Rend. Sem. Mat. Univ. Pol. Torino - Vol. 65, 2 (2007)
ISASUT Intensive Seminar

J. Engelbrecht - J. Jannd

MICROSTRUCTURED SOLIDS AND INVERSE PROBLEMS

Abstract. Microstructured solids are characterized by their diggensroperties and disper-
sive effects can be used for solving the inverse problemsfareNondestructive Testing. In
this paper the Mindlin-type one-dimensional model is derif@dongitudinal wave motion
in such solids. In case of linear approximation, the invensblems based on harmonic
waves and localized boundary conditions are posed anddsakging the measurements of
phase and group velocities and phase shifts. The full neatimodel leads to solitary waves
due to the balance of dispersive and nonlinear effectstieguh an asymmetric solitary
wave. In this case the characteristics of wave profiles aed tor solving an inverse prob-
lem.

1. Introduction

Contemporary materials are often characterized by theiptex structure at various
scales. For short, such materials are refered to as “miaaiated materials”. The mi-
crostructural properties influence strongly the macroabiur of compound materials
and/or structures, that is why stress analysis should bedbas proper modelling of
possible physical effects caused by the microstructureo gessible classes of prob-
lems must be distinguished: (i) given the properties of tla¢emial and its constituen-
cies, and external disturbance, determine the global lheina\(ii) given the external
disturbance and the global behaviour, determine the ptiepef the material. The first
class is identified as direct problems, the second — as iy@blems. In technical
terms, the second class (inverse problems) is the Nondés&uesting (NDT) with
the aim to determine the physical and/or geometrical pteggeof materials (speci-
mens) by measuring the wave fields at given excitations. Bygugltrasound, NDT
has found wide range of applications not only in engineebimtgalso in medicine.

The ideas of using ultrasound in NDT have been developee@ shecdiscovery
of the piezoelectric effect in quartz in 1880 (see [1]). Téhesas were developed further
for detecting objects in water (or air) and for detecting #aw solids. Overviews on
later applications are given in [2] - [5], for example.

Quite often in engineering applications of NDT, simplifie@timematical mod-
els are used and the origin of these models, based on contimechanics, is for-
gotten. In [6], a simple straight-forward idea is advocaffed theoretical background
of NDT, the conservation and constitutive laws should bé&edtdirst in the full cor-
respondence to the axioms of continuum mechanics. The matamuld be rather
complicated but all the possible simplifications (appraaiions) of the basic model
should be based on clear procedures retaining the effettie shme order of accuracy.
Only then the solutions of the inverse problems reflecteali
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In most general terms, microstructured materials meancpgtalline solids,
ceramic composites, functionally graded materials, geamaterials, etc. The exis-
tence of grains, inclusions, layers, block walls, etc. -ttedt refers to microstructure.
There are powerful methods in continuum mechanics in oldescribe such materi-
als or the existence of irregularities in materials stgrfnrom early studies of Cosserats
and Voigt up to contemporary formulations [7]. The straifgrivard modelling of mi-
crostructured solids leads to assigning concrete phygioglerties to every irregularity
or to every volume element in a solid. This means introdudingct dependencies of
all the physical properties on material coordinates andsequently leads to an ex-
tremely complex system. Another approach is to separateanand microstructure
in continua. Then the conservation laws for both structsresild be separately for-
mulated [7, 11] or the microstructural quantities are safgdy taken into account in
one set of conservation laws [8].

In this paper, we present a mathematical model for microsirad solids fol-
lowing the ideas of separating macro- and microstructutg [Ihe details of modelling
are described in [12, 13]. Based on that model, inverse pnoblin one-dimensional
(1D) setting are posed and solved by making use of wave fieddackeristics. Pre-
sented are the main ideas whereas the uniqueness andstabitirems are published
elsewhere [14, 15].

In Section 2 the basic assumptions are presented and themmeatibal model is
derived. The physical effects described by such a modelistexllin Section 3. The
focal point of this paper is Section 4 where three inverséleras are posed and their
solutions briefly envisaged. In Section 5, results are sudnmpe

2. Mathematical model

We start from the Mindlin model [11] for microstructuredisial. This model has a clear
physical background interpreting the microstructure derdeable cells which can be
“amolecule of a polymer, a crystallite of a polycrystal oraig of a granular material”.
The displacement of a material particle in terms of macrostructure is defiredsual
by its components; = x — X, wherex;, X;(i = 1, 2, 3) are the components of
the spatial and material position vectors, respectivelythWW each material volume
there is a microvolume (microstructure) and the microdispinentu’ is defined by
ui = x — X{, where the origin of the coordinates moves with the displacement
u. The displacement gradient is assumed to be small and thaitpeo use the basic

assumption of the Mindlin model
1) U} = Xiepkj (Xi, 1)
and consequently

ou’
@) o0 = i =a.

Further we limit ourselves to the 1D case (see discussioreati@ 5) and
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denoteu; = u, ¢11 = ¢. The fundamental balance laws are formulated separately fo
macroscopic and microscopic scales.

We assume that free energy functdhhas the formiW = W5 + W3, whereW,
is the simplest quadratic function

1
3) W, =2 <au§ + B2+ Cp2 + 2A<pux>
andWs includes nonlinearities on both the macro- and microlevel

1
Herea, A, B, C, N and M are constants and indices here and below denote differen-

tiation. The non-quadratic potentisls is the first approximation towards nonlinear
theory. Then the governing equations (for details, see]2Pare the following:

(4) W3

%) pUtt = alxyx + NUxUxx + Ay,

(6) lptt = Coxx + Moxoxx — Aux — Bo,

wherep is the macrodensity, anidis the microinertia. It can be shown that this system
can also be interpreted as a balance of pseudomomentumffirahat see [16].

Let us rewrite this system (5), (6) in dimensionless vagall = x/L, T =
tco/L, U = u/Ug, whereUg is the amplitude of an excitation, ahd- the wavelength
of an excitation, anatg = a/p. Note thaty is already dimensionless. We introduce
also the geometric parametets= 12/L2, ¢ = Uo/L, wherel is the scale of the
microstructure. System (5), (6) yields then

Ne A
() Urt = Uxx + —5UxUxx + —5¢x,
pCH pCHE
(8) Sal*orT = 8C* pxx + 8% M*pxpxx — AcUx — By,

wherel = 1*pl2,C = C*l2andM = M*|3.

For further analysis we eliminate microdeformatiprirom (7), (8) by making
use of the slaving principle [16, 17]. This results in thddaling hierarchical govern-
ing equation fot

) Urr = (=) Uxx+ 5 UHx +8(BUTT — ¥ Uxx)xx —
A
53/2§<U§x)xx,
where
b— A2 _ Ne ﬁ_Azl* _A2c* _ASM*e
“aB T a B2 VT aBZ - aB3

This is the sought model equation for longitudinal wavesDnsktting.
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3. Direct problem: physical effects

Equation (9) is a comparatively simple model but surprisirrgch. For the sake of
further analysis we separate lingdt = M = 0) and nonlineakN # 0, M # 0)
cases. In the linear case

(10) Urt = (1 —b) Uxx +8(BUtT — ¥ Uxx)xx

the hierarchical structure is explicitly seen. Indeed, @€) includes two wave opera-
tors - one for macrostructu & macro = UtTt — (1 — b) Ux %), another for microstruc-
ture (Lmicro = BUTT — ¥ Uxx). If the scale parametéris small thenLmicro can
be neglected; ib is large then on contrary the influence of macrostructuredaker
and Lmacro Can be neglected; clearly the intermediate case includisdffects. The
wave speed in the compound material is affected by the miadsre (lversus) and
clearly only A = 0 excludes this dependence. The influence of the microsteicin
wave motion is, as expected, characterized by dispersiwesteHowever, the double
dispersion occurs due to the different higher order teflhsr x x andUx x x x) — cf.
[16, 18].

The dispersion analysis [12, 13] shows that the phase ¥gldepends strongly
on the wave number, i.e. on frequency of the excitation. €gusntly, this effect could
be used for solving the inverse problem in the linear setting

In nonlinear case of Eq. (9) wittN # 0, M # 0), dispersive and nonlinear
terms act together. From the theory of nonlinear waves i@ that if dispersive and
nonlinear effects are balanced, then solitary waves maygamé would be of interest
to analyse this case separately from the viewpoint of anrseveroblem — can the form
of a solitary wave (if it exists) give information about theoperties of microstructure?

In what follows, we present the main ideas of solving the iisgeproblems
in linear (Eq. (10)) and nonlinear (Eq. (9)) cases. In otherds, we are going to
determine the coefficients of these equations related tsipdlyparameters in (3), (4),

(5). (6).

4. Inverse problems

4.1. Linear case, harmonic waves

For sake of simplicity, we rewrite Eq. (10) with lower castides
(11) Ut = (1 — b) Uxx + 8(B Uttxx — ¥ Uxxxx)-

Obviously (see Eqg. (3, 8, 8, y are positive and < 1. If we consider the
scale parametérto be known, then the number of parameters to be determimedefo
inverse problem is three.

Assume that Eqg. (11) has a solution in the form of harmonicasav

(12) u(x,t) = exdikx — wt)],
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wherek andw are the wave number and frequency, respectively. Then thsepbe-
locity cph is determined by

sk +1—b\ "
1 = (X0
( 3) Cph( ) ( 5/3|(2+1 )

The inverse problem is the following: given three phase aiti&s cpn(ky),
Cph(k2), andcpn(ks) which correspond to wave numbeds kp, ks such thakf + k3,
k? # k2, k5 # k2, determine the parametelbsg, andy. The qualitative behaviour
of phase velocities is shown in Fig. 1. This means solvingsiysem of nonlinear
equations with three unknowns

(14) ki) (8ykj2+1_b>1/2 =123
Con(Kj) = | ——5 ; I=L42s3
3pKE + 1

ph

c
macro

C .
micro

Figure 1: Qualitative behaviour of phase velocities. H&kgcro and Cmicro
denote the velocities in pure macro- and microstructuspeetivelycj, j =
1, 2, 3 are phase velocitiegh (kj).

