F∗χY Y − BI ∗χT T )

We proceed as in the one-dimensional case, and finally we find acouple of partial
differential equation depending on the functionU and V . In conclusion we have
trasformed the starting system of four Euler-Lagrange equations in the functionsu,
v, ϕ, χ in this system of two equations in the functionsU andV :























































UT T = UX X − ǫ2G2

AC

{

1

2
U2

X
UX X + δ

C
UX X

[

E∗ (UX UX X

)

X
− AI ∗ (UX UXT

)

T

]

−U2
X X

+ δ

C
UX

[

E∗ (UXUX X

)

X X
− AI ∗ (UXUXT

)

XT

]

}

VT T = VY Y − ǫ2H2

BD

{

1

2
V2

Y
UY Y + δ

D
VY Y

[

F∗ (VY VY Y

)

Y
− BI ∗ (VY VY T

)

T

]

−V2
Y Y

+ δ

D
VY

[

F∗ (VY VY Y

)

Y Y
− BI ∗ (VY VY T

)

Y T

]

}

Now we consider another two-dimensional model. The vectorsu andd are the
same as in the previous case while the strain energyW is slightly different: we add
cubic terms for the derivatives ofu, v, ϕ, χ :

W =1

2
A(u2

x + v2
y)+ 1

2
B(ϕ2 + χ2)+ 1

2
C(ϕ2

x + χ2
y)

+1

2
D(u2

xϕ + v2
yχ)+ 1

6
E(u3

x + v3
y)+ 1

6
F(ϕ3

x + χ3
y)

So, we obtain the Lagrange equations in this forms:

(4)



















































ρut t = Auxx + Duxxϕ + Duxϕx + Euxuxx

ρvt t = Avyy + Dvyyχ + Dvyχy + Evyvyy

I ϕt t = Cϕxx + Fϕxϕxx − Bϕ − 1

2
Du2

x

I χt t = Cχyy + Fχyχyy − Bχ − 1

2
Dv2

y
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The procedure is the same as in the previous case, and so, we omit all the passages. We
can prove that, from equations (4)1 and (4)3 we obtain the following system











UT T = UX X + D
A

(

UX Xϕ + UXϕX

)

+ Eǫ
A UXUX X

ϕ = − Dǫ2

2B U2
X

+ δ
B

(

C∗ϕX X − AI ∗ϕT T + F∗
L ϕXϕX X

)

and from equation (4)2 and (4)4 the system











VT T = VY Y + D
A

(

VY Yχ + VYχY

)

+ Eǫ
A VY VY Y

χ = − Dǫ2

2B V2
Y

+ δ
B

(

C∗χY Y − AI ∗χT T + F∗
L χYχY Y

)

Now we writeϕ andχ in terms ofU andV using the slaving principle. Our finally
result is the reduction of the starting system (4) to this system:







































































































































UT T =UX X

(

1− 3D2ǫ2

2AB
U2

X

)

− δD2ǫ2

AB2

{

C∗
[

UX X

(

U2
XT

+ (U2
XT
)

X

)

+(U2
X
UXT T)X

]

−AI ∗
[

UX X(UX + UXT )T + UX (UX X + UX XT)T

]

− Dǫ2F∗

BL

[

UX UX X(2U3
X X

U3
X
UX X X X)+ UX X X(U

3
X
UX X)X

]

}

+ ǫE

A
UX UX X

VT T =VY Y

(

1− 3D2ǫ2

2AB
V2

Y

)

− δD2ǫ2

AB2

{

C∗
[

VY Y

(

V2
Y T

+ (V2
Y T
)

Y

)

+(V2
Y

UY T T)Y

]

−AI ∗
[

VY Y(VY + VY T)T + VY (VY Y + VY Y T)T

]

− Dǫ2F∗

BL

[

VY VY Y(2V3
Y Y

V3
Y

VY Y Y Y)+ VY Y Y(V
3

Y
VY Y)Y

]

}

+ ǫE

A
VY VY Y

5. Conclusions

At this stage we have obtained the Abel equation, following the method presented by
Samsonov [7], only for a one-dimensional model. The pourpose for future researches
is to extend this work also to a two-dimensional model. In particular we want to reduce,
if it is possible, the four Euler-Lagrange equations of a two-dimensional model, to a
system of two Abel equations. Thereafter, our aim is to obtain a soliton solution.
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P. Cermelli - T. Armano∗

FINE CROSS-SLIP OF A SCREW DISLOCATION IN

ANTI-PLANE SHEAR

Abstract. In this work we present the main results of Armano and Cermelli [1] regarding
the motion of a screw dislocation in a crystalline solid. It iswell known that dislocations
can only move along a finite number of crystallographic directions: in two dimensions, the
resulting trajectories are piecewise rectilinear paths. However, in special situations such as
near an attractor, dislocations are forced to move along curved paths: we characterize this
class of motions as fine mixtures of crystallographic motions, using the notion of generalized
curves due to L. C. Young, and explicitly compute the parametrized measure associated to a
sequence of polygonals.

1. Introduction

We present here the results of Armano and Cermelli [1], and refer to that paper for the
proofs of the main theorems and numerical simulations.

We study the motion of a rectilinear screw dislocation in a cylindrical crystalline
elastic body, in the framework developed by Cermelli and Gurtin [2]. Peculiar to crys-
talline materials is the fact that dislocations are restricted to move along special planes,
the so-called glide or slip planes.

In elastic materials, a state of stress induces a force on a dislocation, the so-
called Peach-K̈ohler force (cf. [6], [3] and [2]), and the defect moves parallel to the
direction on which the projection of this force is maximal (maximum dissipation cri-
terion). Now, the motion of a straight dislocation can be described in terms of the
intersection point of the dislocation line with an horizontal plane. The motion of the
representative point can be viewed in turn as the solution ofa plane dynamical system,
obtained by projecting the Peach-Köhler force on the crystallographic directions. Since
the number of such directions in a crystal is finite, it follows that the trajectories are
piecewise rectilinear paths.

The general properties of this dynamical system have been studied in [2]: we
focus here on a special situation, namely the motion near a curveSwhich is an attractor.
The dislocation is attracted byS: when it reaches it, it cannot escape (since it would
violate the maximum dissipation criterion), but it cannot move alongS either, since it
would, in general, violate the crystallographic restriction on the direction of motion.
Hence, it seems natural to approximate the motion of the defect onSby a sequence of
polygonals, which are piecewise parallel to the crystallographic directions but do not
necessarily satisfy the maximum dissipation criterion at all times.

The main result of [1] is the proof that, if such a sequence is amaximizing

∗This work was supported by the Italian M.U.R.S.T. research project “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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sequence for the dissipation, it converges to a unique smooth motion onS, which we
refer to asfine cross slip∗.

To study the limits of maximizing sequences we use the notionof generalized
curves due to L.C. Young, in their formulation known as parametrized (or Young) mea-
sures in the literature on the calculus of variations. Youngmeasures provide a richer
characterization of finely oscillating sequences than their weak limits: we compute the
Young measure associated to sequences of polygonals maximizing the dissipation, and
characterize fine cross slip as a fine mixture of crystallographic rectilinear motions,
with weights depending on the direction of the attractorS.

2. Statement of the problem

We shortly summarize in this section the model discussed in [2]. Consider an elas-
tic cylinder B = � × R, with � a domain inR

2. A screw Volterra dislocationis a
singular displacement field onB which can be constructed by the following ideal pro-
cedure [8]: first cut the cylinderB along a vertical half-plane5, then translate one of
the faces along the cut by a constant vertical vectorb, glue back the faces along5,
and let the cylinder relax to an elastic equilibrium state (Figure 2). The resulting dis-
placement field, measured with respect to the initial configuration, is smooth inB \5,
but is discontinuous across5 with constant jumpb. The vertical line∂5 is called the
dislocation line, andb is theBurgers vector. In order to avoid dealing with discontin-
uous displacement fields, it can be shown that a screw dislocation can be characterized
equivalently in terms of a deformation field onB\∂5, singular at∂5. In simple cases,
the deformation field generated by a dislocation is independent of the vertical coordi-
nate, and the problem admits a two-dimensional formulationin terms of planar fields
on�, which are singular atz = ∂5 ∩� (cf. [2]).

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

z

Π

x
x
x
x
x
x b

Ω

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

Figure 1: A screw Volterra dislocation in the cylinder�× R.

Precisely, let� be a domain inR2, with cartesian coordinates(x, y) and asso-
ciated basis(e1, e2), and letx denote a generic point in�.

∗Fine cross slip of screw dislocations has indeed been experimentally observed (cf., e.g., [5] and [4]).
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Fix a defect positionz ∈ � and consider the solutionu : � → R of the
Neumann problem

(1)

{

1u = 0 in �
∂u

∂n
= −g0 · n + σ0 on ∂�,

with 1 the Laplace operator,∂/∂n the normal time-derivative on∂�, n the outward
unit normal to∂� and

(2) g0 = g0(x, z) = b

2π |x − z|2 e3 × (x − z),

whereb is a real constant,e3 = e1 × e2 is a unit vector inR3 orthogonal to the plane
containing� (so thate3 × (·) represents a counterclockwiseπ/2-rotation in the�-
plane), andσ0 = σ0(x) is an assigned function on∂�. The fieldu represents the
regular part of the displacement due to the dislocation atz, while g0 is related to the
singular part of the deformation.

For each fixedz ∈ �, the Neumann problem (1) has a unique smooth solution
(modulo an additive constant), which we henceforth denote by

(3) u = u(x, z), x ∈ �.

Consider now the smooth vector field in�

(4) J(x) = b∇u(x, x)× e3, x ∈ �,

where∇u(x, x) = ∇xu(x, z)|z=x is the gradient of the solutionu(x, z) of (1), for a
dislocation located atz = x. The vector fieldJ(x) only depends on the domain�
and the boundary conditionsσ0, and may be identified to the Peach-Köhler force on a
dislocation located atx ∈ �.

Let now t denote time and[0, T] be the time interval of interest. In order to
study the behavior of a defect under the action of the force (4), consider a dislocation
motion

z : [0, T] → �.

Introducing the (finite) set ofcrystallographic directions

C = {s1, . . . , sn},

with si fixed unit vectors inR2, the basic physical idea is that a dislocation can only
move parallel to a crystallographic directions ∈ C on which the projection of the force
J · s is maximal, provided this is greater than a given thresholdF , the so-called Peierls
force (Figure 2). Therefore, we write the basic equation governing the motion of a
dislocation as

(5) ż = V (z), z ∈ �,
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where the superposed dot denotes time-derivative, and where the vector fieldV is de-
fined by

(6) V (x) :=
{

0 if J(x) · s ≤ F ∀s ∈ C,

M (J(x) · e(x)− F) e(x) otherwise,

where M > 0 and F ≥ 0 are given constants, ande(x) ∈ C is determined by the
maximum dissipation criterion, i.e., the requirement that the projection ofJ(x) on
e(x) be maximal, i.e.,

(7) J(x) · e(x) = max
s∈C, J ·s>F

{J(x) · s}.

It may happen that at some pointx the maximization problem (7) admits two
solutions: at such points the fielde(x), and by consequence alsoV (x), is multi-valued.
Indeed,J · s can have at most two maxima inC for J given. Assume in fact that there
exist three distinct unit vectorss1, s2, s3 such thatJ · s1 = J · s2 = J · s3; then the
endpoints ofs1, s2 ands3 belong to the same straight line perpendicular toJ , which is
impossible since thesi are unit vectors.

F
s1

s2

jF

V = M( j .s1 - F ) s1 

Figure 2: The definition of the vector fieldV .

A detailed analysis of the phase portrait of the dynamical system (5) has been
performed in [2], where it is shown that� splits into (i) regions whereV (x) = 0,
and the dislocation is stationary; (ii)single slip regions R(s) (open regions inR2), in
which e(x) = s is constant; and (iii) curvesS on whiche(x) is multi-valued. We are
interested here in the motion on a so-calledattracting curve(Figure 3).

s1

s2

s4
s3

S

R(s1)

R(s2)

Figure 3: Attracting curve separating two single-slip regions

The motion of a dislocation, solution of (5), can be described as follows: con-
sider, to fix ideas, a dislocation initially atz0 ∈ R(s1): the evolution equation (5)
reduces to

ż = V1(z)s1,
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with V1(z) = M(J(z) · s1 − F). Hence, the dislocation moves along a straight line
parallel tos1, until it reaches some point at the boundary ofR(s1). If this point belongs
to an attractor, then the solution of (5) cannot be prolongedinto the adjacent region,
since it would violate the maximum dissipation criterion (Figure 3).

Hence, the problem seems to be ill-posed in the presence of anattractor. In order
to remove the ambiguity, it was suggested in [2] that, when the dislocation reaches an
attractorS, it continues to move along it according to an evolution equation of the form

(8) ż = w(z), with w(z) = V12(z)(α1(z)s1 + α2(z)s2),

whereV12(z) := J(z) · s1 − F = J(z) · s2 − F , andα1, α2 are determined by solving

(9)

{

α1 + α2 = 1,
α1(s1 − s2) · (∇ J)s1 + α2(s1 − s2) · (∇ J)s2 = 0.

The resulting smooth motion of the dislocation, referred toasfine cross slip, is therefore
non-crystallographic, since it does not occur along a crystallographic directions ∈ C.
The purpose of the next section is to show that motion by fine cross slip (8) can be
realized as the limit of a sequence of infinitesimal cross slips across the attracting curve
S, when this sequence maximizes the dissipation.