Actually it is possible to transform Eq. (14) to a more suigefiorm for practical
solution

(15) b+ sk¥ch, (kB — 8k¥y = 1 — chu(k)), j=123.

The detailed analysis of uniqueness of solution to Eq. @ &)ven in [14].



164 J. Engelbrecht - J. Janno

4.2. Linear case, localized boundary condition

In practice of NDT, the excitations (boundary conditions) asually localized. The
general solution to Eq. (11) satisfying the boundary céoditi(0,t) = g(t) is the
following:

(16) uix,t) = % /OO G(w) exp[i (k(w)Xx — wt)] dw,

a7 G(w) = /Oo g(t) exp(i wt)dt.

We assume now

t2 .
(18) gt) = Aexp (—m> exp(—int),

whereA, v are given and is the fixed frequency.
Then expression (16) yields (for details see [17])

A & .
(19) ux,t) = T; [w exp[—vz(w - n)z] exp[i (K(w)x — wt)] do.

Further on, we use an approximation and dekye) into the Taylor series
aroundw = n. Keeping three first terms, we have

1
(20) K(w) ~ k(n + K (1@ = n) + 5K (D@ — 2,

where prime denotes differentiation. From the definitioplodise and group velocities
we determine

n , 1
21 k(n)=—, K@mn=—
(21) (m Con ()] Cq

and denotel = k" ().
The real part of the integral (19) can now be evaluated [@i4]€notes the ap-

proximation):
(22) Rai(x,t) = Ay(X) exp[—vz f1(X, t)] cos[n (i - t) DX
Cph
— xdfi(x,t)],

(23) AL = Av(v* + x2d?)" 1,

1 ( X )2 4 2421
(24) fl(X7 t) =-—-t (l) + X d ) )
4\cq
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arctanjxd

(25) (x) ~

From (22) - (25) it follows that the amplitude of the wave icdEsing with
increasingk and the dispersion of the normal distributiongi¢t) is increasing. So it is
possible to determine the numhskfrom the measurement.

The inverse problem stated now is the following: given thagghand group
velocitiescph, ¢g and the numbed, determine the parametesg, y. This problem
has the unique solution providegy # cq:

1
(26) B = m(m:(m) -1,
(27) y = 2% (degF(m) — Con),
(28) b = 1+ cph [4(cg — Cpn) F (M) — Cpp]
with

C 2dm§ -1
29 Fm=|-3%__ "9 |
(29) (m) |:Cph - Cphi|

wherem is the wave number corresponding to the frequepeynd the condition G<
F~1(m) < 4 must be satisfied in order to get positj$e

4.3. Nonlinear case, solitary wave

As in Section 4.1, we rewrite the basic equation — Eq. (9) \ather case letters. As
far as here is no need to distinguish the wave speed commioemhicrostructure, we
denote byb; = 1 — b. Equation (9) reads then in termswf= uy

% A
(30) vt = by vxx + E(Uz)xx + 86(Butt — Y uxx)xx — 53/2§(v§)xxx-

First we establish a solution to the direct problem and thmatyse the possibil-
ities to solve the inverse problem. We seek the travellingesa

(32) v(Xt) = w(X — ct) = w(§)

wherec is a free parameter (velocity of the wave) an¢) satisfies the equation
" " )\' / "
(82 (@—bpuw’— S -8B~y +5%25 [w)?] =o.

When looking for solitary waves, the conditions¢), ' (&), »”(§) — 0 as|é| — oo
should be satisfied. After integrating Eq. (32) three tintefqre the last integration
multiplying by «’), we obtain

@) 55 (8 ) ()7 - 35V ()’ =

3 (C2 — b1> w? — E,U,w3.

6

NI =
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It can be proved [18] that for the existence of the solitaryevsolution the following
in equalities should be satisfied

(34) B —y #0, P—b1#0, pu#O0.
In addition, the necessary solvability condition is
(35) <02 - bl) / (ﬂcZ - y) > 0.

Now we introduce the following three parameters which haaain physical
or geometrical meaning:

3/2
T Bl SN it VIR it ¥ IS
8(Bc2—y)’ 2 ' B2 —y nw

In terms of these parameters, Eq. (33) has the form

N AP S w
(37) () = — (@) = ?w (1—A).

Figure 2: Solitary wave in case Figure 3: Solitary wave in case
6=09 6=-09

The parameter is the exponential decay rate of the solutiongs— oc. The
inverse of decay rate/k is usually referred to as the width of the wave. Paramater
is actually the amplitude of the wave and paramétés related to the asymmetry of
the wave. We remind now that in our model two nonlinearitiestaken into account:
on the macrolevelu % 0) and on the microlevelr # 0) —cf. Eq. (9). IfA =0, i.e.
nonlinearity on the microlevel is neglected then a symrodteil-shaped solitary wave
can be found [16, 18]

(38) w(€) = Acoslt (%) .
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In casen # 0, A # 0, the situation is more complicated and we have used
numerical integration for finding the solitary wave. Two eyaes of solitary waves,
computed by means of the second-order Adams-Bashforthomhedine depicted in Figs
2, 3, wherer = k&, y = w/A. The results are clearly asymmetric. Let us fix same
relative levely € (0, 1) and consider the front and rear half-lengths of the waveiat th
level — namely the quantitid§ —(y A)| and|£T(y A)|. The asymmetry at this level is
the ratio of those quantities which depends on [18]:

EF(yA)
1E= (YAl

whereFy(9) is an increasing function df in the interval (-1,1) andry(0) = 1. The
details on complicated functiofy are presented in [15].

In the model equation (30) there are 5 material paraméberg:, 8, y, A which
need to be determined in the NDT. Measuring just a singleéasglwave, one could
recover maximally, A, andd, i.e. only 3 parameters. That is why for solving the full
problem, one should use the measurements of two independitatry waves [19].
The full procedure is formed by two stages. As before, weragsuto be known.

The first stage is to determine the parameters of macrosteyth andu. Let
be given two solitary waves; andw; with the velocitiesc; andcp, and amplitudes
A1 and A2.

We expect that the conditiomé + c% and henceA; # Ay are satisfied. Then
from expressions (36) we have the system

(39) = Fy(0),

(40) D1+ Au=3? j=12
J ]

which determine uniquellg; andpu.

The second stage is to find other unknovis, A. For that not only the am-
plitudesAj andc;j should be known but also some additional information. Weviix t
numberswi1, w12 Which lie between 0 and\y; for the first solitary wave at both sides
of the maximum amplitudé\;, respectively and a numbar,1 which lies between 0
and A; for the second solitary wave. We need also to registrer tifmenthe first wave
reacheswi1, w = Az, andwjz and the second w»1 andw = Ap. Then knowing
¢ andcy, the corresponding coordinatés, £12 andé&»; can be calculated. Note that
& = 0 for both A; and A,. Now the inverse problem posed is the following: given
b1, u, the points(&11, wi11), (€12, wi2) with £&11 > 0, £12 < 0 on the graph of the first
wave and the pointzs, wo1) with £&21 # 0 on the graph of the second wave, determine
B. v, .. The details of solving this inverse problem with the probfte uniqueness
and a stability estimate are given in [19].

5. Summary

It has been demonstrated how to solve the inverse probleretefrdining the mate-
rial parameters from wave characteristics in microstngctunaterials. The following
physical effects have been used: (i) the dependencies se@ral group velocities on
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wave numbers and (ii) the asymmetric structure of solitaayes. The measurements
of velocities are easily carried on, the measurements oéwaofiles need higher ac-
curacy. However, the experimental studies of strain wavesicrostructured materials
[20] have demonstrated the asymmetry of solitary waveshifdase tungsten-epoxy
composites were used with reference samples made of alumini

In practical realizations the ultrasonic transducers aegldior generating waves
in samples. In principle, the generated wave beams are matlinmensional but the
diffractional expansion in the transverse direction isieatweak. On the axis of the
wave beam, the 1D approximation is possible [21].
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J. F. Ganghoffer

DIFFERENTIAL GEOMETRY, LEAST ACTION PRINCIPLES
AND IRREVERSIBLE PROCESSES

“Les plenongnes ireversibles et le #oréme de Clausius ne sont pas explicables au
moyen degquations de Lagrange'Poincagé, 1908.

Abstract. This contribution is intended as both a course on diffeedrgeometry and an

illustration of the involvement of differential geometry imet calculus of variations, in articu-
lation with the occurrence of irreversibility. Potentigidications in terms of the continuous
symmetries of the constitutive laws of dissipative materiaéide mentionned, leading po-
tentially to a systematic and predictive approach of the tooson of the so-called master
curves.

1. Introduction

The contribution of differential forms to mathematics amysgics is considerable, due
to fact that they allow the unification, generalization amtheeption of notions en-
countered in a wide range of disciplines: mention amondgtrstelementary geom-
etry, analysis, thermodynamics, continuum mechanicstrel@magnetism, and analyt-
ical mechanics, (see [1, 2, 9, 11, 12, 16, 26, 28, 29, 30, 3Ike first part of the
contribution gives the essentials of differential geométra synthetic manner. The
proofs shall most of the time be omitted (the reader shadirref one of the references
related to differential geometry).

The following notations shall be used in the sequel: theigdaterivative of a quantity
a with respect to the variable shall be notediy, or a x, or 9xa. The transpose of a
vector or a tensoA is noted with a superscripa!l. The convention of summation of
the repeated index in monomials is implicitly used (unlegdieitly stated). The fol-
lowing abbreviations shall be used: w.r. for with respecsta for such that; r.h.s. for
right-hand side; iff for iff and only if; notation := standerfthe definition (expressed
on the r.h.s.) of the quantity placed on the left hand-side.

2. Differential geometry: a reminder of the essential notios

2.1. Differentiable manifolds (submanifolds)

ConsiderM a set of points endowed with a topology afgla finite dimensional vector
space (dimension). A local chart onM is the pair(U;, ¢) consisting of an open set
U; of M and an homeomorphisg. Ui — ¢ (Uj) C Ep: one says that; is the
domain of the chart (figl).

Since a point inM can belong to 2 distinct open seis, Uy, with the charts
(Uj , ¢j) and (U, ¢k), a C9-compatibility condition between the 2 charts is defined

171
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Figure 1: Chart of a manifold.

asUjNUx #0 = ¢k o qu‘l‘u_muk is a diffeomorphism of clasg¥ between the open
]

setsp; (Uj N Ux) andgk (Uj N Uk). Pointsp on M are conveniently labeled by local
coordinatex', which are the coordinates " of the pointg (p). An atlas of clas€?
on M is a set of chartgU;, ¢);, s.t. the domains of the charts cowdr, all charts of
the atlas ar€9-compatible.

ExAMPLE 1. Consider the sphere of radius unity iB 3pace, defined by

3
&= ((Xl, X2, X3) € R%/ lez = 1)

i=1

the stereographic projection of the North palento the plane defined byg = O is a
bijection betweers? \ {n} and this plane. A similar projection of the South Pole can
be defined.

In the following, the base of the topology & is supposed countable, thus the
manifold M is supposed separable. Submanifold®R81K can be defined from the
notions of submersion and immersion. Ebopen inR", aC>® mapy : U — RNk
is an immersion if its differentiatiy (u) € L (TURn — Tw(u)R”“‘) is a one-to-one
map at everyu € U. The linear algebra characterization of an immersion it tia
differential dy (u) induces a one to one linear map frdd? to R"* (equivalently,
the differential mapdy (u) has rankn). The dual notion of submersion is defined
in the following manner: fol open inR", and f :— RK a smooth mapf is a
submersionif its differential Df (x) € L (TX]R”Jrk — Ts (X)Rk) in an onto map, thus
when the matrixD f (x) has rankk.

EXAMPLE 2. Consider the case = 2 andk = 1; forh € C*® (R) a strictly
positive function, the map which rotates the curve- h(z) around thez axis, namely
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¥(u, 0) = (h(u) cog6), h(u) sind, u) gives a parameterized surface of revolution. The
differential is
h'(u)cosd —h(u)sind
Dy (u, 9) = | h'(u)sind  h(u) cosd ,
1 0

the column of which being independent, thisss an immersion. As an example of
an submersion, let consid&t = {(x1, X2, X3) XZ + x5 + x5 > 0}, and the function

f (X1, X2, X3) = X2 4+ X5 + x3. Its differential isDf (X1, X2, X3) = 2 (X1, X2, X3),
which is not zero oV, thus f is a submersion.

Manifolds can be parametrized as curves and surfacesitraaliy; considerM as

a subset ofR"K: an n-dimensional parametrization bf is given by a one-to-one
immersiony : W — U c R™K with U an open subset @&k with U N M # ¢,
andy (W) = U N M. The image of a D parametrization is a parametrized curve, and
that of a D parametrization is a parametrized surface. For instaheaplication

0:(0,2r) — U=R%10
® +— (cosh,sind)

gives a D parametrization of the unit circle iR?.

The implicit function theorem gives a conveniéntplicit function parametrization
i.e. one having the special forgh (X1, ..., Xn, h1(X), ..., ha(X)), with h an implicit

function.

For example, a R implicit function parametrization at the poi@, 0, 1) of the sphere

S inR3is given byy (x, y) = (x, Y, v/1—x2— y2>, with domain
W= {(x, y) € RZ/x2 +y2 < 1}

and rangaV x (0, +00).

2.2. Transformations, Lie groups and Lie derivatives

Generally speaking, transformations map a set into itaatf,a mathematical structure
cam be characterized by those transformations that leavegariant (for instance,
Euclidean geometry is invariant under orthogonal tramsédions, whereas special rel-
ativity has a structure compatible with invariance w.r. lie Lorentz group). Very
often, transformations establish as a group, and the pooidhere is the infinitesimal
transformation, which is described by a vector field (an itdsimal generator of the
group).

To each point of the manifold can be attached an n-dimenki@tdor space, called
the tangent space (local notion). At a pomt € M, let define thegermof a differ-
entiable functiorg as the equivalence class of differentiable functions tbataide in
an open neighborhood qfy. Furthermore, aangent vectoris an equivalence class
of curves having the same tangencypat the curvesc : | ¢ R — M are tangent
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at a pointpy, if, in a given chart(U ¢), they give the same valugf(gb o €)(0), with

po = ¢(0). Using further the composition of functions theorem gives tate of varia-
tion of the functiong along the curve (i.e. the composite mago ¢~1 : R" — R),

d n (9 dx .
as m(g 0¢)(0) = |Z_:1 (8_>?i>XO d—):(O). Thereby, the notion of tangent vector re-
ceives a second definition: the tangent vector also is d@rivacting on the set of
germs of functions defined in an open neighborhoog®fi.e. a linear application
Xpo 1 9= Xpo(Q) = %(g o ¢)(0). Thus, the vector fielKp, has the coordinates
dx . . L L dx 0
d—):(O) (in the local basigx;)i), and is given intrinsically by, = (d—):) pro It

X |
is easy to see that the value of the actiorXgf, on any function is the sarone for any
representant in the class of curves having he same tangpgit at

DEFINITION 1. The tangent space to M at the poinj ip the set of equivalence
classes of tangent curves to M af; it is also the set of tangent vectors to M af. it
is noted T,,M, and its dimension is n. The notion of tangent space to afnlarillows
an intrinsic definition of the differential (independerdr the local coordinates).

ForV,, Wi, differentiable manifoldsf : V, — Wy, differentiable Xg a tangent
vector toV,, at pointxg, with zg = f(xg) € W € Wiy, the differential off atxg is the
linear applicatiord fy, : Tx,Vn — Tz, Wm; Xo — dfy,Xo, s.t. Vh, dfy,Xo(f*h), see
fig 2. The applicationf * therein is the reciprocal image

Figure 2: Differentiable functions and tangent mappingsveen manifolds.

The vectorZg := dfy,Xo is tangent toWn at zg. In local coordinates, one
simply has

) £l )
z! =27(xo)x'
|
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. afi o . . .
and the matrix of eIement%ﬁ (xo)} therein is the Jacobean matrix. This notion

| 1]
obviously reminds the transformation gradient in contmumechanics.

DEFINITION 2 (Derivation). A derivation is a first-order differential operator,
which is sensitive only to linear terms, thus a derivationhélsoperate on products
of functions according to the rule @ g) = f X(g) + gX(f). This defines the Leibniz
rule for derivatives that warrants X being insensitive tadtatic and higher-order
terms (as shown earlier, vector fields act as derivations).

For two vector fieldsX, Y acting on functions, the double operatitY also
maps functions to functions, but is not a derivation. As aanegle, any derivation
at the point(0, 0) acting on the functionf (x,y) = x? + y? must give zero (use
Leibniz rule). But, composingy with itself givesaydy f (X, y) = 2, thusdy o dy
is not a derivation (and the composition of derivations doet give a derivation
in general). However, the operation bfe bracketrestores the property of being
a derivation: it is defined byXY — Y X], which in 3-vector notation would read
[X,Y] = (X-V)Y — (Y- V) X. The Lie bracket receives an important geometric
interpretation, in connection terobenius Theorem if at every point, the Lie bracket
of tangent vectors to two families of curves are a linear coation of the two vec-
tors, the curves then fit together to define a 2-surface. Hnieasily be generalized to
higher dimension.

DEFINITION 3. A Lie group G is a set that both has the structure of a group
and of a manifold. Thus, it is a differentiable manifold ofisd C°, and the group
structure is characterized by the following operationsoghrct and inversion)

G xG— G;(X,y) — XV; G— G;x— x L

Every neighborhood of is then sent by y to a neighborhood of by the left
translation; the differential applicatiahlLy : TeG — TyG allows the definition of left
invariant vector fieldsYy € G, dLyX(e) = X(y).

It can easily be shown that the left invariant vector field€3have a vectorial
structure (same dimension &), and that this vectorial space is isomorphic to the
tangent spacé&:G. Furthermore, the bracket of two left invariant vector feeisl itself
a left invariant vector field, namely one hd$y [X, Y] (e) = [dLyX,dLyY](e) =
[X, Y]1(y). The left invariant vector fields on the Lie gro@thus have the structure of
Lie algebra

DEFINITION 4. The Lie algebra of the Lie group G is the Lie algebra of the
left invariant vector fields. A Lie group action on a manifdill is given by a map
uw:GxM— M;(@q) — ua(q), satisfyingue(q) = g and the composition rule
a o p = Map. Lie groups and Lie algebra are most of the case discussestiinst of
their matrix representations.

ExAamMPLE 3. The Lorentz group action i& D space-time can be represented



176 J. F. Ganghoffer

by the one-parameter family of matrices

chy  shy,
shyy  chy,

which defines a one-dimensional group (identity elementvisrgby v = 0), with
group manifoldR. The group action oiR? is defined by the application

t,X) — (t, chy + x shy, t shyr + x chyr)

The Lie algebra is endowed with the bracket operation (ofordields); it sat-
isfies the properties of linearity, anticommutativifyX, Y] = —[Y, X]), and the Jacobi
identity ([ X, [Y, Z]] +[Y,[Z, X]] +[Z.[X, Y]] = 0).