Remark. Letting

(10) V̂(e, J) :=
{

0, if J · e ≤ F,
M(J · e − F), if J · e > F,

we may rewrite condition (7) as the requirement that motion may only occur in those
directionse which maximize thedissipationV̂(s, J)J · s, i.e.,

(11) V̂(e, J) J · e = max
s∈C

[

V̂(s, J) J ·s
]

,

provided thatV̂(e, J) > 0. The equivalence of (7) and (11) follows from the fact that
the functionM(ξ − F)ξ is monotonic with respect toξ for ξ > F .

3. Convergence of sequences of admissible polygonals

We study here the motion of a dislocation near an attracting curve, in order to justify
(8) rigorously. From now on we regard the vector fieldJ(x) in (4) as assigned and
smooth in�.

Let z : [0, T] → � be a given motion (not necessarily a solution of (5), (7), and
(6)); writing

(12) ż(t) = V(t)e(t), t ∈ [0, T],

with V = | ż| ande = ż/| ż|, we say thatz is admissibleif

(i) z is continuous and piecewise smooth;
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(ii) the direction of motione(t) belongs to the set of crystallographic directions, and
the velocity is a function of the projection of the force on that direction†, i.e.,

(13) e(t) ∈ C and V(t) = V̂(e(t), J(z(t))),

at each timet , with V̂ given by (10).

An admissible motion does not necessarily satisfy the maximum dissipation
criterion at all times, but its trajectory is a polygonal with edges parallel to the crystal-
lographic directions.

We assume from now on that the set of crystallographic directions is

(14) C = {s1, s2,−s1,−s2},

with s1 = e1 and s2 = e2, and consider two adjacent single slip regionsR(s1) and
R(s2), connected open sets in� such that‡ R(s1) ∩ R(s2) 6= ∅ andR(s1) ∩ ∂� = ∅,
R(s2) ∩ ∂� = ∅. By definition, inR(s1) andR(s2) the dissipation is maximal in the
directionss1 ands2 respectively, i.e.,

(15)

{

x ∈ R(s1) ⇒ s1 · J(x) > s · J(x), ∀s ∈ C, s 6= s1,

x ∈ R(s2) ⇒ s2 · J(x) > s · J(x), ∀s ∈ C, s 6= s2.

Also, we assume that

J(x)·s1 > F and J(x)·s2 > F, x ∈ R(s1) ∪ R(s2).

3.1. The definition of attracting curve

Let

(16) G(x) := (s2 − s1) · J(x),

and assume thatJ is such that∇G 6= 0 in�. By definition,

G(x) < 0 for x ∈ R(s1) and G(x) > 0 for x ∈ R(s2),

so that, by the smoothness ofG and the fact that∇G 6= 0, the set

S = R(s1) ∩ R(s2),

is a smooth curve on whichG vanishes, i.e.,

(17) G(x) = 0 ⇔ s1 · J(x) = s2 · J(x) x ∈ S.

We say thatS is anattracting curvefor R(s1) andR(s2) if it satisfies the supplementary
conditions

(18) s1 · ∇G(x) > 0, s2 · ∇G(x) < 0, x ∈ S.

†For z continuous and piecewise smooth,ż is the right time-derivative at corner points.
‡HereR̄ denotes the closure of a setR ⊂ �.
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Hence, at an attracting curve,s1 points into R(s2) and s2 points into R(s1) (Figure
3(c)). We denote by

τ = e3 × ∇G

|∇G|
the tangent vector toS.

No admissible motion satisfying the maximum dissipation criterion can origi-
nate from an attracting curveS. To see this, consider an admissible motion alongs1
with initial point on S: by (18)1, G is increasing alongs1, and the dislocation moves
into the single slip regionR(s2). But in this region the dissipation is maximal in the
directions2, and the maximum dissipation criterion is violated.

Moreover, writing

(19)

{

V1(x) := V̂(s1, J(x)) = M(s1 · J(x)− F),
V2(x) := V̂(s2, J(x)) = M(s2 · J(x)− F),

for the admissible velocities in the directionss1 and s2 at x ∈ R(s1) ∪ R(s2), (17)
implies thatV1(x) = V2(x) at x ∈ S, and we denote by

V(x) := V1(x) = V2(x) x ∈ S,

their common value. However, since atS the maximum dissipation criterion admits
both s1 ands2 as solutions, the vector fieldV in (6) is multi-valued, with values

V(x)s1 and V(x)s2,

at x ∈ S.

3.2. Admissible polygonals

We study here admissible motions which do not necessarily satisfy the maximum dis-
sipation criterion. By definition, an admissible motionz is a time-parametrized polyg-
onal with sides parallel to the crystallographic directions si ∈ C and piecewise continu-
ous speed given by (10). Restricting to admissible motions occurring inR(s1)∪ R(s2)

along the directionss1 ands2 only, we have

either ż(t) = V1(z(t))s1 or ż(t) = V2(z(t))s2,

for t ∈ [0, T], whereV1 andV2 are given by (19) anḋz(t) is the right time-derivative
at the corner points of the polygonal.

3.3. Sequences of admissible motions

The natural notion of convergence for sequences of admissible motions should account
for the fact that the velocity oscillates between the directions s1 and s2, and there-
fore may only converge in average. Weak-∗ convergence inW1,∞((0, T),R2) serves
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the purpose. We say that a sequence of Lipschitz motions{zk} converges weak-∗ in
W1,∞((0, T),R2) if there exists a motionξ ∈ W1,∞((0, T),R2) such thatzk → ξ

strongly inC([0, T],R2), andżk
∗
⇀ ξ̇ in L∞([0, T],R2), i.e.,

sup
t∈[0,T]

|zk(t)− ξ(t)| → 0,

and
∫

I
( żk(t)− ξ̇(t))dt → 0,

for any intervalI ⊂ [0, T], provided{ żk(t)} is bounded inL∞([0, T],R2).

The weak limit of a sequence of admissible motions is characterized by the
Young measure associated to the sequence of the velocities (cf. Young [9] or, for a more
recent approach, [7]). Consider in fact a sequence{wk : (0, T) → R

2} converging
weak-∗ to w0 in L∞((0, T),R2). A Young measure associated with the sequence{wk}
is a family of probability measures{νt }t∈(0,T) in R

2 which depends measurably ont ,
i.e., for anyϕ : R

2 → R continuous, the function

(20) ϕ̄(t) =
∫

R2
ϕ(w)dνt (w)

is measurable. The fundamental property ofνt is that, for any continuousϕ, the se-
quence{ϕ(wk)} converges (modulo a subsequence) weak-∗ to ϕ̄ in L∞((0, T),R2),
i.e.,

(21)
∫

I
ϕ(wk(t))dt →

∫

I

∫

R2
ϕ(w)dνt (w)dt,

for any intervalI ⊂ [0, T], provided that{ϕ(wk)} is bounded inL∞([0, T],R).

THEOREM1. Consider a sequence of admissible polygonalszk(t) in the direc-
tions s1 and s2, converging weak-∗ in W1,∞((0, T),R2) as k → +∞ to a Lipschitz
motionξ ∈ W1,∞((0, T),R2). Then the Young measure associated to the sequence
{ żk} is

(22) νt = λ1(t) δV1(ξ(t))s1 + λ2(t) δV2(ξ(t))s2, t ∈ (0, T),
with δV1(ξ(t))s1 and δV2(ξ(t))s2 Dirac measures localized at V1(ξ(t))s1 and V2(ξ(t))s2
respectively, and

(23) λ1(t) = ξ̇(t) · s1

V1(ξ(t))
, λ2(t) = ξ̇(t) · s2

V2(ξ(t))
.

Notice that, since the velocity of the limit motion is

(24) ξ̇(t) = λ1(t)V1(ξ(t))s1 + λ2(t)V2(ξ(t))s2,

it follows that the weak limit of a sequence of admissible motions is not necessarily
admissible, but can be represented as a fine mixture of crystallographic motions in the
admissible directionss1 ands2.
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COROLLARY 1. Let S be an attracting curve separating two single slip regions
R(s1) and R(s2): any sequence of admissible polygonalszk(t) with directionss1 and
s2 such that

(25) dist(zk(t), S) → 0,

uniformly in t ∈ [0, T] as k → +∞, converges weak-∗ in W1,∞((0, T),R2) (and, in
particular, uniformly) to a smooth motionξ(t) on S with velocity

(26) ξ̇(t) = V(ξ(t))

τ (ξ(t)) · (s1 + s2)
τ (ξ(t)),

with τ the unit tangent vector to S and V(x) := V1(x) = V2(x) the speed evaluated at
x ∈ S (cf. (19)). Moreover, the Young measure associated to the sequence{ żk} is

(27) νt = λ1(ξ(t)) δV(ξ(t))s1 + λ2(ξ(t)) δV(ξ(t))s2,

with

(28) λ1(x) = τ (x) · s1

τ (x) · (s1 + s2)
, λ2(x) = τ (x) · s2

τ (x) · (s1 + s2)
,

for a.e. x ∈ S.

Notice that, even though each admissible motionzk(t) does not necessarily sat-
isfy the maximum dissipation criterion for allt ∈ [0, T], the sequencezk is a max-
imizing sequence for the dissipation, since the limit motion ξ satisfies the maximum
dissipation criterion (recall, though, that the limit motion is not admissible). To see
this, let J(x) := J(x) · s1 = J(x) · s2 andV(x) := V1(x) = V2(x) for x ∈ S (cf.
(17)): the maximum dissipation (among all admissible motions) atx ∈ S is (cf. (11)
and (15))

(29) max
s∈C

{V̂(s, J(x)) J(x) · s} = J(x)V(x),

while the dissipation relative to the limit motionξ(t) is

(30) J(ξ(t)) · ξ̇(t) = V(ξ(t))

τ (ξ(t)) · (s1 + s2)
J(ξ(t)) · τ (ξ(t)) = V(ξ(t))J(ξ(t)),

sinceJ = J(s1 + s2), and these expressions coincide atx = ξ(t).

Also, it is not difficult to prove that (26) coincides with (8). In fact, solving
system (8)2 and recalling (16), we obtain











α1 = (s2 − s1) · (∇ J)s2

(s2 − s1) · (∇ J)s2 − (s2 − s1) · (∇ J)s1
= ∇G · s2

∇G · s2 − ∇G · s1
,

α2 = −(s2 − s1) · (∇ J)s1

(s2 − s1) · (∇ J)s2 − (s2 − s1) · (∇ J)s1
= − ∇G · s1

∇G · s2 − ∇G · s1
,
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with G given by (16). Now, noting that∇G · s2 = ∇G · e3 × s1 = −e3 × ∇G · s1 =
−|∇G|τ · s1, and∇G · s1 = −∇G · e3 × s2 = e3 × ∇G · s2 = |∇G|τ · s2, we find

α1 = τ · s1

τ · s1 + τ · s2
, α2 = τ · s2

τ · s1 + τ · s2
,

which yields (26) recalling thatV12 coincides withV in our present notation.

3.4. Sequences of admissible polygonals maximizing the dissipation

In this section we show that every sequence of polygonals maximizing the dissipation
converges to the smooth motionξ on Sgiven by (26).

For x ∈ �, let VM (x) andeM (x) denote the speed and direction of motion se-
lected by the maximum dissipation criterion (11) among all admissible velocity fields,
i.e. such that

(31) VM (x)eM (x) · J(x) = max
s∈C

{

V̂(s, J(x)) s · J(x)
}

,

whereV̂ is given by (10). Notice that, even thougheM (x) is in general multi-valued
at S, the maximum dissipation (31) is single valued everywhere.Consider the function
D : �× R

2 → R defined by

(32) D(x,w) = J(x) · (VM (x)eM (x)− w) .

For a given motionz ∈ W1,∞((0, T),R2) the real functionD(z(t), ż(t)) belongs to
L∞((0, T),R), and measures the difference between the maximum possible dissipa-
tion and the actual dissipation at each time.

Fix z0 ∈ Sand consider the set of admissible curves originating fromz0:

A =
{

z : [0, T] → R
2 : z piecewise smooth, z(0) = z0 ∈ Sand

either ż(t) = V1(z(t))s1 or ż(t) = V2(z(t))s2, t ∈ [0, T]} ,

whereż denotes the right time-derivative at corner points of the polygonals.

By definition

(33) D(z(t), ż(t)) ≥ 0, ∀z ∈ A,∀t ∈ [0, T],

althoughD can be negative for some non admissible motion.

Consider now the functional associated toD,

(34) E(z) =
∫ T

0
D(z(t), ż(t))dt =

∫ T

0
J(z(t)) · (VM (z(t))eM (z(t))− ż(t)) dt,
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defined forz ∈ W1,∞((0, T),R2). By the discussion following (18), no admissible
motion satisfying the maximum dissipation criterion can originate fromS, so thatE is
strictly positive onA. Indeed, as we shall show in the next section,

(35) inf
z∈A

E(z) = 0,

and the infimum is not attained onA.

THEOREM 2. Any sequence of admissible polygonals{zk} ⊂ A minimizing E
(or, equivalently, maximizing the dissipation), i.e., such that

(36) lim
k→+∞

E(zk) = 0,

converges weak-∗ in W1,∞((0, T),R2) to the smooth motionξ(t) on S, whose velocity
is (26).

Theorem 2 is the main result of this paper.
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G. Indelicato∗

INEXTENSIBLE NETWORKS WITH BENDING AND

TWISTING EFFECTS

Abstract. Families of inextensible fibers forming a surface are considered. Each fiber sup-
ports a twisting couple proportional to the torsion of the fiber. The strain energy density is
written in an additive form, such that the contributions due to shearing, twisting and bending
effects are taken into account separately. The equilibriumequations, here obtained, are a
particular case of the ones obtained by Luo and Steigmann in [1].

1. Introduction

We are interested in the theory of inextensible networks, inparticular in the case in
which a set of inextensible fibers forms a surface with bending stiffness and in which
the twisting fiber effects are taken into account, such that we can model the static
behaviour of textile fabrics.