Once the action of a transformation on points is defined, thiera on tangent vec-
tors (or more generally on elements of the tangent bundie)ensors and differential
forms (on elements of the cotangent bundle) are determifilee.change operated on
those objects is called thde derivative Recall that any differentiable vector fiekl
on a manifoldM generates a 1-parameter local group of diffeomorphigimelating
neighborhoods oM, viz¢; : M — M X — ¢ X, that satisfies the differential equation

% = X(¢tx)
with the initial conditiongg(x) = X. The orbit of the group passing through point
Xo = ¢(Xp) is the integral curvéR — M; — X(t) = ¢iXo tangent to the vectors
X (¢t xp) of the field at each poing; Xg. Since the manifolds (contrary to the Euclidean
spaces) do not allow an easy comparison of vector fieldshetthat different points
(thus leaving in different vectorial spaces), a novel deie needs to be introduced.
Considerg a differentiable function oM; the tangent vector to the groyp at the

point Xg is Xp = <gx(t)> = (id)txo) . The derivative of (the germ of)
dt t=0 dt t=0

d
g in the direction ofX at the pointxg is the realXpg = <& (f o) (xo)) =

t=0
9 dx
< (59, (),
i /X 0

e The Lie derivative of the functiog in the direction ofX at pointxg, is defined as

m g (¢tXo0) — g (Xo)
0 t

the directional derivativé x,g = Xog = tIi . The operation
—

achieved therein means a pull-back along the orbit to thiet pgj comparing the
valueg (¢t Xp) to the valueg (xp) at the same point. In a set of local coordinates,
one writes

Lxg=X'dg

e The Lie derivative of tge vector field in the dire((:jtion of the vector fielX at
. . BT - -1 _ — et -1 —
pointxpis LxY = tI@ot (dqbt Yoxo YXO) (dtd¢t Y)t 0. It can be
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proven that the Lie derivative coincides with the Lie bradkgyY = [X, Y]. In
a set of local coordinates, one writes

LxY = (XJa;¥' = Yla;x) ai.

e The Lie derivative of{ g ) tensor field is similarly defined as

-1 _
LxT o= lim = (A0 Touro = Yo )

o Noting ¢; Tgx, the pull-back at poinkg of the tensoily, x,, the Lie derivative of

a( 0 tensor field is elaborated as

1 d
LxT := !inof (@t Toro — Yxo) = <a¢t*T>t=0

e Similarly, for completely antisymmetrical tensors of theyous type, i.e. for
differential formsw, the Lie derivative is defined as

L li Ligs d 4
(Lxwdo = Im & (f0m-og) = ( oto)
In a set of local coordinates, one writes for the Lie derxeabf a 1-form
(Lxw); = X1 9jwi + w;jd; XI.

Properties

Only the essential properties of the differential operaiso far introduced are listed
in the sequel. A vector field s.t. L,v = 0 is said to be.ie-transported or dragged
along the vector fieldv. Since the Lie derivative is a local approximation, it shall
satisfy Leibniz rule, thus

Ly(@®b=Ly,a®b+a®L,b.

Using the same rule gives the Lie derivative of a 1-ferndifferentiating the function
f = a.vrenders(Lya).v = d(a.v) w — o [w, v], thus in terms of a set of coordi-
natesL,o = (ap, Swv + wfw’v) dx’. Lie derivatives inform about symmetries of

geometrical objects; so for instance, the infinitesimal myatries of the 1-form field

. ) d 0 a .
dx are given by those vector fields = X& + Ya/ + Za_z’ that satisfies ,,dx = 0,

thus X has to be constant.
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2.3. Calculus on differential forms

Differential forms find their origin in 1889 in the work of EliCartan(1869— 1951),
and in the third volume ofes Methodes Nouvelles de la Mecanique Celegtdenri
Poincaé (1854— 1912. The program of writing the laws of physics in an invariant
form (using differential forms), was started by g. RiccifBastro(1853— 1925 and
his student T. Levi-Civita(1873 — 1941); it provided the useful framework for A.
Einstein(1879— 1955 to develop the theory of relativity.

ConsiderM an n-dimensional manifold angs, Xo, ..., X,) a coordinate system on
this manifold.

DEFINITION 5. A p-form or exterior form of degree p on M is alternated or
completely antisymmetrical if it is the antisymmetricattpaf a multilinear applica-
tion from M toR. Thus, for ¥ a p-linear form (at point x of M), the operation of
antisymmetrization renders

1
Ath (V17 DR Vn) = E antx (Va(l), RN Va(p)) )
o
with o a permutation having the signatueg.
A p-form can be built from the tensorial product of n one-formsa\b, accord-
ing to the rule: the tensorial product gf 1-forms is thep-form, the components of
which are identified with the components of the tensoriabpa if the p associated

vectors.

EXAMPLE 4. Consider (X1 X2) = 3X2 — X1 andB (X1 X2) = 2x2 + X1; one then

a®ﬂ=(xl,Xz)[( }1)@9(;)](2):

-1 -2 X1
=(x1x2)< s 6 ><X2>=—xf+x1xz+6x§

DEFINITION 6. The exterior product (notation) of p 1-forms Ay, is the p-
form obtained by the anti symmetrization of the tensoriabipict, viz

has

ALA Az APNp =8P AL ®... @A,
(summation of the indiceg), with

o 0 if the ik are not a permutation of the |
6:1::'& = 1if the ik are an even permutation of the |
—1if the ik are an odd permutation of the |

EXAMPLE 5. One has irR* the equality

X3AXL =X3® X1 — X1 Q@ X3 = —X1 A X3
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The canonical basis of the set of p-forms of orgher n at the pointx € M,
noted2{ (M), is given by theC{l exterior productsq, A ... A X;,, with the following
ordering of the indice$; < i < ... < ip.. Thus, one can express agyform o
in a basisv’t A ... A 6t of QF(M) using thestrict componentsf the p-form w =
wiy..i,0" A ... A 0P, with the summation done only on the ordered indiges i» <

. <ip.

ExXAMPLE 6. Considetw € Q)Z((M); the action ofw on a couple of tangent
vectorsX,Y € TxM is given byo(X,Y) = o (X'e,Yle)) = wjj XY}, noting
wij = w(§, €)) the action okw on the basis vector® , ej). Expanding the result and
using the antisymmetry of the matrix; + wji = 0, renders

(X, Y) = Z(Xin _ xiYi) = wijb ABI(X,Y).

I<]j I<]j

Thus, one has = Y wij6' A 60!, and the products’ A 6J,i < j, generate any
i<j

2-form.

The exterior product of forms has the following propertigne exterior product
A is bilinear, associative, non commutative. For two fomef order p, and i of
orderg, one hasv A 1 = (—=1)P9 . A w. The space exterior product of the two spaces
QP (M) andQ (M) is then the vectorial spacel 9 (M).

DEFINITION 7. The exterior differentiation is the application d that asstes
to a p-formw a (p + 1) -form dw, satisfying:

e for afunction g from M tdR, the exterior derivative dg is simply the differential
of g;

it has the following properties
e d is alinear operator;
e d is2-nilpotent, viz do d = O (iteration rule);
e d is an antiderivation, viztv A ) = dw A u 4+ (—=1)Pw A du.

A practical formula for the calculus of the exterior derivatis given in the
following

THEOREML. Setw = wj, i, dx; A...AdX, ap-form; its exterior derivative
Wiy iy
Xy

isgiven by @ = dwi; i, AdXy AL AdX, = dx AdX, ... AdX,.

EXAMPLE 7. OnR3, consider the 2-formv = x3 X1 dX2 A dxz. One has

do = x3dxg A dxo A dXs.
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It is interesting to relate exterior differentiation @&® to classical vector cal-
culus. Given a vector fielK = 51% + éz% + éfsaiz, one defines the work form
and the flux form ofX respectively, asvx = & dx + & dy + &3dz andgx =
& dydz+ &> dz dx+ & dx dy. These coinages come from the fact that the line integral
of a one-form along a path measures the work donX byhile the surface integral of
the flux form measures the flux of the field through the surfaeestly, let define the
density form of a smooth functiofi on the open sdt) ¢ RS, asps := f dxdydz
The table 2.1 then gives the correspondence between trezatiffal formswx, ¢x,
ot , and the vector components given as components of the @xtiivatives ofvx,

ox.

Differential formw Exterior derivativedw Vectorial
operator
f=1(xY,2 df = wgrad f = grad
fxdx+ fydy+ f.dz
Work form dwx = ¢curl x = curl
063 0d&2
=&d d d —= — 22 )dyd
wx =& dX+ & dy+&3dz oy 0z yazt+
B
(& - @) dzdx+
0z 0X
d
E_@ dx dy
X ay
Flux form dox = pdivx = Div
061 052 063
= &1dyd dzd dxd —= 4+ 2= 4+ == ) dxdyd
ox:= &1dydz+ &xdzd x+ &3dxdy (8x+ay+az) xdydz
fdxdydz 0

Table 2.1: exterior differentiation of forms and vectorazalis

The set of differential forms of arbitrary order on a mardfdfl defines the
exterior algebraon M, otherwise called the Grasmann algebra. The exterior edgeb
Qx (M) at M is the direct sunf2y (M) = QS(M) ® Q)l((M) @...0 QY (M). Elements
in Q0(M) are functions, and the maximum ordergs= n (having only one element,
the volume form). The dual to the tangent space to a manigotdlied thecotangent
space it consists of the 1-forms (otherwise calledvectorsor covariant vectors - the
tangent vectors being called contravariant) acting onadhgent space.

Another notion of differentiation of forms is given in thdlfiwing

DEFINITION 8. The vertical differential of a function & f (qi, ¢i) (notation
f
d,) expresses locally as,d = g—q_dq , with d,(dg) = 0= d,(dg).
|
The inverse operation of decreasing the order of forms isrgin the following

DEFINITION 9. Consider a vector field X defined on M, and a p-form
0 = Wi, dx, A ... A dxip . The interior product ofv by X, noted xw, is the
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L 1
(p— D-formixw := m Wkiy...i p Xk dx, A... A dxip.
EXAMPLE 8. consider ofR? the 1-formw = x, dx; and the vector field
0 0
X=Xp— + —
28X;|_ + X2

the direct application of previous definition giviesw = wk Xk = x%.

Properties
The following identity is often referred to &artan identity
Lyw=i,do+d(,w).
One further list some basic properties (without proof):
iv(wAv) = (>{,0) Av+ (=DPo A (1,v)

Lydw =dL,w; L, (ijyw) =ip, o +ivlyw;
Liya=fLa+df A(,a)
Ly(wAv)=(Lyw)Av+wA (Lyv).

The pullback of a p-form w defined on the manifoltV, by the differentiable function
f: Vy — Wp; X = z= f(x)istheinduced p-formf* : QP (W) — QP (Vy), s.t.

VX € Vn,VV]_, ceey Vp (S Txvn, (f*a))x (V]_, ceey Vp) = Wz (dfol, ceey dfop)

The representation of*w in local coordinates is given by

f* L D(Zh""’sz)d i1 d ip
W = Wji...jp (Z(X))m Xt AL AOX
X D(Zjl,...,sz) . ) ‘
with ————= the Jacobean of the transformation from k). to the(z!).. The
D(x)1,...,x!p I J

operatorsd and f* commute, vizdo f* = f*od.

ExamMpPLE 9. The pullback of the 3-forndx dy dz(omitting here the symbol
A) under the change of coordinates=r cosf, x =r sin@, z = z (cylindrical coordi-
natesr, 0, z)is f*(dxdydz = d(r cosd) d(r sinf)dz = r dr do dz (the Jacobean
is thusr).

The pullback of forms is used to evaluate integrals on médsf¢change of
variables). Both the differential and the pullback openafind simple interpretations
in terms of the Jacobean matrix: suppase= A;dy! + ...+ A;dy™is a 1-form on
the open seV ¢ R", andy = ¢*w expresses ag = Bidx! + ... + B,dx" as an
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1-form on the open séd C R", with ¢ : U — V a diffeomorphism. Representing

andn as the row vector® = [Ag, ..., Anlandy = [By, ..., By] then gives
Digt ... Dpol
[B]_,,Bn]Z[A]_,,Am]
D1¢m ce Dn¢m

Thus, the pullback of a 1-form corresponds to matrix posttiplication. As an appli-
cation, whenp = n = m, one recovers the change of variable formula used in the the-
ory of integration, vizo = A (dy* A ... Ady") = ¢*w = |Dg| A(dXt A ... AdX").

The exterior derivative of a 1-form corresponds to the prétiplication by the Ja-
cobean matrix, since the operation corresponds to the samgapping associated to
the differential. The pullback of 1-forms is related to theatloperation of the push-
forward of vector fields: foiX a vector field orlJ, the push-forwardof X underg is
defined as the vector fielth X onV, s.t.¢- X(y) = d¢(x) (X (¢~1(y))) The pullback

of the 1-formw then relates to thpush-forwardof X as: (¢p*w) . X(X) = w.¢ - X(y).

f h
V —W —R
n m

T fe ]

h

R

Figure 3: Diagrammatic representation of the pullback afien.

These two operations find useful applications in continuuactmanics, see [1].

The Hodge star operator

Let V,, be ann-dimensional vector space equipped with an inner product Since
dim(Q"P (Vy)) = dim(QP (Vy)), for p < n, one can define a natural isomorphism
between both these spaces. For ang QP (V,), and assuming a given choice of
the orientation of space has been done, there exists a ualqoeent - noted1 €
QP (V) -st.Vu € QVP (V) , AApn = (*A, w)n_po, with o the volume form on
Vih. The Hodge star operator is the application that sends* A.

As an application, the correspondence between the extdgebra and the 3D vector
algebra is shown in the following Table.

Further applications of the Hodge star operator shall berglater on. Note
lastly that differential forms receive a geometrical iptetation [31]. So, for instance,
a 1-form can be represented by two parallel lines (planeipiB 2D, representing
the density of lines being cut. Just think of the gradient @firection as the 1-form
giving the intensity of the slope between neighboring corgmn a topographic map
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Vector algebra expression Exterior algebra expression
Cross productu x v) *(UAv)
Triple productu. (v x w) *UAVAW)
lux v|2 = |ul?v? = (uv)w (UA D, UA D) = (U, U)(v, v) — (U, v)?
ux (vxw)=Uw)v— Uv)w uA™(Aw)= (U, w)*v) — (U, v)(*w)

Table 2.2: relation between the exterior algebra and the&iov algebra

[31]. The gradient of the functiori (here the height of the contour) is orthogonal to
the 1-form representation. The conditiid f = O for a vectorv then means that

is orthogonal to the componengsad f of the 1-formdf. In electricity, a 2-form in
3D space (represented by a box aligned by the current flow @irgaives the current
density (section of the box).

2.4. Contact structures and symplectic mechanics

The contact structure is a manifold suitable for the desioripof unparameterized
curves. The line element contact bundle, called CM in theiskgonsists of a pair,
namely a point in the manifold and a line element at that pdihe line element itself
gives the local approximation of the unparameterized guagea tangent vector of
unspecified length (in fact a class of equivalence of tangectors, under the relation
v ~ kv). Considering a submanifold - the p&M, 1) - as being represented by a map
¥ : N — M (s.t. bothy and its differential are one-to-one), the first order contac
between two submanifolddN, ) and(N’, ') at a common point/(p) = ¥'(p)

is traduced by the equality of tangent mappiigs[Tp(N)] = T/ [Ty (N')] (this

is not a point by point equality, but rather an equality betwsets). The equivalence
class of submanifolds in contact at a paing M is called acontact elemeratq, and

is noted[N, ], for any submanifold\; it is in fact a linear subspace of the tangent
space. Note that this notion of contact is weaker than trega@lnotion of tangency.
The contact structure is both a bundle (it has a projectida thre base space) and it has
a contact structure: for each n-dimensional submanifdld+) in M, one can define
the natural lifte : M(M, n); g — (q, [N, v¥]), with[N, ] a contact element.

A simple chart forC(M, N) is given by selecting n of the coordinates Mf
(labeledg#), and considering the remainirgy — n) coordinatesy@ as functions of
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C(M,n)

Figure 4: the geometric structure of the contact bundlen{ff81]).

theg*. The contact elements are then represented by the pantlmmﬂesp S
(note that the index position is here coherent with that enhder the manlfoldsﬂ/l
andC*M).

DEFINITION 10. Note that not all curves are lifts; a lifted submanifold istdbs
manifold for which the @ coincide with the partial derivatives, as written aboveisTh
condition can be expressed using théorms6? = dy? — pfidqu, that we pull-back
onto a submanifold of M, N), withy : N — C(M, N) aqr (q, Y@, P@)).
Using the pull-backg/* - dq = dq = dq; v* - dy? = dq“ one gets/™* - 62 =

Ya
gq—ﬂ — Pa These pull-backs do vanish when N is a lifted submanifbkekse lifted
submanifolds shall then be called integral submanifoldefcontact ideal.

Qq/‘

ExAMPLE 10. Consider functions on the plane as the mBps R? — R.
The graphs of these functions are the sections describedebmapy : R2 — R3:
(X, y) = (X, ¥y, F(X, y)), that define 2-sumanifolds d&*. A contact element at the
point
p (X0, Yo, F (X0, Yo)) is an equivalence class of 2-submanifolds that have firstrord
contact atp. It can be represented by the linear submanifold

X, y) —~ [ x F+8F(x x)+8F( )
Y » Y, Ix 0 ayy Yo

The partial derivatives (here evaluated at the poipt yo)) are natural coordinates for
the contact elements; the coordinates for the jet bundl@are(x, y. f, fx fy), in
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which fy, fy are coordinates of the contact element (and not partiaVatéres). The
pull-back of the contact 1-form := df — fydx — fydy onto a submanifold defined
by the application : (x,y) — (x, y, F, FxFy) givesy* -0 = SEdx + $£dy -
Fxdx — Fydy, which vanishes wheky = %; Fy = % The geometric approach to
the calculus of variations presents some interest becditssoniginality, compared to
the standard approach. The standard formulation of theicksnechanics of uncon-
strained conservative systems states the existence ofrangign functiorL, depend-
ing upon the state variables and possibly upon time, suchtaaction integra) L dt

is extremized. On the contact bundle of the configuratiorcsphaving the natural
coordinatest, g, ¢), the integrand L dt is a one-form. The possible motions of the
system are then described by the curves in the contact bondihich the contact 1-
formsa := dq— ¢ dt pull back to zero. The variation of the action integral ambtime

extrema is further performed, using the vector fielg Q(t) E +0O(t) ai restricting

to isochronal variations. Restricting further to variasawith fixed end conditions, the
variation is given by

oL . oL
L, (Ldt) = i, (dLdt) = —dt+ Q—dt
fr (Len /1"|( ) fr[Qaq g }

In order now for the variations to satisfy the previous cmaiat condition, the vector
field v has to move the initial path into a path that is parallel to ¢heénstead of
pushing the path forward, one can equivalently pull backlttfiermsc, asa(e) =

a +eLya. The condition that the 1-forma(e) pulls backs to zero on the integral curve,
vizija(e) = 0, renders; L,a = 0, thusi; (dQ — Q dt) = 0. Since integration over
the optimal path is equivalent to contracting the integrawtti y, using the previous
equation allows to replac® dt by d Q, thus

oL oL
LU/Ldtz/[ 9= dt+ 254 }
r r Qaq aq e

Integrating the second term by part and omitting the pediferential (since we con-
sider fixed ends) renders

oL oL

The arbitrariness in the choice of the functid@é) then leads to the condition

. oL oL
'*{ad”d(a—q)}ﬂ

for y to be tangent to the path.
This condition together with the constraint

I, (dg —gdt) =0

gives 4 relations for the & components of the line element.
SincelL dt is not a general 1-form (its exterior derivatigé dt being in the differential
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ideal generated bl dt) , andde also is in the ideal generated hydt, a more general
viewpoint is needed. Let then enlarge the previous coraiders, starting first from the
extemum condition of unconstrained integrals of the fdrea f w, with the smooth
enough 1-formw defined on a manifolé1, andI” a curve inM (between two pointé\
andB) s.t. the integral does not vary at the first order Bss deformed. Considering
a curve parameterized tgy the tangent vector to the curyeexpresses as the push

. . d _
forward of the basis vectc%FS, vizy = T,. 75 ) Let then continuously deform the

curvel by a vector fieldv; the previous condition that the integdatdoes not change
under this deformation expresses as

/ Lyw
r

Using the properties of the Lie derivatives further renders

fivdw+/ivw:0
r r

Sincev vanishes at the end pointé @nd B being fixed), the boundary term vanishes.
From the definition of a line integral, we further have

b
/ivdwzf I*. (iy (i o)) dS = O, Vo,
r a

thus the local conditiom, (i);dw) = 0, Vv, that further gives, ¢, = 0, which is an
ordinary differential equation far.