In 1986, Wang and Pipkin [5] formulated a theory of inextensible nets with
bending stiffness. The resulting continuum theory is a special form of finite-deforma-
tion plate theory in which each fiber has a bending couple proportional to its curvature.

In 2001, a theory of bending and twisting effects in three-dimensional deforma-
tion of an inextensible network is presented by Luo and Steigmann [1]. They derive
the Euler-Lagrange equations and boundary conditions by using the minimum-energy
principle. (A simplified version of these equations represents the equilibrium equations
obtained by Wang and Pipkin [5].)

The aim of this work consists of finding the equilibrium equations for a net of
inextensible fibers taking into account the twist and the bending of fibers. In section 2,
we give the constitutive hypotheses. In section 3, we obtaina set of equations where the
effect of the twist of the fibers on the deformation of the sheet is exibited. We assume
that each fiber in the fabric supports a twisting couple, since we are looking at some
expressions which take into account the twist of fibers we assume that each couple is
proportional to the torsion of the fiber. In section 4, we focus on the energy of strain
for sets of fibers that undergo shear and twist deformations.

2. Inextensible fibers, constitutive hypotheses

We consider two families of inextensible fibers forming a surface that initially lies in a
region B of the (x,y)-plane. We assume that initially the first family of fibers,d1, stays
parallel to the x axis and that the second family of fibers,d2, stays parallel to the y

∗This work was supported by the Italian M.U.R.S.T. research project ”Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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axis. We suppose that fibers are continuously distributed sothat every line x=constant
or y=constant in B is regarded as a fiber. Each fiber is permanently identified by its
initial coordinate, x or y. We suppose that cross-sections of each fiber remain plane,
suffer no strain, and are normal to the fiber in every configuration (Bernoulli-Euler
hypotheses). We denote the position in the current configuration with r(x,y), namely
the point of the fibers that initially lies in the position (x,y) moves to the placer(x,y)
in three-dimensional space.

Let

d1 = ∂ r
∂x

= r,x d2 = ∂ r
∂y

= r,y

be the tangential vectors to the curve occupied by a fiber y=constant and x=constant,
respectively, when the sheet is deformed. We postulate thatno part of any fiber can
change its length in any admissible deformation so the vectors d1 and d2 are unit
tangent vectors [3]. Since x and y are the arc length of thed1 andd2 lines, Frenet’s
formulas allow us to attach to each fiber the normal vectorn and the binormal vector
b, so for the fiberd1 the triad{d1, n1, b1} satisfies:

(1)































∂d1

∂x
= k1n1

∂n1

∂x
= −k1d1 + τ1b1

∂b1

∂x
= −τ1n1

with k1 the curvature of thed1 line andτ1 torsion of thed1 line. Similarly, for the fiber
d2 we introduce the Frenet triad{d2, n2, b2}.

The sets of fibersd1 andd2 are related through the angle of shearγ , that is
defined by the relation

sinγ = d1 · d2

this angle describes the local distortion of the sheet. Moreover, we introduce the normal
vector:

N = d1 × d2

|d1 × d2|
.

3. Twisting effects

Wang and Pipkin in [5] assume that each fiber in the fabric supports a bending couple
proportional to the curvature of the fiber:

c1 = Ŵd1 × d1,x c2 = Ŵd2 × d2,y .

The stiffness coefficientŴ is the same positive constant for all the fibers. They find the
following equations:

(2)











t1 = T1d1 + Sd2 − Ŵd1,xx

t2 = T2d2 + Sd1 − Ŵd2,yy

t1,x + t2,y + f = 0
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with: T1 andT2 fiber tensions (reactions to the constraints of fiber inextensibility), S
the shearing stress,t1 the force per unit length exerted across ad2-line x=x0 by the
material on the side x>x0 on the material on the other side (x≤x0), t2 the force per unit
length exerted across ad1-line y=y0 by the material on the side y>y0 on the material
on the other side (y≤y0).
The equations (2) include the effects of couple-stress vectors that account for bending
couples in the deformed sheet.

The aim of our work is to find the equations that express the effect of the twist
of the fibers on the deformation of the sheet. We assume that each fiber in the fabric
supports a twisting couple, since we are looking at expressions which take into account
the twist of fibers we assume that each couple is proportionalto the torsion,τ1 or τ2,
of the fiber. Secondly, chosen a set of fibers, sayd1-lines, we want that the vector
associated to the couple is directed like the tangent vectord1, consequently we choose
the twisting couples:

(3) i1 = 3b1 × b1,x i2 = 3b2 × b2,y

with 3 twisting coefficient. Recalling (1)3 we have:i1 = 3τ1d1 andi2 = 3τ2d2.

Taken a directed arcdr = d1dx + d2dy, whose initial length isds, the force
tds exerted across it is:

tds = t1dy − t2dx

with t1 and t2 the forces defined before. The couplei per unit initial length across a
directed arc is given by:

ids = i1dy − i2dx.

For translational equilibrium we have that, for any part of the sheet, the sum of the
external forces and of the forces exerted through the boundary lines is null, so the
following equation holds:

(4)
∮

(t1dy − t2dx)+
∫ ∫

f dxdy= 0

where the area integral is taken over the considered part, the line integral is taken
around its perimeter andf is an externally imposed force per unit of initial area that
acts on the surface of the sheet.
Equation (4) holds for any part of the sheet, consequentely,if t1 and t2 are smooth,
using the divergence theorem we obtain:

(5) t1,x + t2,y + f = 0.

For rotational equilibrium, we have that the moment of the forces exerted on any part
of the sheet plus the twisting couples has to be zero:

(6)
∮

r × (t1dy − t2dx)+
∫ ∫

r × f dxdy+
∮

(i1dy − i2dx) = 0.
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The associated differential form is:

(7) (r × t1 + i1),x +(r × t2 + i2),y +r × f = 0.

If (5) is satisfied, then (7) becomes:

(8) r,x ×t1 + r,y ×t2 + i1,x + i2,y = 0.

Recalling thatd1 = r,x d2 = r,y, using (1) and (3), we find:

(9) d1×t1+3τ1k1(b1×d1)+3(τ1),x d1+d2×t2+3τ2k2(b2×d2)+3(τ2),y d2 = 0.

Starting from equation (9), we obtain:

d1 × [t1 −3τ1k1b1] +3(τ1),x d1 = −d2 × [t2 −3τ2k2b2] −3(τ2),y d2.

If the torsion remains constant along the fibers, for examplein the case of helicoidal
fibers,(τ1),x and(τ2),y vanish. The equation above reduces to

d1 × [t1 −3τ1k1b1] = [t2 −3τ2k2b2] × d2

where the first member of the equation is orthogonal tod1 and the second member
is orthogonal tod2, and since the two member are equal one to the other they have a
common value sayDd1 × d2. Consequentely

d1 × [t1 −3τ1k1b1] = [t2 −3τ2k2b2] × d2 = Dd1 × d2

and
d1 × [t1 −3τ1k1b1 − Dd2] = [t2 −3τ2k2b2 − Dd1] × d2 = 0.

Hence, the vector[t1 − 3τ1k1b1 − Dd2] is parallel tod1, say it has a valueV1d1.
Similarly, [t2−3τ2k2b2−Dd1] is parallel tod2, say it has a valueV2d2. Consequently,
we find:

(10)



































t1 = Dd2 +3τ1k1b1 + V1d1

t2 = Dd1 +3τ2k2b2 + V2d2

∂

∂x
(τ1) = 0

∂

∂y
(τ2) = 0

4. Strain energy

In the work of Wang and Pipkin [5] the energy of strainW has an additive form:

(11) W = W0(d1 · d2)+ 1

2
Ŵ(d1,x ·d1,x +d2,y ·d2,y ).
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The energy componentW0 is due to the shearing stress, since this stress component is
that which resists to the changes in the angle between the fibersd1 andd2, they assume
thatW0 is a function ofd1 · d2; the second component of the strain energy is associated
to bending, it is a quadratic form in the fiber curvatures. Equation (11) can be written
in the following explicit form:

(12) W = W0(sinγ )+ 1

2
Ŵ[(k1)

2 + (k2)
2].

In [1], Luo and Steigmann assume the strain energy to be a function of shear,
of the curvaturesk1, k2 of the fibers (they denote them byη) and of the twistsβ1, β2
of the fibers. Applying the minimum-energy principle they derive the Euler-Lagrange
equations ([1](5.5)) in the form:

(13)







































































F1 = − ∂

∂x

(

∂W

∂k1
n1

)

+ ∂W

∂ sinγ
d2 + ∂W

∂β1
k1b1 + T1d1

F2 = − ∂

∂y

(

∂W

∂k2
n2

)

+ ∂W

∂ sinγ
d1 + ∂W

∂β2
k2b2 + T2d2

∂

∂x

(

∂W

∂β1

)

= 0

∂

∂y

(

∂W

∂β2

)

= 0

∂F1

∂x
+ ∂F2

∂y
+ f = 0

with F1 and F2 the respective forces on cross sections ofd1 andd2 lines. Using as
special case (12) in (13), they obtain the equations:

(14)































F1 = T1d1 + d W0

d sinγ
d2 − Ŵd1,xx

F2 = T2d2 + d W0

d sinγ
d1 − Ŵd2,yy

∂F1

∂x
+ ∂F2

∂y
+ f = 0

that corresponds to the equations (2) and (5) found by Wang and Pipkin.

We are looking at sets of fibers that undergo twist and shear soit is meaningful
to consider the deformation energyW per unit of initial area in the form:

W = W0(d1 · d2)+ 1

2
3(b1,x ·b1,x +b2,y ·b2,y )

or equivalently, using Frenet formulas and expressingW0 through the angle of shear:

(15) W = W0(sinγ )+ 1

2
3[(τ1)2 + (τ2)

2].
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We recall formulas (2.12) find by Luo [1], which relate the twistsβ1, β2 of the fibers
with the torsionsτ1, τ2:

(16) β1 = τ1 + ∂θ1

∂x
β2 = τ2 + ∂θ2

∂y
.

in (16),θ1 is the angle defined by:

(17)

{

a2 = cosθ1n1 + sinθ1b1

a3 = − sinθ1n1 + cosθ1b1

where{d1, a2, a3} is an orthonormal basis. The angleθ2 is defined in a similar way.

Differentiating with respect toβ1 andβ2, respectively, equations (16) we have:

∂τ1

∂β1
= 1

∂τ2

∂β2
= 1.

By mean of (15), equations (13) read:

(18)
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































F1 = T1d1 + d W0

d sinγ
d2 + ∂W

∂τ1

∂τ1

∂β1
k1b1

F2 = T2d2 + d W0

d sinγ
d1 + ∂W

∂τ2

∂τ2

∂β2
k2b2

∂

∂x

(

∂W

∂β2

)

= ∂

∂x

(

1

2
32τ1

)

= 3
∂

∂x
(τ1) = 0

∂

∂y

(

∂W

∂β2

)

= ∂

∂y

(

1

2
32τ2

)

= 3
∂

∂y
(τ2) = 0

∂F1

∂x
+ ∂F2

∂y
+ f = 0

since the torsionsτ1 andτ2 are constant along the respective fibers, we get the final
form:

(19)
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
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





























F1 = T1d1 + d W0

d sinγ
d2 +3τ1k1b1

F2 = T2d2 + d W0

d sinγ
d1 +3τ2k2b2

3
∂

∂x
(τ1) = 0

3
∂

∂y
(τ2) = 0

∂F1

∂x
+ ∂F2

∂y
+ f = 0

that could be easily compared with equations (5) and (10).
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If also the bending effects are considered, the strain-energy function may be
written as:

(20) W = W0(sinγ )+ 1

2
3[(τ1)2 + (τ2)

2] + 1

2
Ŵ[(k1)

2 + (k2)
2]

the following equations hold:

(21)



































































F1 = T1d1 + d W0

d sinγ
d2 +3τ1k1b1 − Ŵd1,xx

F2 = T2d2 + d W0

d sinγ
d1 +3τ2k2b2 − Ŵd2,yy

3
∂

∂x
(τ1) = 0

3
∂

∂y
(τ2) = 0

∂F1

∂x
+ ∂F2

∂y
+ f = 0

or equivalently

(22)


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

























































F1 = (T1 + Ŵ(k1)
2)d1 + d W0

d sinγ
d2 + (3− Ŵ)τ1k1b1 − Ŵk1,x n1

F2 = (T2 + Ŵ(k2)
2)d2 + d W0

d sinγ
d1 + (3− Ŵ)τ2k2b2 − Ŵk2,y n2

3
∂

∂x
(τ1) = 0

3
∂

∂y
(τ2) = 0

∂F1

∂x
+ ∂F2

∂y
+ f = 0.

Equations (22) describe the mechanical behaviour of sets ofinextensible fibers forming
a surface when shearing, twisting and bending effects are taken into account, such that
some elementary modes of the behaviours of woven fabric, where the fibers are the
weft and the warp, can be exhibited.

5. Conclusions

An overwiev on the works of Wang and Pipkin [5] and of Luo and Steigmann [1] has
been given. A first model that describes a fabric formed by inextensible fibers has been
found. In this model, both shear and twist are considered. The balance equations are
expressed through the torsionsτ1, τ2 and the curvaturesk1, k2 of the d1, d2 families of
fibers. Strain energy for sets of fibers that undergo shear, twist and bending has been
given in a suitable explicit form.
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The results presented in this paper represent a first step of my research, whose main
purpose is to develop a model for textile fabrics within the framework of Cosserat shell
theory, where the shell itself is made of two families of Cosserat rods, namely the weft
and the warp of the fabric. This model would encompass more refined phenomena,
typical of fabrics, such as wrinkles and krinkles.
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MICROSTRUCTURES AND GRANULAR MEDIA

Abstract. A general model of solids with vectorial microstructures is introduced. The field
equationsare the obtained as Euler-Lagrange equations of asuitable energetic functional. The
Cosserat model is encompassed in this model and it can be used to study the behaviour of
granular media. A first approach to this problem deals with a two dimensional model, since
in such a case the field equations have a simpler form, the rotation of the single grain depends
on one parameter only, the angle of rotation, but the model is still physically meaningful. In
order to obtain constitutive equations rigorously deducedfrom the principles of Continuum
Mechanics, we must take in account both the interaction matrix-grains and grain-grain. As
a first step, we deal with linear dissipation, as already donein general for vector microstruc-
tures, such that we can also study some simpler problems of wave propagation.

Key words : Microstructures, Cosserat solids, granular media.

1. Introduction

A wide class of phenomena can be described by means of microstructural models of
solids and fluids, where the microstructure can be describedby vector fields over the
body. In principle, there are no restrictions on the number of vector fields, which are
unknown variables of the problem, but there are obvious restrictions due to the possible
physical meaning of each vector field.

The use of the Cosserat continuum theory to describe the behaviour of granular
materials or powders has been proposed in several papers (see, for instance, Grekova
[7] and references therein quoted). Basically we refer to [14], but we follow a different
approach, in the framework of a general theory of microstructures as developed by
Capriz [1], Maugin [8]. In particular we deal with a so-called vector micro- structure,
which includes the Cosserat theory. These theory has already been used with some
success by Pastrone and others [2, 3, 4, 10, 11, 12] to study wave propagation in one
and three-dimensional microstructured solids.

In Section 2, the three dimensional Cosserat model is introduced. A Cosserat
microstructure is defined by a triple vector field{di }, such thatdi · d j = δi j . The
vector fieldsdi = di (Xh, t) are often called “directors”, whereXh’s are the Lagrangian
coordinates of a pointX in a reference configuration of the body which represents
the grain, andt is time. The main feature of such a microstructure is its rotation,
which is expressed through an angular velocity vector and a “spatial” spin tensor. The
basic equations of motion in the three-dimensional case arederived via a variational
principle. In fact, we assume the existence of a strain energy function and we take in
account the dissipation by means of the expression of the total power expended.

∗This work was supported by the Italian M.U.R.S.T. research project ”Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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The case of a plane Cosserat solid is introduced in Section 3,which can be used
to model plane granular media. By this way, the model is much more simplified since
we restrict our attention to a two-dimensional plane body. The rotation is fullydescribed
by a scalar functionθ = θ(Xh, t) and the field equations reduce to four differential
equations. Some interesting identities are derived, such that wecan easily compare our
model with

that one introduced by [14] ina general contest and used by [7], but we do not
neglect thecoupled-stress. On the other side, we prove thatthe stress tensor is not
symmetric (as natural in such models) and its skew symmetricpart is related to the
micro body force. Finally, alternative forms of the field equations are provided.

In Section 4, we make a first step toward the introduction of appropriate con-
stitutive equations, taking into account the friction among particles and describing this
phenomenological aspect through a dissipation function whose explicit form is sug-
gested by the total power expended in any motion. A simple example, obtained after
further simplifications on the dissipation function, is provided, but the problem of a
correct constitutive theory for such models is not solved and it will be the main subject
of further researches.

2. Vectorial microstructures

The usual approach to microstructure is assumed to be that one introduced by Mindlin
[9], where the model is the linear theory of elasticity. We follow his basic ideas for the
kinematics, but in the general framework of non linear elasticity, both in the macro and
in the micro-structure. We will obtain a model which could be, somehow, encompassed
in the model of Capriz, even thought it is not a straightforward procedure.

Let B be the body, as a manifold embedded in a 3-dimensional affine space,X
a point of this body in its reference configurationC∗, andx the corresponding point in
the actual configurationC. As usual, the displacement is given by the vector function

(2.1) u ≡ x − X

and, assuming the coordinatesXh of X as material coordinates, for any motion it will
be: u = u(Xh, t), sincex = f (X, t), wheref is the deformation function (f : C∗ →
C).

The macrostructure is a three-dimensional bodyB, and it can be equivalently be
described by a position vector, from some fixed origino, r ≡ x−o, r = r(Xh, t)where
theXh’s are material coordinates andt is time. Commas denote partial derivatives with
respect toXh and superposed dots denote partial derivatives with respect to time, e.g.:

r ,h ≡ ∂r
∂Xh

, ṙ ≡ ∂r
∂t

By microstructure we mean that it is possible to apply a microscope to each
point x ∈ C and discover a “small world”. As shown elsewhere( [10]), some features
of this ”small world” can be captured by a suitable set of vectors dH = dH (X, t),
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H = 1,2, ...,n, which can be called ”directors” and represent the micromotion. Their
number depends on the physical aspects we want to describe, In the present case, we
can reduce this number to three or less, hence we shall use thesame lower case indices
as for coordinates:di = di (X, t), i = 1,2,3.

The kinetic energy density of the body is defined as a quadratic form in the
velocitiesṙ andḋi :

(2.2) T = 1

2
[ρ(Xh)ṙ · ṙ + 2ρ i (Xh)ṙ · ḋi + ρ i j ḋi · ḋ j ].

In Eq. (2.2),ρ is the usual three dimensional mass density,ρ i andρ i j are coefficients
including density and inertia terms, which must satisfy theconditions:

T ≥ 0, T = 0 ⇔ ṙ = ḋi ≡ 0.

As it is well-known, it is always possible to diagonalize theform making linear trans-
formations onr anddi , such that

ρ i = 0, ρ i j = ρ I i j ;

the I i j ’s are effective inertia terms of the microstructure.

We assign a strain energy density function

(2.3) Ŵ = W(r ,i ; d j ; d j,h; Xh)+ Wb

whose existence follows from the assumption that the total power expendedPT is given
by PŴ = dŴ/dt and the total energy is given by

(2.4) E =
∫

B

(T − W)ρ dX1dX2dX3 −
∫

B

Wbρ dX1dX2dX3

whereWb is the potential of the external body forces, which depends on r andXh only.
We avoid internal constraints and leave apart the problem ofthe boundary conditions.

The equations of motion can be derived as the Euler-Lagrangeequations of the
energy functionalε =

∫ t1
t0

Edt :

(2.5)























(

∂W

∂r ,i

)

,i
− ∂Wb

∂r
= d

dt

∂T

∂ ṙ
(

∂W

∂d j ,i

)

,i

− ∂W

∂d j
= d

dt

∂T

∂ḋ j

Since the microstructure can have a dissipative effect, we introduce dissipation
in the field equations Eqs. (2.5). The deformation velocities are given by

(2.6) ṙ = ∂r
∂t
, ṙ ,i = ∂r ,i

∂t
, ḋi = ∂di

∂t
, ḋi, j = ∂di, j

∂t
.
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The total power expended is the sum of scalar products as it follows:

(2.7) PT = b · ṙ +∑

i σ i · ṙ ,i +∑i τ i · ḋi +∑

i j ηi j · ḋi, j ,

The quantitiesb, σ i , τ i , ηi j are forces, stresses and generalized (or coupled) stresses.

We can split the “conservative” part from the dissipation bymeans of the de-
composition:

(2.8) PT = PŴ + PD = dŴ

dt
+ PD

wherePD = b̂ · ṙ +∑i σ̂ i · ṙ ,i +∑i τ̂ i · ḋi +
∑

i η̂i j · ḋi, j , the hat meaning that we deal
with the dissipative part of the stresses, or the so-called non-equilibrium stresses. The
dissipation impliesPD > 0 for any admissible deformation, hence the non-equilibrium
stresses cannot be arbitrary, but they must satisfy this inequality.

Finally the stresses can be written in the additive form

(2.9)



















































b = −∂Wb

∂r
+ b̂

σ i = ∂W

∂r ,i
+ σ̂ i

τ i = −∂W

∂di
+ τ̂ i

ηi j = ∂W

∂di, j
+ η̂i j

and the field equations read

(2.10)















σ i ,i +b = d

dt

∂T

∂ ṙ

ηi j , j +τ i = d

dt

∂T

∂ḋi

which obviously include (2.5). In many cases the body forcesare neglected, hence
b = 0 and the microbody force included inτ i vanishes as well, butτ i 6= 0, because
the coupling part remains.

3. 3-D Cosserat solids

Let us introduce Cosserat solids as a particular model of vectorial microstructure and
obviously it can encompass Cosserat shells and rods as well.In Cosserat models the
microstructure is described by a rigid triad{di }, which is attached to each particle of the
body. It means that one must add to our field equations (2.5) the constraint equations:

(3.1) di · d j = δi j .
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Formally we can apply the Lagrange multipliers method to theenergy functional

(3.2) E =
∫

B

[

W +3i j (di · d j − δi j )+ T
]

dB

and easily derive the equations of motion as a determined setof partial differential
equations

(3.3)































(

∂W

∂r ,i

)

,i
− ∂Wb

∂r
= d

dt

∂T

∂ ṙ
(

∂W

∂d j ,i

)

,i

− ∂W

∂d j
= d

dt

∂T

∂ḋ j
− 23i j di

di · d j = δi j

Moreover they contain the constraint reactions (namely, the Lagrange multipliers) whi-
le the main interest here is to obtain equations of motion free of reactions, sufficient to
determine the motion.

This goal can be attained following an intrinsic approach, by means of the an-
gular velocityω such that

(3.4) ḋi = ω × di

(since we deal with a rigid microstructure), with

(3.5) ω = ω(qi , q̇i , t), qi = qi (Xh, t)

being suitable measures of the rotations in an affine three-dimensionalE3 (i.e., Euler
angles), and a “spatial spin”� ∈ Lin such that

(3.6) di ,h = εk
i j �

j
hdk

whereεh
i j is the Levi-Civita symbol, and� = �(qi ,qi ,h , t).

Henceforth, we can write

(3.7)

{

W = W(r ,i ,�, xh)

T = T(ṙ ,ω)

whereT is a quadratic form in the variablesṙ andq̇i .
At this point we have to apply the usual variational techniques to the functional

(3.8) E =
∫

B

[

W(r i ,�, Xh)+ T(ṙ ,ω)
]

dB.

The Lagrange equations are (3.3)1 and

(3.9) ∂i W − ∂h∂
h
i W + ∂i T − d

dt

∂T

∂q̇i
= 0
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where

∂i W = ∂W

∂�

∂�

∂qi
, ∂i T = ∂T

∂ω

∂ω

∂qi
, ∂h∂

h
i W = ∂

∂Xh

∂W

∂q,ih
= ∂

∂Xh

∂W

∂�

∂�

∂q,ih
.

If we introduce

W� ≡ ∂W

∂�
, Tω ≡ ∂T

∂ω

the equations of Cosserat microstructure can be written as

(3.10)























(

∂W

∂r ,i

)

,i
− ∂Wb

∂r
= d

dt

∂T

∂ ṙ
(

W�

∂�

∂qi
,h

)

,h

− W�

∂�

∂qi
= d

dt

(

Tω
∂ω

∂q̇i

)

− Tω
∂ω

∂qi

An open problem is to write the (known) explicit expression of ω in terms of theqi and
q̇i and the explicit expressions of the spin in terms of theqi , qi ,h, hence to write down
explicit forms of of the strain energy funtions, such that the field equations become
suitable and useful both to obtain analytical results and for applications.

4. 2-D Cosserat solids and plane granular media

If the body is a 2-D solid and its configuration at any time is a domain contained in
R2, we can choose an orthonormal spatial basis{eh}, h = 1,2 and a material basis
{gh}, wheregh = r ,h, hence writer = xh(Xk, t)eh ; the functionsxh(Xk, t) have the
meaning of deformation function components.

The director fields can be reduced to one vector fieldd = d(Xk, t), d · d = 1,
because one director is sufficient to define the orientation of any particle (grain). In the
spatial basis it is:d = cosθe1 + sinθe2, θ = θ(Xk, t) being the angle of rotation of
the particle with respect to the fixed basis. Physically, we interpretd as the kinematical
characterization of the grain and it is fully determined by the scalar functionθ(Xk, t).
If we introduce the unit vectorν = − sinθe1 + cosθe2, ν · d = 1, the time and spatial
derivatives of the director are given by:

ḋ = ω × d = θ̇ν, d,h = �h × d = θ,h ν,

whereω = 1/2ḋ × d, �h = 1/2d,h ×d. The kinetic energy density becomes

(4.1) T = 1

2
[ρ ṙ · ṙ + 2J ṙ · ḋ + I θ̇2]

whereρ = ρ(Xh) is the density in a reference configuration,I = I (Xh) the inertia
term of the grain,J a coupled inertia term that vanishes if we reduceT to a diagonal
form, as always possible. The strain energy density becomes

(4.2) W = W(xh,k ; θ; θ,k ; t)
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while it is convenient to split the potential of the body forces in two parts

(4.3) Wb = WMacro
b (xh, t)+ Wmicro

b (θ, t)

such that the total potential energy density is given by

(4.4) Ŵ = W + WMacro
b + Wmicro

b ,

the total energy of the body by

(4.5) E =
∫

A
(T − Ŵ)ρdX1dX2

whereA is the domain inR2 occupied by the reference configuration.