Using the local coordinates* = x*(s) along the curve, one can further elaborate
previous condition: the integrél= [ w, dx*dsrenders the Euler-Lagrange equations

. d
XM ger = 0 thus giving the Schwarz conditide,,,, — w,,;.) X, = 0. A first
insight into Noethers theorem can here be given: supposefamitesimal symmetry

exists, having the vector fiek] such thatLyw = 0. This clearly glves/ Lkw = O;
r
along any piece of a curve that satisfies the Euler-Lagraggat®ns, the condition

iydw = 0 gives
fLka)=/d(ika))+/ikdw=/ika)=0
r r r r

which means that the quantityw is constant along the solution curves. This is an il-
lustration of Noether’s theorem, articulating infinitesilsymmetries and conservation
laws.

The case of constrained variations is next treated, whettebgonstraint is expressed
by the vanishing of some functiah : M — R, in the case of holonomic variations:
we require that the variation of the integta& [ w vanishes, vid_, [ « = 0, for all
deformations of the curve that satisfy the constraing = i,d¢ = 0. Summarizing,
the variation of the integral must vanish at any point, i\ﬁiﬁ,;dw) = 0, Vv, for all v
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satisfying the conditiom,d¢ = 0. This implies the existence of a multiplier function
A = A(9), s.t. the following condition holds along the curvig.dw = Ad¢, where
¢ =0.
This condition forms a set of determining equations for theve and the Lagrange
multiplier A. In the case of anholonomic variations, the constraintsbeaaxpressed
in the formiy« = 0O, for a set of prescribed 1-forms The extension of the vector
field y off the curve is done using the conditibn y = 0, thus the constraint condition
iyLya =1L, (i);oc) =0.
The optimal patiT” is again determined by the conditigyd (w + Aa) = 0, along with
iy = 0. To be complete, one can evidence a Lagrange multipl&t. an uncon-
strained minimum exists for the problem having the one-fariia, see e.g [31]. For
that purpose, a vector field is selected s.t. the deformation of the curve can be written
in the formv = vc+&w, wherev, satisfies the constraint, agds a sca_\la[function that
IyLye
iy (iyda) ’
the conditioni ,da # 0 (with da # 0O, otherwise the constraint would be integrable).
Using next Cartan identity and neglecting the exact difigeds gives the multiplier
iy (iwdw)
iy (ipde)”

restores the degree of freedom lost in the constraint; dusdé = under

ExXAMPLE 11. The dynamic equations of motion of a conservative system
scribed by a Lagrangiah (g, g, t) is given as the stationary conditions of the func-
tional [ L (9, g, t) dt, under the constraintg (qdt —dq) = 0. Application of pre-

. - L .
vious general methodology renders the multiplies ~3a and the equivalent un-

oL
constrained problem if [Ldt — % (qdt — dq)}, the Euler-Lagrange equations of
r
which being

iy {dLdt—d (2%) @dt - da) - %} =iy {&kdqdt—d (%) @dt - dg)| =o.
It holds true that

iydqdt=iy (dq— qdt)dt=— (dq — qdt) dt=— (dq — qdt) (i,dt)
the previous equation then gives

i [d Ldt—d (%) (@t — dq)—%dddt] =i, {%dth—d (%) (th—dq)] -0

. [oL oL .

Consequently, the extremals are the integral curves of Hoems %dt —d <%)
anddq — gdt.
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The invariance of the constrained problem under infinitasBgmmetries again
leads to the evidence of a conservation law: let indeed th®wrk be an infinitesimal
symmetry of both the variational principle and of the coaistt, viz L, = 0 and
L,a = 0. Thus, the Lie derivative of the one-forinhas to be in the ideal generated
by o (sinceiya = 0). Incorporating the multiplier into the Lie differentin then
gives the conditiorLy (w + Ae) C | [«], which traduces into a differential format
asfF {d (w + Aa) + ikd (w + Ax)} = 0. The second term is identified as the Euler-
Lagrange equation (it vanishes), thus one obtains the paaigmn lawiyd (o + Aa) =
constant along the extremals.

3. Lagrangian formalism and irreversibility

3.1. Differential structure of thermodynamics

A few words related to the geometrical setting of thermodyica are first in order.
Thermodynamic systems are described in the contact buunstigised by the following
coordinates:

e The total energy and entropy;

e the extensive variables (such as the volume, the numberiidlpaor the electric
charge), that are the measurable degrees of freedom;

e the intensive associated variables, which are forces engiats that describe the
energy transfer between the various extensive variables.

ExAMPLE 12. An ideal gas is described in a 2D state space, with coatesn
entropy and volume. An open gaseous system would requirgdtiigional coordinate
of the amount of gas present in the system.

A thermodynamic system shall then be described by a lineaetste, a contact
structure and a convexity structure: thear structureis a model for the physical
idea of short-range interactions and existence of homamensystems with a scaling
symmetry. Thecontact structurds associated with the energy conservation (first law
of thermodynamics), while theonvexity structur@ccounts for the Second Law and
the entropy increase due to mixing. As a starting point, ftmelamental equation
consists of the expression of the stored internal energh@tystem for all possible
states, versus the set of state variables. For instancéyridamental equation of an
aggregate oN molecules of an ideal gas is

U(SV) = N¥3v 28 exp(2S/3NK),
with k the Boltzmann’s constant. Linear structures rely on tharagsion that the sys-

tem size is much larger than the range of its interactionss the internal energy is
proportional to the size of any subsystem (the shape of th&ystem does not matter):
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by Euler’s theorem (traducing here the homogeneity of degree), this scaling sym-

. U U . .
metry givesU = SE + V —. Contrary to the status of the extensive variables, the
intensive variables do not change versus size (homogeofaitygree zero). The graph

of the fundamental equation is an n-surface ifiran 1)-space, with the potentials (par-
tial derivatives of the internal energy w.r. to the exteasmariables) the components of
the contact elements to that surface. The contact bundEatsrof the(2n + 1)-space
with coordinates the extensive variables, their assatisitiensive variables, and the
internal energy. The contact ideal is generated by the h-for

o =dU + Z (forces d (extensive variables

ExAMPLE 13. The previously introduced ideal gas is modeled in théed-
sional contact bundle with coordinatés, T, S, P, V), and a contact ideal generated
by the 1-forme = dU — TdS+ Pdv, with P = -9 — VU; T = dasU. The previous
homogeneity condition becomes= T S— PV, which is theGibbs-Duhem relation
In addition to the fundamental equation, the equation déstapressing the intensive
variables has to be specified. As an example, consider tlédgds, which obeys the
relationPV = NKT, together with the internal energy expressidn= 3/2NkT. In
the contact manifold, the system is described by the foligwnap

v: S V) U TSP, V)=UE V), TS V), S P(@E V),V)
which expresses as
v:(SSV)— (U, T, S P,V)=(3/2NkT, T(S, V), S, NkT/V, V).

The functiondJ, Y, P shall satisfy the two previous conditions, as welkasé = 0,
with the 1-formf = dU —Uy dV —updP = dU — TdS+ PdV. Accounting for the
pullbacks

T T
v*.dU = (3/2) Nk(z—sds+ S—Vdv> . y*.dS=dS y*.dV =dV

one obtains

oT oT NkT
*0 = 2Nk — —dV ) -T —_— V=
V0 = (3/2) <8Sd8+ v ) dS+( v )d 0

The independence of the differential elemeqaty¥, dT) then implies

10T 10T

—— =2/3Nk; —— =-2/3V

T 0S / T TV /
The integration of these two equations givles= AV~%3exp2S/3NK), thus we re-
cover the fundamental equatith(U, V) = N3V ~%/3exp(2S/3Nk). Note that the
factor N%/3 therein ensures the satisfaction of the homogeneity dondif U (a sys-
tem of twice the volume, with twice the number of molecules twéce the energy).
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Having so far developed what could be called a differentiatinodynamics [31], the
use of Frobenius theorem closes the characterization aftitheture of thermodynam-
ics: consider for instance the energy 2-surface as the Rfap> R3; (S, V) —
(U, S, V), with the intensities given by = dasU and—P = dyU. The symmetry
of the partial derivatives also leads @ T + 3sP = 0. The system can locally be

0
described by a 2D surface element, spanned by the two veetefsam + T +
0

0 0
b— c— andA = d— — — + f —, that must lie in the zero surface
s %P ou Tar sty
of «, thus the conditionsipa = 0 = iga. ThIS givesa = bT andd = eT — fP.

The fact that it is a differential ideal also implies thtat is one generator of the ideal,
thusipg (iade) = 0. Combining the previous relations gives the Maxwell ielat

dv dpP . "
(cv —Cp) /T + — ] =0, with Cy, Cp the heat capacities at constant
dT dT /y,

volume and pressure respectively.