The field equations now read

(4.6)























(

∂W

∂xh,i

)

, i
− ∂WMacro

b

∂xh
= d

dt

∂T

∂ ẋh
= ρ ẍh

(

∂W

∂θ,i

)

, i
− ∂W

∂θ
− ∂Wmicro

b

∂θ
= d

dt

∂T

∂θ̇
= I θ̈

In Eq. (4.6) we used the diagonal form for the kinetic energy

(4.7) T = 1

2
[ρδi j ẋi ẋ j + I θ̇2]

The power expended for any motion

(4.8) P = ∂Ŵ

∂xh
ẋh + ∂Ŵ

∂xh,k
ẋh,k +∂Ŵ

∂θ
θ̇ + ∂Ŵ

∂θ,h
θ̇ ,h

suggests us how to introduce the macro and micro stresses

(4.9) σ h
k = ∂Ŵ

∂xk,h
, ηh = ∂Ŵ

∂θ,h
, τ = ∂Ŵ

∂θ

and the macro and micro body forces

(4.10) Bh = ρ
∂WMacro

b

∂xh
, b = ρ

∂Wmicro
b

∂θ

which we refer to intrinsically as{σ, η, τ,B,b}. Hence the field equations read

(4.11)

{

ρü = Divσ + ρB
I θ̈ = Divη − τ + ρb
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5. The constitutive equations

The system in Eq. (4.6), or alternatively Eqs. (4.11), must be completed with proper
constitutive equations, which allow us to describe the behaviour of some real material.
If we want to model the behaviour of granular media, we must take into account the
friction among grains, which are described kinematically and dynamically as Cosserat
microstructures. One way to describe this kind of friction is to make use of the theory
of viscosity or, equally, to introduce some dissipation, that means we assume a de-
pendence of the constitutive functions on the velocity of deformation also. Moreover,
from a phenomenological point of view we must consider that the rotation of a single
grain makes the other neighbouring grains to rotate, not in the same sense: usually,
because of friction, if a grain rotates clockwise, another grain in contact with it rotates
counter-clockwise. This problem has been faced by [7], using a different approach.

The form of the total power expended, where we must take into account both
the conservative and dissipative parts of the stresses, cansuggest the choice of the
dissipation function. Hence, we assume again that the stresses are “split” in an additive
way, so we can write:

(5.1) PT = PŴ + PD = dŴ

dt
+ σD · L + ηD · Ġ + τD θ̇

where L is the gradient of the macro velocity,Ġ the gradient of the micro velocity. In
Eq. (5.1)σD, ηD, τD are the dissipative parts of stress and forces (or, as said above,
the non-equilibrium stresses and forces). They must satisfy the dissipation inequality

(5.2) PD = σD · L + ηD · Ġ + τD θ̇ > 0

for any admissible motion.

The simplest meaningful assumption we can use on the dissipation is thatσD ·
L + ηD · Ġ = 0 andτD = D, such thatPD = Dθ̇ andD = D(Xi , t).

Finally, the simpler form of the field equations for a granular plane body, with
friction among grains, is given by

(5.3)























ρ ẍh =
(

∂W

∂xh,i

)

, i
+ ρBh

I θ̈ =
(

∂W

∂θ,i

)

, i
− ∂W

∂θ
− Dθ̇ + ρb

Obviously, one can imagine more complicated situations, for instance that the dissipa-
tion is given by non linear relations or by a functional in thevelocities of deformation,
but this model, extremely simple, allows us to claim that it is not necessary to neglect
the couple stress, as assumed in [7].

The different equations of motions here obtained allow us tostudy problems
of equilibrium, stability, wave propagation. With regard to wave propagation, some
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results have been obtained in [2, 3, 4, 5, 10, 11, 12, 13], mainly in one-dimensional
solids with scalar microstructure, with non linearity, dispersion and dissipation. The
possibility of propagation of solitary waves has been proved, as well as the possibility
of decay and/or amplification of the amplitude.
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à deux dimensions dans des milieuxà microstructure, C. R. Acad. Sc. Paris Ser. I337 (7) (2004),
513–518.

[14] SUIKER A.S.J.,DE BORST R. AND CHANG C.S.,Micro-mechanical modeling of granular material,
Acta Mechanica149(2001), 161.

AMS Subject Classification: 74A30, 74B20, 74E20.

Franco PASTRONE, Department of Mathematics, University of Torino, Via C. Alberto 10, 10123 Torino,
ITALY
e-mail: franco.pastrone@unito.it





Rend. Sem. Mat. Univ. Pol. Torino - Vol. 65, 2 (2007)
ISASUT Intensive Seminar

A.V. Porubov

ON FORMATION OF THE ROGUE WAVES AND HOLES IN

OCEAN

Abstract. Two-dimensional nonlinear models are developed to account for abnormal sur-
face ocean waves generation and propagation. These models are based on the Kadomtsev-
Petviashvili equation, the 2D Benjamin-Ono equation and the2D Gardner equation. Pos-
sible mechanisms of the waves formation suggested are the resonant interaction between
semi-plane waves or waves with curved fronts or the transverse instability of a plane surface
wave.

1. Introduction

This paper intends to consider some models describing sea waves of abnormally high
amplitude, or the so-called rogue (or freak) waves [1, 2]. Observations of the rogue
waves and various accidents with the ships in ocean caused bytheir attacks require a
development of the theory of the rogue waves and understanding the mechanisms of
the rogue waves formation. What is really dangerous that the rogue waves suddenly
affect the ships even in the absence of a storm, and the crew cannot see these waves far
from the vessel. Despite numerous works done by now [1, 2, 3, 4], many features of
the waves remain unclear.

As a rule, rogue waves are considered as elevation free surface waves [2]. How-
ever, recently abnormal waves with negative amplitude wereobserved in the ocean
[5, 6]. Certainly these wave are even more dangerous for a vessel than the elevation
rogue waves, since their detection is unlikely either by eyes nor by a locator. The am-
plitude of the rogue wave may exceed 10 meters, hence, more likely, it is nonlinear
wave. There is no common point of view what kind of wave is it, long or short [2].
Estimations done on the basis of some observations of both the elevation waves [7] and
the deep holes [8] allow us to consider the rogue wave as a longnon-linear wave.

In this paper, main attention is paid to the mathematical models. Their detailed
physical justification may be found in our recent papers [7, 8]. Among the model equa-
tions employed are the Kadomtsev-Petviashvili (KP) equation, the 2D Benjamin-Ono
equation and the 2D Gardner equation. The localization of aninitial wave is suggested
as a possible mechanism of the rogue wave generation. Localization of the wave is
accompanied by an increase in its amplitude. In the two-dimensional case, localization
may happen both along the direction of the wave propagation (plane localized wave)
and in the plane where the wave evolves (2D localized wave). It is found that the former
case may be described by exact solitary wave solutions, while the latter case requires
a study of the transverse instability and numerical simulations. The conditions are ob-
tained that establish the parameters of the incident waves and/or the ocean stratification
required for the rogue wave or hole generation.
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2. Long wave modelling of rogue waves

2.1. Kadomtsev-Petviashvili equation

The simplest model implies that the ocean is an inviscid liquid layer of permanent
depth H with free deformable surface. Assume the planez = 0 of the Cartesian
coordinates coincides with undisturbed free surface of thelayer, hence fluid occupies
the region−H < z < η , η(x, y, t) is a free surface disturbance. Let us denote
velocity components along axesx, y, z by u(x, y, z, t), v(x, y, z, t) andw(x, y, z, t)
respectively. Lett is time.

As usual, it is convenient to introduce the velocity potential, u = 8x, v = 8y

andw = 8z. The basic equations and the boundary conditions may be found in [9].
The scales are introduced as follows:L (typical wave size) forx, Y for y, andH for z
, L/

√
gH for t , B for η, andBL

√
gH/H for 8. The small parameter of the problem,

ε, is chosen according to estimations of the observed elevation rogue waves [7],

ε = B/H = H2/L2,

The simplified governing equation may be obtained if weak transverse variations are
assumed,L/Y = O(H/L) = O(

√
ε). Introducing the phase variableθ = x − t and

the slow timeτ = ε t , one can obtain from the basic equations [7] that the function
η(θ, y, τ ) satisfies the equation

(2.1) (2ητ + 3ηηθ + 1/3 ηθθθ )θ + ηyy = 0,

that is nothing but the Kadomtsev-Petviashvili (KP) equation [10, 11].

2.2. 2D Benjamin-Ono equation

As a rule, freak waves are considered as elevation free surface waves. However, there
exist similar waves with deep troughs or surface holes that were observed in various
places [5, 6]. It is important that these waves satisfy the relationshipA/H = O(H/L),
hence, the KP equation is invalid in this case since its applicability requires another
ratio betweenA/H and H/L, A/H = O(H2/L2). We consider the model contain-
ing semi-unbounded inviscid and incompressible air layer interacting with a finite size
layer of inviscid and incompressible water by the normal stresses. The wind in the
atmosphere is taken into account in order to check its influence on the 2D localization
of the wave on the water surface.

Assume that the width of the water layer isH and it is bounded by the rigid bot-
tom from below. The Cartesian coordinates(x, y, z) are put so as the planez = 0 co-
incides with undisturbed free surface of the liquid layer. Letη(x, y, t) is a disturbance
of the water surface. Then the water occupies the region−H < z < η, while the air
occupiesη < z < ∞. Let us denote constant density of the water byρ, the velocity
components along the directionsx, y, z by u(x, y, z, t), v(x, y, z, t) andw(x, y, z, t)
respectively. Similar notations for the air areρ′, u′(x, y, z, t), v′(x, y, z, t) and
w′(x, y, z, t). It is convenient to use in the equations and in the boundary conditions
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the potentials8,8′ defined byu = 8x, v = 8y andw = 8z, u′ = 8′
x, v′ = 8′

y and
w′ = 8′

z. Suppose the wind in the air has the velocityU ′ directed along thex-axis.

Then the basic equations are written as usual [9] while the boundary conditions
are:

(2.2) 8z = 0 atz = −H,

(2.3) 8′ → 0 atz → ∞,

and forz = η we get

(2.4) ρ(8t+1/2(82
x+82

y+82
z)+g η) = ρ′(8′

t+U ′8′
x+1/2(8

′2
x +8′2

y +8′2
z )+g η),

(2.5) ηt +8xηx +8yηy = 8z.

(2.6) ηt +8′
xηx +8′

yηy = 8′
z.

The following scales are used:L- for X, Y- for y, H -for z in the water and
L - for z in the air, L/

√
gH-for t , A-for η and AL

√
gH/H - for 8,8′. The small

parameterε is introduced as

ε = A/H = H/L .

It is assumed additionally thatL/Y = √
ε.

The governing equation is obtained following the well-known procedure [12,
13]. Finally, the phase variableθ = x −

√
1 − σ t and the slow timeτ = ε

√
1 − σ t

are introduced,σ = ρ′/ρ, and the equation for the functionη is obtained,

(2.7)



2ητ + 3ηηθ + b
1

π

∞
∫

−∞

ηθ ′θ ′ dθ ′

θ ′ − θ





θ

+ ηyy = 0.

where

b = σ

(

1 − U ′
√

gH(1 − σ)

)2

.

Equation (2.7) is reduced to the Benjamin-Ono (BO) equationin the one-dimensional
case, hence it may be called the two-dimensional generalization of the BO equation or
the 2DBO equation.

2.3. 2D Gardner equation

Another model where the ratioA/H = O(H/L)may be realized is the two-layer fluid
model. It is known that it may be employed to account for the stratification in the ocean.
Let the upper finite width layer has densityρ′ and thicknessh0, while the lower one has
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densityρ > ρ′ and thicknessH . Assume that both the interface and the free surface of
the upper layer are deformable while an influence of the atmosphere is negligibly small.
In the one-dimensional case, long nonlinear waves were considered early in [14]. It
was shown there that both surface and internal waves are described by the Korteweg-de
Vries (KdV) equations ifA/H = O(H2/L2). However, the coefficient at the quadratic
nonlinear term in the KdV equation may be small itself at certain relationship between
widths and densities. In this case the balance between nonlinearity and dispersion
required for propagation of localized waves, is realized for A/H = O(H/L), just the
ratio observed for the deep holes [8].

Basic equations have the form similar to that used in the previous subsection
(we denote now by′ variables in the upper liquid layer) with the exception of the wind,
now U ′ = 0, and of the boundary conditions to be imposed at the upper free surface
z = h0 + h(x, y, t),

8′
t + 1/2(8

′2
x +8

′2
y +8

′2
z )+ g h = 0,

(2.8) ht +8′
xhx +8′

yhy = 8′
z.

Like in the previous subsection, weak transverse variations are considered with
L/Y = √

ε, whereε is defined in the previous subsection,A- typical amplitude of
both the surface and internal waves. Nowη(x, y, t) is the interface disturbance, other
notations areσ = ρ′/ρ, m = h0/H . The scales are the same as in the previous
subsection but for the scale forz in the upper layer now chosen equal toH . Like in
the one-dimensional case [14], we obtain that the coefficient at the quadratic nonlinear
term is equal to zero form = m∗,

m∗ = s+ + s− + 1

3
(3 − 3σ − σ 2),

where

s± =
( σ

54
[27(1 + σ)+ 2σ 2(9 − 18σ − 9σ 2 − σ 3)]

± σ(1 + 2σ)

6

√

(1 − σ)(27+ 5σ)

3

)1/3

,

Assume thatm = m∗ + εm1 + ..., v = v∗ + εv1 + .... In this case, standard asymptotic
procedure allows us to reduce basic equations to the governing equation for the free
surface disturbance:

(2.9) (hτ + a h2
θ + ch3

θ + bhθθθ )θ + dhyy = 0,

whereθ = x − vt , τ = ε2t ,

v∗2 = 1

2
(1 + m∗ −

√

(1 + m∗)2 − 4(1 − σ)m∗),
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a = 3m1[(2m∗(σ − 2)+ 3 − 5σ)v∗2 + (1 − σ)(2m∗2 + 3m∗σ − 1)]
2v∗[(1 + m∗)v∗2 − 2(1 − σ)m∗](1 + m∗ − 2v∗2)

,

b = v∗[(1 + m∗){1 − (1 − 3σ)m∗ + m∗2}v∗2 − (1 − σ)m∗(1 + 3m∗σ + m∗2)]
6[(1 + m∗)v∗2 − 2(1 − σ)m∗] ,

c = m∗(1 − σ)(4m∗2 + m∗ − 1 + 4m∗σ)− 4v∗2(m∗2(1 − σ)− m∗(1 − 2σ)+ 1)

v∗[(1 + m∗)v∗2 − 2(1 − σ)m∗] ,

d = v∗

2
,

It is easy to check thatb > 0,c is always negative, while the sign ofa is defined
by the sign ofm1. Equation (2.9) is nothing but a two-dimensional generalization of
the Gardner equation or the 2D Gardner equation.

3. Mechanisms of the rogue waves formation

3.1. Resonant waves interaction

It is known that plane solitary wave solution of the KP equation(2.1),

(3.1) η = 4k2

3
cosh−2 k(θ + mZ − 3m2 + 2k2

6
τ),

is stable to transverse disturbances, and exact two-dimensional localized travelling
wave solution requires an opposite sign atηZ Z or at ηθθθθ [10, 11]. In our case it
is unlikely. Hence we cannot anticipate an appearance of 2D localized wave from the
single solitary wave. However, the KP equation possesses a two-solitary wave solution
[10, 15],

η = 4

3

∂2

∂θ2
log(F), F = 1 + exp(ξ1)+ exp(ξ2)+ exp(A12 + ξ1 + ξ2),

(3.2) ξi = ki (θ + mi Z − 3m2
i + k2

i

6
τ),expA12 = (k1 − k2)

2 − (m1 − m2)
2

(k1 + k2)2 − (m1 − m2)2

It contains a hump in the area of the waves interaction. The hump moves keeping its
shape and velocity, and its maximum amplitude may be up to four times higher than
the amplitude of each interacting solitary wave. Detailed analysis of this solution and
its possible application to the rogue waves description is done in [4]. Now we only
mention that this solution describes propagation but not a formation of the localized
structure, the last should be presented in the initial condition.

Recently we developed the idea of the use of the waves interaction. However,
we consider another solution of the KP equation [7] that doesnot describe the waves
interaction att = 0 in contrast to the exact two-solitary wave solution suggested in
[4]. Numerical solution describes a formation of a localized high wave (or a stem) only
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when the angle between the incident crested waves lies within a certain interval. Our
estimations demonstrate rather fast formation of the stem that may be a reason why the
rogue wave appears suddenly for the crew of a vessel. An increase in amplitude is up
to four times. Much higher increase is achieved, up to 14 (!) times when the incident
waves with curved fronts interact [7]. In the last case, the 2D localized wave is unstable
and exists for a short time period. However, fast formation of a high wavenearthe ship
gives rise enough time to it to affect the ship before an instability destroys the wave.

The well-known exact solitary wave solution solutionη = η0 of the BO equa-
tion may be written as

(3.3) η0 = 4b
√

k

3
(

kξ2 + 1
) ,

whereξ = (θ − 0.5b
√

kτ). It accounts for a moving elevation plane wave in the two-
dimensional case. It is always stable to transverse disturbances for the positive sign of
b [8, 13, 16]. One can see that the wind cannot affect the sign ofb. The sign of the
amplitude is defined by the sign ofb, and holes are not described by this solution.

Hence the 2D localization elevation wave may only arise due to the plane waves
interaction. This process was studied numerically in [17] where it was found a simi-
larity with the KP case. Again a stem appears due to the waves interaction and its
amplitude depends upon the angle between the incident planewaves. However, now
the highest amplitude may be eight times larger than the amplitudes of the incident
waves. The case of the curved initial waves interaction is not considered by now.

A similar scenario may be realized for the known solitary wave solutionh = hs

of the Gardner equation [14]:

(3.4) hs = 3b k2

a(B1 cosh(kξ)+ 1)
,

where

B1 =
√

1 + 9bck2

2a2
, ξ = θ − bk2 τ.

In the two-dimensional case, Eq. (3.4) accounts for the propagation of a plane solitary
wave. In contrast to the exact solution of the 2DBO equation now the amplitude may
be of either sign. The hump propagation is described for positive values ofa, while
the wave with a trough propagates fora < 0. The solution has an interesting feature
for negativec: tendency to the extensive trough shape atk →

√

−2a2/(9b c). The
amplitude of the wave tends to the limiting value equal to−2a/3c. This solution is
stable to transverse disturbances [8]. Similar to the KP and2DBO equations, numerical
solution reveals a localization with a great increase in amplitude of the wave as a result
of semi-plane or curved incident waves interaction [18]. The results look very similar
to those of the KP equation. However, no stem is observed for small negative values of
the coefficient at the cubic non-linear term. Possible reason is in the fail of reality of
B1 that happens in the exact solution (3.4) as soon as negativec decreases.
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3.2. Transverse instability of plane solitary waves

The Gardner equation (2.9) possesses an extra solutionh = hp that may be employed
for explanation of the holes. It appears due to the balance between cubic nonlinearity
and dispersion and may be written through the Jacobi elliptic function,

(3.5) hp =
√

−2b

c
k κ sn(kξ, κ)− a

3c

whereξ = θ − sτ , κ,0< κ < 1, is the Jacobi function modulus, while the velocity is
s = −bk2(1 + κ2) − a2/(3c). Its minimum is larger that the maximum for negative
a. Moreover, the troughs in the solution became extensive asκ → 1, and they are
separated by the extensive areas of moderate elevation. In the two-dimensional case,
these troughs are similar to the shape of the solution (3.4) with the exception of the
absence of the limiting amplitude [8].

The transverse instability of the solution (3.5) is studiedsimilar to that of the
solitary wave solutions [8]. One can check that the wave (3.5) is always unstable.
This may result in an appearance of a periodical train of the waves modulated in the
transverse direction, hence the sequence of two-dimensional localized waves. Then
another mechanism of the rogue waves and holes formation maybe suggested based on
the 2D localization due to the transverse instability. It isto be noted the exact solution
of the KP equation that may be obtained when the sign at dispersive or transverseηyy

term in Eq.(2.1)is negative [19]. This solution describes atransverse modulation of an
initial plane solitary wave which is accompanied by an increase in amplitude. However,
this increase is not very high, 1.5-2 times. Much more increase may be achieved if a
2D input is used. It was found [20] that growth up to 12 times happens if the input
is not so smooth as the 2D Gaussian distribution. The processof the formation of the
stable 2D localized wave is fast that may be used to explain sudden appearance of the
rogue wave near the ship.

4. Conclusions

The solutions of the model equations considered reflect mainfeatures of the abnormally
high or deep waves: their fast but rare appearance. The first feature as well as the
growth of the amplitude depend upon the shape of the incidentwaves and the angle
between them. The second feature is caused by the strict restrictions required for the
existence of the solution, in particular,m should be near the special valuem∗ for the
solution of the Gardner equation. It is found that the conditions yielding 2D localization
are governed by physical factors through the signs of the coefficients of the equations.
Thus the sign ofa separates an appearance of the elevation wave or the hole wave, that
is defined by the sign ofm1 or by the ocean stratification. This dependence upon the
physical factors is important for a prediction of the rogue waves and holes in the sea.
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FAST FERRIES AS WAVEMAKERS IN A NATURAL

LABORATORY OF ROGUE WAVES

Abstract. The evolution of solitonic waves traveling in slightly different directions is anal-
ysed in the framework of the Kadomtsev-Petviashvili equation. Nonlinear interactions of
solitonic waves generally lead to phase shifts of the counterparts. If the amplitudes of the
interacting solitons, the angle between their crests and the water depth are specifically bal-
anced, interactions result in particularly high wave humps resembling the phenomena occur-
ring during the Mach reflection of solitary waves. Surface elevation up to four times as high
as the amplitude of the counterparts may occur, and the slope ofthe front of the hump may be
eight times as large as the maximum slope of the fronts of the interacting waves. Although
such a balance occurs seldom, the resulting structure may persist for a long time until the
balance is violated. Solitonic waves occur relatively seldom in natural conditions. However,
leading waves of wakes from contemporary large high-speed ships sailing in shallow wa-
ter frequently have solitonic nature. The described interactions are realistic in areas hosting
intense fast ferry traffic.

Key words: nonlinear ship waves, high-speed ships, shallowwater waves; extreme
waves; solitons, soliton interaction

1. Introduction

The concerns related to intense ship traffic are traditionally associated with possible ac-
cidents such as ship collisions or grounding, technical andnavigation problems caused
by severe weather or human errors etc. These concerns are being effectively managed
by international shipping and harbor communities with the use of the basic assertion
that the risks of water surface transport are localized within a small area around the
ship.

The continuing introduction of evermore faster ship services during the last two
decades has created new major worries, which are no more located in small areas.
For example, the massive growth of exhaust emissions (capable of creating substantial
changes in the atmosphere at the height of many hundreds of meters above sea surface,
Durkee et al. [1]) may become a part of global troubles and thegreat increase of the
ship-generated noise may adversely affect quality of life in areas adjacent to ship lanes.

The most important issue is the wake generated by large high-speed ships
(Guidelines [2], Wood [3]), in particular, specific features of waves excited by strongly
powered ships sailing at shallow and moderate depths (up to 100 m). Large-amplitude
wake wash propagating shoreward has become an issue of central concern for coastal
communities, because it has a significant impact on the safety of people, property
and craft (Guidelines [2], Parnell and Kofoed-Hansen [4]).Large wake waves are
frequently compact entities which cause violent energy concentration not only in the
vicinity of ship lanes but also in remote sea areas (Hamer [5]). It is no more unusual that

287



288 T. Soomere

holidaymakers are forced to “flee for their lives when enormous waves erupted from
a millpond-smooth sea”, or that waves look like “the white cliffs of Dover” (Hamer
[5]). There exist several coastal areas which have rough wave conditions but still the
contribution of ship waves is significant. For example, shiptraffic in Tallinn Bay, the
Baltic Sea, is so intense that ship-generated waves form, atleast, about 5–8% from
the total wave energy and about 18–35% from the wave power in the coastal areas of
Tallinn Bay exposed to dominating winds [6,7]. They may be responsible for the ero-
sion of the coastline and the sea bottom [8], and may seriously damage the biological
environment.

The most well-known components of a nonlinear ship wake are Korteweg-de
Vries (KdV) solitons (Wu [9], Li and Sclavounos [10]). They can be generated either
directly by the ship motion or by the long-wave part of classical ship waves. When the
latter approaches coastal area, its components frequentlybecome non-dispersive and
highly nonlinear shallow water waves that often resemble ensembles of KdV solitons
(Soomere et al. [11]). Ship wakes may at times contain some other specific types
of disturbances such as monochromatic packets of relatively short waves (Brown et al.
[12]), depression areas penetrating into adjacent basins (Forsman [13]), or supercritical
bore (Gourlay [14]) that are qualitatively different from the usual Kelvin wake.

In this paper, I give an overview of some aspects of nonlinearinteractions of
nearly unidirectional KdV solitons. The description of theclassical Kelvin ship wave
pattern and its changes for increasing ship speeds are sketched first for completeness.
Further, I describe recent developments of the analysis of specific features of interac-
tions of (possibly ship-induced) solitonic waves in the framework of the Kadomtsev-
Petviashvili equation. Finally, potential modifications of the wave shape and applica-
tions of the described results in realistic shallow-water conditions are discussed.

2. Linear wakes

The classical problem of kinematics of ship waves consists in determining the steady
pattern of wave crests (more generally, the phase curves) created by a moving ship in
the framework of the linear wave theory. The first description of the stationary wave
pattern exited by a point source in terms of two sets of waves that move forward and
out from the disturbance (diverging waves), and one set of waves that move in the
direction of the disturbance (transversal waves) was givenby Froude in 1877 [15].
Traditionally, this pattern is called Kelvin wave system, or Kelvin wake (after William
Thomson, Lord Kelvin, who constructed the corresponding theory for deep water in
1887 [16]). The work was expanded by Havelock starting from 1908 [17] to resolve
some discontinuities in the Kelvin model and to include the effects of water depth.

A quick derivation of the Kelvin wave pattern can be found in [18], §256, or
[19] §3.10. The relevant analysis relies on the dispersion relation and needs to apply
only three basic ideas: (i) the wave system is stationary, (ii) the constant phase curves
are perpendicular to the wave vector, (iii) the local phase velocity (celerity)c f must be
equal to the projection of the ship’s velocity in the direction of the wave vector [20,21].
The first and the third conditions simply mean that the pattern of wave crestscreated by
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ship moving steadily with speedV can only be stationary if the wave component trav-
eling under angleθ with respect to the sailing line has the phase velocityc f = V cosθ .
Since the celerity of surface waves in water of an appreciable depth is smaller than
the group velocitycg, energy of a steady wave system can only exist within a triangu-
lar area called Kelvin wedge The half-angleα of the wedge satisfies the geometrical
condition sinα = 1/(2c f c−1

g − 1) and is defined by sinα = 1/3 in deep water. The
basic features of steady wave patterns in deep water therefore do not depend on the
sailing speed. If the ship sails in water of finite depth, the ratio of the phase and the
group velocityc f /cg = 2/[1 + 2kH sinh−1(2kH)] additionally depends on the water
depthH . Yet angleα only depends on the ratioFh = V/

√
gH of the ship’s speed and

the maximum phase velocity of surface waves for the given water depth. This ratio is
called depth Froude number. ForFh < 1, half angleα can be found from equation
cos2 α = [8 − 16kH sinh−1(2kH)] × [3 − 2kH sinh−1(2kH)]−2 [22].