3.2. Differential geometric setting for dynamical systems

Noether’s theorem embodies the fact that to every symmeitagsociated a conserva-
tion law. For an exterior differential system, a consevatiaw is a differential form
whose restriction to the integral manifold is closed. Anyseld generator of the ideal
leads to a conservation law.

ExAmMPLE 14. [31] The heat- equauon% + B_(f =0 (with¢ = ¢ (X, t) the

temperatureg the specific thermal diffusivity), can be equivalently regded as the

au o0
first order systemu = —¢ — = —¢ = 0. The last equation of this system rewrites

X a
asda = 0, having defined the 1-form = ¢ dx + u dt, that represents theeat flux
T hus, the equatioda = 0 describes theonservation of energyThe geometrical
picture of the heat transport equation can be given, usiadafowing sharp operator:

d :
gdx = &; gdt = 0, leading to the Hodge star operatdr = dx dt, *dt =
*dx = dt; *dxdt = 0. We then havéa = ¢ dt; d*a = ¢ xdx dt The heat flux
can further be writtem = i 2. Therefore, the geometric form of the heat equation is
given by the following dlfferentlal system

doa =0

de*a = i«

Note that the 1-form fieldr describes a field of conserved flux lines, but the 1-form
*a is not the gradient of any function, thus the flux lines are awtt by a regular
family of orthogonal hypersurfaces. The problem can furthe formulated as the
integral submanifold of the ideal generated by the two 2rfap = d¢ dx+du dtand

B = udx dt—« d¢ dt: for a 2D submanifoldy : (t, x) — (t, X, ¢, u), the condition

of zero pull-back, vizp* § = 0, traduces the relationship= « ¢ x. Note that the ideal
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generated by the previous 2-forms is a differential idead t the relationship
dg =dudxdt= —dx A w.

In the ideal defined by the forms, B, the formw is closed, and the 1-form := isw
satisfies the differential identitgfj = L sw — isdw which vanishes for every isovec-
tor S, sincedw pulls back to zero. This leads to conservation laws, foraimsg the
conservation of heat, viz
i¢%+u%w=¢dX+Udt.

One of the approaches suitable for the generalization dfadlyeange formalism
to dissipation is the differential geometry of manifoldse interest of this generalized
Lagrangian formulation lies in the fact that it follows fraime structure of the chosen
manifold, and naturally introduces the notion of a Raylgigkential. In order to illus-
trate this method, let consider a discrete system pfinctual masses,, having the
do.f.g={q ), | =1...3n}in 3D Euclidean space. Such a mechanical system is
characterized by (Godbillon):

o adifferentiable manifold generated by the d.q.t= {g; (t), i = 1...3n}, called
configuration manifold (the integen = 3n is the number of d.o.f.);

o adifferentiable functiork on the tangent space ¥ (here notedl (M)), called
kinetic energy;

o a pfaffianz (differential form of degree one) defined M), that takes the
form of the worknm = F; (g, q)dqg of the forceF;. The fundamental form
of the mechanical system is defined as the exterior diffexkeat the vertical
differential ofK, viz

9°K dok Adg + K
00k aG 00k AG

ddk A dg

Assuming this 2-form is closed and regular, and introdutivggLiouville vector field
d . . .
v =G W the manifold structure implies the following
i

. . ! 0 0 )
THEOREM 2. There is a unique vector field X% g ﬁ + by ﬁ defined on
| |
T(M) s.t.

[ K ax dg 2K g dok + K bk dg

w = : - — 4 ——

X a0kaG 0k0G oGkaGi :
92K

i Aok = K —vK
aqkaqia'qu d( vK) + 7
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The integral curve of X (as a dynamical system) are solutaribe Lagrange
equations

d oK 9K

T _F 3

The force fieldr is further decomposed into a contribution due to consemati
forcesFlc, deriving from a potential energy, according to

RAY . _— .
—dV =Fdg — F° = ~dg and a non conservative contributiéii‘dg, viz

Introducing the Lagrangian of the system givenlby= K — V, previous equation
rewrites as

doL oL
1 - 2= F_nc o
1) atG g i@, 9

ExampLE 15. Differential geometry of the oscillatory mass
In the case of single mass evolving on a straight line, with positionp = q(t), sub-
. . AV .
mitted to an elastic forc€® = —kq = _ﬁ (with clearlyV = Equ) and a viscous

1
force F"¢ = —\q (with A a constant), the kinetic energyks = —qu, and the force

field associated t&¢ andF"°is 7 = —Ag dq— k g dg Thus, the fundamental form
 and the Liouville vector field are respectively given by

w:md(']/\dq;vzq;—q.

Application of previous Theorem then leads to the searchvefctor fieldX under the
form

0 Bl
X = D —+b ) —
a, q aq +b@, @ aq
satisfying the differential form identity

ixoe = —ma(q, q)dgq+-mb(qg, 4)dq
d(K —vK)+ 7 = —-mqdqg + (—Aqg — kqg) dg.

The identification of the coefficients of the one-fordganddg then leads to

weal (Parkq)?
_qaq md T E)

The integral curves oX are the solutions of the differential system
dg dqg; dq g K that condenses into the dynamical equation of motion
dt $a T Tmd T m y q

md + Aq + kg = 0.
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- . . 1 1 .
Defining the Lagrangian as the differerice= K —V = quz_iqu’ the equivalence
between the Lagrange equation and the integral curvseasily appears:

daoL L

- — =F"%e mj+kg=—

dt aq Bq © M +ka=-2q
Previous theorem can be considered as a generalizatioe dfarangian formalism,
since the previous equation (1) results from the Lagrangehbert principle

t _ t . doL oL
) 5/ L@, dt+/ F'@. dogidt=0= ——— ——— =F"(q. 9
t fo

0

In the conservative cage = —dV), previous equation resumes to the station-
ary condition of the action integral. Note furthermore ttiet non conservative forces
are usually supposed to derive from a pseudo-potentiapdissn (also called Rayleigh

1 R
potential)R, asR = ——Aq = F"°= % (= —1Q)
The application of the Lagrange-d’Alembert principle atémws that the variation of
t

1
the action mtegra/ L (g, ) dt does not vanish, evidencing thereby a closure defect

t
of the pfaffianL (q,oq) dt along its extremal (topological torsion of the configuratio
manifold, according to [21]).

The notion of Rayleigh potential introduced in the dynangeskes the nearby
concept of dissipation potential, that plays a role esabytin the thermomechanics
of continuous media. Various attempts towards the forrmrdabf the state laws and
evolution equations of a viscoelastic and / or viscoplastiid under a Lagrangian
form have been addressed in the literature. Those appreaelyeon the setting up of
the Helmholtz free energy - here notg¢dthat essentially depends upon two types of
variables:

e Observable variables (one can measure them), being in@dhertemperature
T and a deformation like variable

e hidden variables that describe the internal state of theraht These variables
are otherwise called internal variables, here natefbf a scalar or tensorial
nature).

Accordingly, the potential takes a priori the general expieny = ¢ (¢, «, T), from
which the state laws follow from the use of Clausius-Duheegimality, as

or = poV,e; A= —po¥a; S=—poV¥. T

with pg the density in the reference configuratiepthe reversible part of the stregss,
the thermodynamical affinity (conjugated to the internaialales), ands the entropy
density. These state laws shall be completed in the casessipdiive media by the
information related to the irreversible behavior, via ayuke potential of dissipation
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Q(€), s.t. the irreversible part of the stress is givenday = Q ¢, considering the
additive decompositionr = o + oj; . Adopting a viscoelastic behavior, the affinity
derives from a second pseudo-poten®aly), asA = & 4.

The Lagrangian formalism established in [33] relies on thénition of a pseudo-
potential D, being the sunD = Q (é) + ® (&). The author next defines a functional
S= SJ[u, U, o, T] with

t 1 (du\?
S = /;0 (/\; |:§'00(d_5£1> — po¥ (e (U), a, T):|dV>dt
t1
+ / (k/ Td.udS>dt
to St

with T9 the given imposed traction on the portion of bound8fy andx a loading
parameter that explicitly depends upon time. The variafigminciple associated to
the extremality conditions of can be viewed as a generalization of the Lagrange
d’Alembert principle to continuous dissipative media;fiissmulation w.r. to the sole

displacement is
B aD
ssi [* [ (Ress)av]an—c
to \% o€

leading to a relation analogous to (2):

oL daL 9D

ou  dtaa  o¢
This equation in turn leads to the dynamical equations ofliegum

2

. deu
div (or +0ir) = ,OOW; (or +oir).N= ATd
with n the outward normal t&;. The complementary information relative to the ther-
modynamic forces (that traduces the internal evolutionheftiody) is given by the

Lagrange equations relative to the internal variables, viz

aL oL Yy 0D

@ " 9a T % T
One shall note the strong analogy between the descriptidheoflynamics of a dis-
crete system of dissipative punctual masses and the wafitige Lagrange equations
in presence of non conservative forde%": the first involves a Rayleigh potenti&],
while the second approach requires the functi@tal be supplemented by the pseudo-
dissipation potentiaD.
Going further in that direction, an attempt to extend therbage formalism for dissi-
pative media is further elaborated, in connection with tb&oaiated variational sym-
metries.
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4. Lagrange formalism and TIP

Following the axioms of classical thermodynamics as stia@di], let assume the exis-
tence of a functionak, called the internal energy, being extensive w.r. to itsiargnts,
viz E = (E (Ve, S, N), whereby the introduced arguments reflect the differemh$or
of energy:

e mechanical energy (we here focus on small deformationgth a nearby con-
stant volumeV);

e calorific energy, represented by the total entr&y

e chemical energy, represented by the number of miles {Nx, k =1...n} of
the various species.