Shallow-water effects become important when wavelength approximately twice
exceeds the water depth, equivalently, whenkH < π . The limiting depth Froude num-
ber for diverging waves at the edge of the Kelvin edge isF̃ht ≈ 0.687. For somewhat
longer transverse waves at the sailing line this threshold is F̃ht ≈ 0.56 [22]. There-
fore, at depth Froude numbers above 0.55–0.7 the ship-generated wave system should
response to the water depth.

If the ship’s speedV = √
gH , angleα reaches the maximum valueα = 90◦.

Frequently, it is claimed (perhaps after [17,22]) that the transverse and the diverging
waves form a single large wave with its crest normal to the sailing line that travels at the
same speed as the disturbance atFh → 1. Such a description is conceptually imprecise,
because what exactly happens at these speeds cannot be described by the linear theory.
However, it is true that that wave heights increase considerably at Fh → 1 and wave
periods increase gradually as the ships speed increases.

The thresholdFh = 1 serves as a natural basis of classification of navigational
speeds. Operating at speeds resultingFh < 1 is defined as subcritical, atFh > 1 as
supercritical and atFh = 1 as critical. There is a relatively wide transcritical speed
range 0.84 / Fh / 1.15 in realistic conditions, where no clear distinction between
sub- and supercritical regimes is possible (Hüsig et al. [23]).

3. Solitonic ship waves

In restricted waters, solitary waves can be generated aheadof the ship bow. John Scott
Russell first documented this phenomenon as he watched in 1834 a canal boat pulled by
horses stopping suddenly (see his description reprinted, e.g., in [24]). Helm [25] prob-
ably first reported that a ship model advancing steadily in towing tank can radiate many
solitons subsequently. At certain speeds close to the speedof the maximum wave resis-
tance, the influence of the ship model extended to 4–5 lengthsof the model upstream
whereas up to 7 wave crests (precursor solitons [9,26]) weredetectable. This is a highly
intriguing phenomenon, because it is very unusual that a “forcing disturbance moving
steadily. . . in shallow water can generate,continuously and periodically, a succession
of solitary waves, propagating ahead of the disturbance” (Wu [9], my italics).
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This phenomenon is not restricted to ship waves only and may occur in many
other areas of research and engineering [9]. It is a generic mechanism of excitation
of disturbances in situations where the nonlinear and dispersive effects are specifically
balanced, and becomes effective when the group velocity of long waves radiated from
the forcing area is close to the velocity of the disturbance.The local wave therefore
obtains energy from the source during a relatively long time. In meteorological ap-
plications, examples of a single long high wave generated bya moving low pressure
disturbance when the disturbance speed is approximately the critical speed were re-
ported long time ago. The resulting wave resembles tsunami wave and is sometimes
called “meteorological tsunami” [27].

Solitonic disturbances resembling Korteweg-de Vries (KdV) solitons frequently
occur far ahead a ship sailing in confined waters at certain speeds (Neuman et al. [28]).
The ship speed is the decisive factor in forming these waves,because for speeds much
less than the critical one the linear waves will effectivelycarry away energy. However,
a ship may excite solitary waves starting already fromFh ≥ 0.2 and such waves can
be found in numerical computations forFh ≥ 0.4 (Ertekin et al. [29]). They are the
largest for the transcritical speeds, and are accompanied by a drastic dropdown of the
water surface near the vessel (Forsman [13], Li and Sclavounos [10]). There exists
an opinion that these solitons are responsible for some disasters (Hamer [5], Li and
Sclavounos [10]). A more probable source of solitonic wavesform the long compo-
nents of diverging waves that become highly cnoidal (Parnell and Kofoed-Hansen [4])
or obtain the shape of KdV solitons (Soomere et al. [11]) in shallow areas.

The theoretical explanation of the phenomenon of generation of precursor soli-
tons was given in (Akylas [30], Cole [31]) for the basically equivalent environments of
a moving disturbance and for a flow past a bump. The upstream-propagating solitons
can be described by a forced Korteweg-de Vries (fKdV) equation with a singular forc-
ing function. Letp = p(x+V t) andb = b(x+V t) represent moving surface pressure
patch (the simplest model of the moving ship) and topographywhereas the velocityV
is nearly critical so thatFh = 1 + ǫδ, whereǫ = (H/λ)2 ≪ 1 for long waves and
δ = O(1). In the coordinate system moving with the pressure patch or topography,
evolution of the water surfacẽη is with the accuracyO(ǫ2) described by the forced
KdV (fKdV) equation [9]:

(3.1)
1√
gH

η̃t +
[

(Fh − 1)− 3

2H
η̃

]

η̃x − H2

6
η̃xxx = 1

2

∂

∂x

(

p

ρg
+ b

)

.

For Fh = 1, p = b = const this equation is the classical homogeneous KdV equa-
tion. The framework of Eq. (1) intrinsically contains only one spatial dimension. First
two-dimensional numerical results showing the existence of waves ahead of the ship
were probably presented by Wu and Wu [32]. They used the generalized Boussinesq
model of Wu [33] and showed that a solitary wave emerges aheadof the pressure distur-
bance and propagates upstream when a pressure patch was moving with a near-critical
speedV ≈ √

gH in a two-dimensional tank. Numerical experiments based on the
Green-Naghdi fluid sheet equation also demonstrated a series of upstream-propagating
soliton-like disturbances ahead of the ship at transcritical speeds (Fh = 0.9 . . . 1.2,
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Ertekin et al. [34,35]). Lee et al. [36] established that theforced KdV model and the
generalized Boussinesq model give similar predictions of this phenomenon and show
a satisfactory agreement with experiments. A comparison between the fully nonlin-
ear model and the two models above was carried out more recently by Casciola and
Landrini [37] with the use of the boundary integral approachto simulate the flow.

4. Interaction of solitonic wakes

Analysis of propagation and interactions of KdV solitons (possibly excited by contem-
porary ships if they sail at transcritical speeds) has an intriguing application not only
in the framework of abnormally high waves in shallow coastalareas hosting intense
ship traffic but also in the general theory of rogue waves. Namely, it has been sug-
gested by many authors that an appropriate nonlinear mechanism could be responsible
for extreme waves [38].

The interaction of unidirectional KdV solitons is today well understood. It does
not create any drastic increase in wave amplitudes [24]. However, amplitude amplifi-
cation may occur under certain conditions when KdV solitonspropagating in different
directions meet each other [39, 40]. It is known as one of the few mechanisms able to
create long-living extremely high wave humps in shallow water [38].

A suitable mathematical model for the description of the interaction of nearly
unidirectional KdV solitons is the Kadomtsev-Petviashvili (KP) equation that admits
explicit formulae for multi-soliton solutions. A well-known feature of such interactions
is that they may lead to spatially localised extreme surfaceelevations. For interacting
waves with equal amplitudes the high humps resemble Mach stem and can be up to
four times as high as the incoming waves. Although known for along time for solitary
waves reflecting from a wall [41], this mechanism has been only recently proposed as
an explanation of the freak wave phenomenon [42]. The reasonis that it may become
evident only (i) provided long-crested shallow water wavescan be associated with
solitons and (ii) provided the KP equation is a valid model for such waves. These
conditions are not common for storm waves; however, they maybe often satisfied
when two or more systems of swell approaching a certain area from different directions.
Groups of solitonic waves intersecting at a small angle may also appear if wakes from
two ships meet each other in shallow water. Their interaction may be responsible for
dangerous waves along shorelines mentioned in [5].

The nondimensional KP equation for surface gravity waves inshallow water
reads (Segur and Finkel [43])

(4.1) (ηt + 6ηηx + ηxxx)x + 3ηyy = 0.

The nondimensional(x, y, t, η) and physical variables(x̃, ỹ, t̃, η̃) are related as fol-
lows: x = √

ǫ(x̃ − t̃
√

gH)/H , y = ǫ ỹ/H , t = t̃
√

ǫ3gH/H , η = 3η̃/(2ǫH) + O(ǫ)
whereasǫ = |η̃max|/H ≪ 1. The two-soliton solution to the KP equation can be de-
composed into a sumη = s1 + s2 + s12 of two incoming solitonss1, s2 and residues12
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Figure 1: Surface elevation in the vicinity of the interaction area, corresponding to
incoming solitons with equal amplitudesa1 = a2, l1 = −l2 = 1/3, kres = √

1/3 and
k = 0.999kres. Area 0≤ z ≤ 4a1, |x| ≤ 30, |y| ≤ 30, in normalised coordinates is
shown.

(Peterson and van Groesen [44]):

s1,2 =
√

A12k
2
1,22

−2 cosh
(

ϕ1,2x + ln
√

A12

)

,

(4.2) s12 = 22−2
[

(k1 − k2)
2 + A12 (k1 + k2)

2
]

,

2 = cosh
ϕ1 − ϕ2

2
+ cosh

ϕ1 + ϕ2 + ln A12

2
.

Hereϕi = ki x+l i y+ωi t , κi = (ki , l i ), a12 = 1
2k2

1,2, i = 1,2, are the wave vectors and
amplitudes of the incoming solitons, the frequenciesωi satisfy the dispersion relation
kiωi + k4

i + 3l 2
i = 0 of the linearized KP equation,A12 = [λ2 − (k1 − k2)

2]/[λ2 −
(k1 + k2)

2] is the phase shift parameter andλ = l1k−1
1 − l2k−1

2 . Within restrictions
of the KP model, interaction may result in either the positive or the negative phase
shift 1 = − ln A12 of the counterparts. The interaction pattern (Fig. 1) is always
symmetric with respect to a particular point called interaction centre, and is stationary
in a properly moving coordinate frame.

5. Phase shifts, extreme elevations and slopes, and crest geometry

The phase shiftsδ1,2 of the counterparts (Fig. 2) only depend on the amplitudes of
the incoming solitons and the angle between their crests. Relations for the phase shifts
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Figure 2: Idealized patterns of crests of incoming solitons(bold lines), their position in
the absence of interaction (dashed lines) and the interaction soliton (bold dashed line)
corresponding to the negative phase shift case.

δ1,2 = ln A12/|κ1,2| and for the intersection angle 2 tan1
2α̃12 = λ can be simplified to

one transcendental equation with respect to either of the amplitudes of the interacting
solitons [44]

(5.1) δ1

√

2a1(1 + λ2/4) = ± ln
δ2

2λ
2 − 2(δ2 − δ1)

2a2
1

δ2
2λ

2 − 2(δ2 + δ1)2a2
1

.

This angleα12 and the magnitudes of the phase shiftsδ1,2 can be estimated, e.g. from
aerial photos. If the sign of the phase shift is known, equation (5.1) uniquely defines
the heights of the interacting solitons. The sensitivity ofthis method and several sim-
plifications of Eq. (5.1) are discussed in Peterson and van Groesen [45].

For the negative phase shift caseA12 > 1 (that is typical in interactions of soli-
tons with comparable amplitudes) an interaction pattern emerges, height of which ex-
ceeds that of the sum of the two incoming solitons (e.g., Miles [41], Tsuji and Oikawa
[46]). When two waves of arbitrary amplitudesa1 anda2 meet, the maximum ampli-
tudeM of their superposition can be written asM = m(a1 + a2), where the “nonlinear
amplification factor”m may depend on botha1 anda2 and their intersection angle. The

maximum surface elevation for equal amplitude solitons isamax = 4a1,2/
(

1 + A−1/2
12

)

[41,47]. Thus, nonlinear superposition of two equal amplitude solitons may lead to a
fourfold amplification of the surface elevation in the resonance caseA12 → ∞. In a
highly idealized case of interactions of five solitons surface elevation may exceed the
amplitude of the incoming solitons by more than an order (Peterson [48]).

The extreme water level elevations occur if the solitons intersect under a phys-
ical angleα̃12 = 2 arctan

√

3η̃/h [42]. This angle for two intersecting ship-generated
solitary waves in realistic conditions is reasonable. It isabout 36◦ for waves with
heightsη̃ = 1.8 m (the maximum ship wave height mentioned in [6]) meeting each
other in an area with a depth of 50 m, and about 70◦ for waves with heights̃η = 0.8
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m in the coastal zone with a depth of 5 m. Solitons intersecting at the former angle
apparently can be described by the KP equation. The latter angle may be too large for
this framework.

For unequal amplitude solitons the maximum elevationamax for finite A12 and
the amplitude of the resonant solitona∞ at A12 = ∞ are

(5.2) amax = a12 + 2A1/2
12

a1 + a2
(

A1/2
12 + 1

)2
, a∞ = (k1 + k2)

2

2
.

The expression fora∞ probably has been first obtained for exact resonance of ion-
acoustic solitons in a field-free plasma [49] directly from the resonance conditions
assuming that the new structure is a KdV soliton and re-derived from the conditions
for stationary points of the explicit two-soliton solutionof the KP equation in [50]. A
simple derivation of expressions (5.2) based on decomposition (4.2) is given in [51]. It
is easy to show that both the incoming solitons and the residue have an extremum at
the interaction centre. The nontrivial part of the derivation consists in proving that the
global extremum of the composite structure is located at thesame point. An elementary
proof can be constructed with the use of the fact that every extremum of a 2D surface
must correspond to a singularity point of a certain isoline [51].

Certain geometrical features of interaction of long-crested waves in the frame-
work of two-soliton solutions of the KP equation have been analysed in [42,47,51].
In the simplest approximation, the high hump in the framework of soliton interactions
may be associated with the area where the interacting waves have a common crest
[42]. Its length is proportional toL12 ∼ ln A12 [42] and therefore is modest unless
the interacting solitons are near-resonant. For equal amplitude incoming solitons, the
length of the area where the elevation exceeds the sum of amplitudes of the counter-
parts may considerably exceed the estimates based on the geometry of the wave crests
[47]; however, this length also is roughly proportional to ln A12.

The amplification factorm = 1 + 2k1k2/(k2
1 + k2

2) ≈ 2 when the amplitudes
of the interacting solitons differ insignificantly and is close to 1 when the incoming
solitons have fairly different amplitudes. Therefore, forlargely different amplitudes
of the interacting solitons the amplitude amplification remains modest. However, the
spatial extent of the influence of nonlinear interaction of solitons with considerably
different amplitudes is roughly as large as if the amplitudes were equal. The interaction
mostly leads to bending of the crests of both the counterparts (Fig. 3). This effect may
lead to hits by high waves arriving from an unexpected direction.

The process of formation of the high wave hump has been recently studied in
[52] based on numerical simulation of collision of truncated (semi-infinite) structures
with sech2 profile, height of which varies along the crest. Since the initial profiles of
the interacting waves are effectively two-dimensional, transversal energy flow along
the crests supposedly occurs, and the results are not directly comparable with the ones
presented above. However, an extremely high wave hump, the height of which con-
siderably exceeds the sum of the heights of the counterparts, is formed quite fast in
a certain interaction region. Evolution and interactions of solitary waves localized in
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Figure 3: Surface elevation in the vicinity of the interaction area, fork2 = 1/3, l1 =
−l2 = 0.2, kres = 0.6 andk1 = 0.9999kres in normalised coordinates(x, y). Area
|x| ≤ 60, |y| ≤ 90 is shown.

one half-plane have been studied numerically by Tsuji and Oikawa [53] also in the
framework of the modified KP (mKP) equation in which the quadratic term of the KP
equation is replaced by cubic term 6η2ηx. As different from the classical KP equation,
the mKP equation admits both positive and negative solitarywave solutions. Inter-
action of positive solitary waves results either in structures containing very high and
narrow wave hump or in transforming the incoming waves into asequence of much
smaller waves.

Plots of two-soliton solutions in Peterson et al. [42], Peterson and van Groesen
[44], Haragus-Courcelle and Pego [54] suggest that the near-resonant high hump is
particularly narrow and its front is very steep. This feature can be recognized also in
experiments with the Mach reflection of supercritical ship wakes in narrow channels
(Chen et al. [55]) where the highest part of the wave hump generally is narrower than
the incoming solitons. The area of extreme elevations is very narrow indeed whereas
the front of the resulting structure may be very steep. The maximum slope of the front
of the two-soliton solution may be eight times as large as theslope of the incoming
solitons, giving the relevant maximum “nonlinear slope amplification factor” equal to
4 [47]. For unequal amplitude solitons, the amplification ofthe slope of the front of the
interaction pattern is proportional to the amplitude amplification [56].

The extraordinary steepness of the front of the near-resonant hump, although
intriguing, is not totally unexpected, because the resonant KdV soliton is higher and
therefore narrower than the incoming solitons. This feature may be a manifestation of
the new physics, which seems to be necessary to correctly describe factually measured
rogue waves [57].
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6. Soliton interactions in realistic conditions

The above has shown that the extension of the particularly high hump in nonlinear
interaction of KdV solitons normally is modest, and has a considerable length only
when the heights of the incoming waves, their intersection angle and the local water
depth are specifically balanced. Consequently, the fraction of sea surface occupied by
extreme elevations is apparently small as compared with thearea of a wave storm or
area covered by ship wakes.

However, an important difference should be underlined between high waves
possibly excited by the described mechanism and those arising owing to focusing of
transient and directionally spread waves. In the latter case a number waves with differ-
ent frequencies and propagation directions are focused at one point at a specific time
instant to produce a time-varying transient wave group thatnormally does not propa-
gate far from the focussing area [38]. A wave hump from nonlinear interaction, theo-
retically, has unlimited life-time and may cross large sea areas in favourable conditions
[38]. Thus, one should account for the expected life-time ofnonlinear wave humps
(additionally to the sea area covered by extreme elevation at a certain time instant)
when estimating the probability of occurrence of abnormally high waves. One could
speculate that such high and steep wave hump might easily break before it reaches
its theoretically maximum height, or after if propagates into an area where the condi-
tions for existing of the two-soliton solution are not satisfied [42]. The possibility of
breaking of the high and nonlinear wave hump makes a hit by a near-resonant structure
exceptionally dangerous.
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[23] HÜSIG A., L INKE T. AND ZIMMERMANN C., Effects from supercritical ship operation on inland
canals, J. Waterw. Port Coast. Ocean Eng. — ASCE126(2000), 130–135.

[24] DRAZIN P.G.AND JOHNSONR.S.,Solitons: an introduction, Cambridge Texts in Applied Mathemat-
ics, Cambridge University Press, Cambridge 1989.

[25] HELM K., Tiefen- und Breiteneinfl̈usse von Kan̈alen auf den Schiffswiderstand, in: “Hydromechanis-
che Probleme des Schiffsantriebs, Teil II, Veröffentlichung der Vortr̈age, die anl̈asslich des 25-jähri-
gen Bestehens der Hamburgischen Shiffbau-Versuchungsanstalt an 14. Juni 1939 gehalten wurden,
Kempf G. (Herausgeber)”, Verlag von R. Oldenbourg, München und Berlin 1940, 144–171 (in Ger-
man).

[26] WU D.M. AND WU T.Y., Precursor solitons generated by three-dimensional disturbances moving in
a channel, in “IUTAM Symposium on Non-linear Water Waves, August 25–28, 1987”, Tokyo 1987.

[27] RABINOVICH A.B. AND MONSERRAT S., Generation of meteorological tsunamis (large amplitude
seiches) near the Balearic and Kuril Islands, Natural Hazards18 (1998), 27–55.

[28] NEUMAN D.G., TAPIO E., HAGGARD D., LAWS K.E. AND BLAND R.W., Observation of long
waves generated by ferries, Can. J. Remote Sens.27 (2001), 361–370.

[29] ERTEKIN R.C., WEBSTERW.C., AND WEHAUSEN J.V.,Waves caused by a moving disturbance in a
shallow channel of finite width, J. Fluid Mech.169(1986), 275–292.

[30] AKYLAS T., On the excitation of long nonlinear water waves by a moving pressure distribution, J.
Fluid Mech.141(1984), 455–466.

[31] COLE S.J.,Transient waves produced by flow past a bump, Wave Motion7 (1985), 579–587.



298 T. Soomere

[32] WU D.M. AND WU T.Y., Three dimensional nonlinear long waves due to moving surface pressure,
in “Proc. 14th Symp. Naval Hydrodyn. Ann Arbor, Michigan”, National Academy Press, Washington
1982, 103–129.

[33] WU T.Y., Long waves in ocean and coastal waters, J. Eng. Mech. Div. ASCE107(1981), 501–522.

[34] ERTEKIN R.C., WEBSTERW.C. AND WEHAUSEN J.V.,Waves caused by a moving disturbance in a
shallow channel of finite width, J. Fluid Mech.169(1986), 275–292.

[35] ERTEKIN R.C., WEBSTER W.C. AND WEHAUSEN J.V., Ship-generated solitons, in “Proc. 15th
Symp. Naval Hydrodyn., Hamburg, Germany”, The National AcademyPress, Washington 1984, 347–
364.

[36] LEE S.J., YATES G.T. AND WU T.Y., Experiments and analyses of upstream-advancing solitary
waves generated by moving disturbances, J. Fluid Mech.199(1989), 569–593.

[37] CASCIOLA C.M. AND LANDRINI M., Nonlinear long waves generated by a moving pressure distur-
bance, J. Fluid Mech.325(1996), 399–418.

[38] KHARIF C. AND PELINOVSKY E.,Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech.
B Fluids22 (2003), 603–634.

[39] HAMMACK J., MCCALLISTER D., SCHEFFNERN. AND SEGURH., Two-dimensional periodic waves
in shallow water. Part 2. Asymmetric waves, J. Fluid Mech.285(1995), 95–122.

[40] HAMMACK J., SCHEFFNERN. AND SEGUR H., Two-dimensional periodic waves in shallow water, J.
Fluid Mech.209(1989), 567–589.

[41] M ILES J.W.,Resonantly interacting solitary waves, J. Fluid. Mech.79 (1977), 171–179.

[42] PETERSON P., SOOMERE T., ENGELBRECHT J. AND VAN GROESEN E., Soliton interaction as a
possible model for extreme waves in shallow water, Nonlinear Process. Geophys.10 (2003), 503–510.

[43] SEGUR H. AND FINKEL A., An analytical model of periodic waves in shallow water, Stud. Appl.
Math.73 (1985), 183–220.

[44] PETERSON P. AND VAN GROESEN E., A direct and inverse problem for wave crests modelled by
interactions of two solitons, Physica D141(2000), 316–332.

[45] PETERSONP. AND VAN GROESENE., Sensitivity of the inverse wave crest problem, Wave Motion34
(2001), 391–399.

[46] TSUJI H. AND OIKAWA M., Oblique interaction of internal solitary waves in a two-layer fluid of
infinite depth, Fluid Dyn. Res.29 (2001), 251–267.

[47] SOOMERET. AND ENGELBRECHTJ.,Extreme elevations and slopes of interacting solitons in shallow
water, Wave Motion41 (2005), 179–192.

[48] PETERSONP.,Multi-soliton Interactions and the Inverse Problem of WaveCrests, Ph.D. Thesis, Tallinn
Technical University, Tallinn 2001.

[49] GABL E.F.AND LONNGRENK.E.,On the oblique collision of unequal amplitude ion-acousticsolitons
in a field-free plasma, Phys. Lett. A100(1984), 153–155.

[50] DUAN W.-S., SHI Y.-R. AND HONG X.-R., Theoretical study of resonance of the Kadomtsev-
Petviashili equation, Phys. Lett. A323(2004), 89–94.

[51] SOOMERE T., Interaction of Kadomtsev-Petviashvili solitons with unequal amplitudes, Phys. Lett. A
332(2004), 74–81.

[52] PORUBOV A.V., TSUJI H., LAVRENOV, I.V. AND OIKAWA M., Formation of the rogue wave due to
non-linear two-dimensional waves interaction, Wave Motion42 (2005), 202–210.

[53] TSUJI H. AND OIKAWA M., Two-dimensional interaction of solitary waves in a modifiedKadomtsev
Petviashvili equation, J. Phys. Soc. Japan.73 (2004), 3034–3043.

[54] HARAGUS-COURCELLE M. AND PEGO R.L., Spatial wave dynamics of steady oblique wave interac-
tions, Physica D145(2000), 207–232.



Rogue waves 299

[55] CHEN X.-N., SHARMA S.D. AND STUNTZ N., Zero wave resistance for ships moving in shallow
channels at supercritical speeds. Part 2. Improved theory and model experiment, J. Fluid Mech.478
(2003), 111–124.

[56] SOOMERE T. AND ENGELBRECHT J., Extreme elevations and slopes of interacting Kadomtsev-
Petviashvili solitons in shallow water, in: “Proc. of a workshop organized by IFREMER and held
in Brest, France, 20-22 October 2004” IFREMER Actes de Colloques39, Brest 2005, 92–101.

[57] WALKER D.A.G., TAYLOR P.H. AND TAYLOR R.E.,The shape of large surface waves on the open
sea and the Draupner New Year wave, Applied Ocean Research26 (2004), 73–83.

AMS Subject Classification: 76B25, 76B15, 76B20, 35Q51, 35Q53.

Tarmo SOOMERE, Centre for Non-linear Studies, Tallinn University of Technology, Akadeemia tee 21,
12618 Tallinn, ESTONIA
e-mail:soomere@cs.ioc.ee





Special issues and Conference Proceedings
published in Rendiconti

Stochastic Problems in Mechanics (1982)

Linear Partial and Pseudo-differential Operators (1983)

Differential Geometry on Homogeneous Spaces (1983)

Special Functions: Theory and Computation (1985)

Algebraic Varieties of Small Dimension (1986)

Linear and Nonlinear Mathematical Control Theory (1987)

Logic and Computer Sciences: New Trends and Applications (1987)

Nonlinear Hyperbolic Equations in Applied Sciences (1988)

Partial Differential Equations and Geometry (1989)

Some Topics in Nonlinear PDE’s (1989)

Mathematical Theory of Dynamical Systems and ODE, I-II (1990)

Commutative Algebra and Algebraic Geometry, I-III (1990-1991)

Numerical Methods in Applied Science and Industry (1991)

Singularities in Curved Space-Times (1992)

Differential Geometry (1992)

Numerical Methods in Astrophysics and Cosmology (1993)

Partial Differential Equations, I-II (1993–1994)

Problems in Algebraic Learning, I-II (1994)

Number Theory, I-II (1995)

Geometrical Structures for Physical Theories, I-II (1996)

Jacobian Conjecture and Dynamical Systems (1997)

Control Theory and its Applications (1998)

Geometry, Continua and Microstructures, I-II (2000)

Partial Differential Operators (2000)

Liaison and Related Topics (2001)

Turin Fortnight Lectures on Nonlinear Analysis (2002)

Microlocal Analysis and Related Topics (2003)

Splines, Radial Basis Functions and Applications (2003)

Polynomial Interpolation and Projective Embeddings - Lecture Notes
of the School (2004)

Polynomial Interpolation and Projective Embeddings - Proceedings of
the Workshop of the School (2005)

Control Theory and Stabilization, I-II (2005-2006)

Syzygy 2005 (2006)

Subalpine Rhapsody in Dynamics (2007)

ISASUT Intensive Seminar on Non Linear Waves, Generalized Continua
and Complex Structures (2007)



Rendiconti del Seminario Matematico
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