The extensity oE (homogeneity of degree one) expresses as (Euler’'s theorem)
E (MVe, AS, AN) =AE(Ve, S, N), VAeR
Deriving previous equation w.r. toatA = 1 leads to the Euler identity

IE 9E _ 9E
9 wvo+EstENZE(Ve S N
sve VOIS TN (Ve )=

E(Ve, S, N)=0 (Ve, S N): (Ve) + T (Ve, S, N)S+pu (Ve, S, N).N

wherein the intensive quantities conjugated to the inddpenintensities have been
introduced: the stress (Ve, S, N), the temperaturg (Ve, S, N), and the chemical
potentialsi (Ve, S, N). Accounting for these relationships then leads to the funda
mental Gibbs relation:

dE=0:d(Ve) + TdS+ n.dN
The differentiation of Euler’s identity leads to the Gibbsthem relation
(Ve) :do +SAdT+ N.du =0

Both the Gibbs and Gibbs-Duhem relations are at the rootseofrtodynamics; Gibbs-
Duhem relation expresses the adjustment of the intensiv@bles during the variation
of the extensities. When sufficient mechanical energy isdimbto the system as in-
put, may lead to a change of the internal configuration of th@ypdue to the fact
that the system escapes from equilibrium. Assuming thaintieenal energy still has
the status of a potential function, and replacing the véembl by extensive inter-
nal variablex?;, one hasE = E (V¢, S, ). The thermodynamic driving forcA (or
affinity in the language of De Donder) associated to the inaterariablex expresses as
dE (Ve, S, Q)
Ai(Ve, S Q) =——"—

Qi
thus writing the generalized fundamental Euler’s relatisn

. Inthe sequel, we shall rather work with densities,

e, S, a)=0(, S, a):e+T(e, S, 0)Ss— A(e, S, o).
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here introducing the energy and entropy densiyds respectively, and the density of
the internal variables extensiti€s notede. The Gibbs-Duhem relation then rewrites
as

€:do+sdT—a.dA=0

The state laws that give the constitutive behavior of theytibdn express in rate form
as

o €ce €es ey €
(3) T = e,se eyss e,Sak . S N
—A €ae Cas  Cayax —Qk

In the vicinity of equilibrium, the matrix of second orderrpal derivatives can be
considered as made of constant entries. In order to be gimtle¢introduce the vector
y = (e, S)! of the controlled extensities (their densities), beingjegated to the dual
observable, note¥ = (o, T)!. Previous system then rewrit€= 0, with

(4) — PY(yﬂ 0() = Y_ e,yy-y - e,ya.O.l =0
’ PA(Y, @) = —A—€q4y.Y —€4q.& =0

Elementary calculations show that the previous systersfetithe self-adjunction con-
dition of the Frechet derivative &%, viz Dp = D*P, being equivalent to the Maxwell’s
relations for the internal energ{19, 32]. Recall that th€rechet derivativef a vector
of functions P, (x, u(”)), depending upon the independent variablend the depen-
dent variableu, up to its derivatives to the order is the differential operatdd, given

R . . . . .
by (Dp).. = Dy, i=1...r, j =1...9. The multiindexJ of dimension
y (Dp); XJ:.()UH ) j q
k consist of a set ok indices each less than 4, viz = (j1,..., jk), 1 < jk < 4.
aKu;
Accordingly, one expresses the partial derivative = S —
0Xj1....0Xjk
2 oP  oP
EXAMPLE 16. ForP = u + ug, one hadDp = m + ™ Dy = 1+ 2uxDy,
X

with Dy the total derivative operator w.r. ta

THEOREM3. The adjunct of the Frechet derivative is the matrix of déferal

. AN i
(D*P);; =2J:(—D)J F i=1...q; j=1...r

Given the scalar products of two elements=P{P, (x, u™)}, Q = {Q; (x, u™)}
q

as(P, Q) := / Z P Qidx, the adjunct satisfies the following condition
2121

(P. DQ) = (Q. D*P), YP =[P (x, u™)}, v =[Q (x u™)}



Differential geometry, least action principles 197

d . . .
EXAMPLE 17. ForD = at the operator acting on functions with compact
support in2 =]0, 1[, one writes
1 dv 1 dv
u, Dv) = —dt=— [ u—dt+ [uv]} = (v, D*u),
( U>/ovdt /Odt +[uuld = (v, D*u)

thus the adjuncb* = — .

The existence and construction of a Lagrangian for a systsurihed by a set
of PDE’s is expressed in the following

THEOREM4. [27] A system of PDE on the dependent variables u of the form
Pu) ={R (x, u™), 1 =1...q} = Orealizes the extremum of a functional integral
S= fQ L dQ, i.e. R = Ej(L), with E (.) the Euler-Lagrange operator, iff its Frechet
derivative is self-adjunct. In this case, a possible Lagian is given by the line inte-

149
gral / Z ui. P (Au)di. Equivalent Lagrangian are obtained up to the generalized
i=1
4 P

divergence of a vector B {P;, Px, Py, P;}, definedas Di P = Ft
1

i=1

ExaMPLE 18. (The vibrating string) The transverse vibrations ofrangtof
lengthlg are described by the PDEUi; — T uxx = 0, with A the lineic mass, and the
tension applied to the string. It is immediate to see thatBWP is self-adjunct, and a

. L 1 : .
possible Lagrangian is set up as= Eu (A U — T uyxx), however lacking a physical
significance. It can further be worked out as

L = 1AuerlTu +d 1Au d 1Tuu
o2t T2 dt S dx \2 )

1 1
An equivalent Lagrangian is = EA u:’-t — ET u?x, thus the action integral

/dt/ ()\ut u?x> dx=K -V,

T lo 1
difference of the kinetic energi = / dt/ 5/\ uzt) dx and of the potential

energyV, which itself results from the linearization of the expiiess

|
V=T(|—|0)ET(/0 1+U§dX—|o).
0

Application of the previous theorem shows that the selfsadjion condition of
the state laws is satisfied, thus the Lagrangian

1
L= / [y.Py (LY, 2a) + a.Pa(ry, Aa)] dA.
0
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Accounting for the homogeneity of degree -1 of the secondmpdrtial derivatives of
e(y, a), and the homogeneity of degree zero of the intensities «) and A(y, «)
then leads to

. . d
L=yY-aA+eyy+eq,a— . (ey.y+eq.a)
The last contribution can be removed (it is a total derivgtiand the first contribution
vanishes, according to Gibbs-Duhem relation, thus an atpnv Lagrangian is given
by L = ey.y + eq.«, as independently obtained in [23]. The stationarity ofabton
integral

. . de
S= /e,y.y+e,a.oz il = |y, o]

(it is indeed a functional, due to the history dependencéefiotentiake = e(y, «)
upon the internal variables) simply means that the internal energy keeps its status of
potential function during the evolution of the system. Tlostplate of existence of a
thermodynamic potentigE outside equilibrium thereby generates a stationarity-prin
ciple, equivalent to the state laws. Note that adapted piatercan be built using the
Legendre transformation, when a given set of control véggbave been chosen. The
Lagrangian so far established incorporates the thermauigad information related
to the state laws, but it does not consider the evolution lafnke internal variables.
These can be written for GSM (generalized standard matexsathe following subd-
ifferential identities:(—&) = 0a¢™ (o, T, A), with ¢* (o, T, A) the pseudo-potential
of dissipation [14]. Thus, using this last equation as a traitd via a set of Lagrange
multipliers yields the unconstrained problem:

t n
Sf é+2kk(dk—8Ak¢*(U, T, A)) dt=0
to k=1
where the subdifferential is taken w.r. to the affinity, for the augmented Lagrangian
n
e+ > ik (dk — dng* (0. T. A)
k=1
sum of a thermodynamic Lagrangiamermo := € and a kinetic Lagrangian
n
Liin := ) _ Ak ¢k — 0a 9™ (0, T, A).
k=1

Note that the subdifferential reduces to the partial dékigedn a 'smooth’ case.

4.1. Continuous symmetries of dissipative constitutive las and master curves

A reminder of variational symmetries is first in order: wheulifierential problem
admits a variational formulation in terms of the statiotyadf a functional, Noether’s
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theorem associates to each variational symmetry a congsmntaw. Recall that the
one-parameten( is the parameter) Lie group of transformatidds X, = X (X, u, w);
Ui = Ui (X, u, w)is a symmetry group for the functional integral

S= /;2 L (x, u(”)) do

iff Skeeps the same value in the set of transformed variables, viz

S:/ L (%, a™ dQ:S:/L x, u™) de
,C (2 ) L (e u®)
The vector field (symmetry generator)

4 ad d d LA A
|
=D &K W—+ Y (X, )— = —
v k71$k( )8xk kfl(bk( )8uk Dm0 U

i=1

defines a variational symmetry group iff the following caiah is satisfied:
pr™ + Ldive =0.
The prolongation of the vector field, alias pr™, is defined as the extended vector

field d
priWy = v + ZZ@S (X’ um)) ﬁ

k=1 J

4 4
d
J n\ _ _ . . i k
¢ (x u™) = D, <¢>k 25.%.) 25 (Dau¥)
J being an arbitrary multiindex or order less than 4.

THEOREM 5 (E. Noether, [20]).Whenv generates a symmetry group for the
functional u] = [, L (x, u‘1)) d2, the conservation law

DivP=DiP1+---+ D4Ps =0

is satisfied, with the quadrupl¢P,, i = 1...4} given by

Going back to the finding of the variational symmetries aisded to the La-
grangianL = Linermo+ Lkin, the group generator

V=80t + Pec0c + PTOT + Gy Oy + P o + PSS + DA A,

maybe elaborated in such a way that the variational symnf@try:nermoiS automati-
cally satisfied: just compute the components of the intengariables s.t. they satisfy
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the state laws. Previous symmetry condition then simplifig49, 32]

pr(n)v + LkinDivé = 0 with divé = D&

Using TIP and the elegant formalism of differential geomebalance laws
for intrinsically dissipative continuous media can thenftwenulated, in articulation
with symmetries. These can be obtained in the following neantie variation of the
functional Sunder an arbitrary group of transformations expresses as

oL oL
3S=M/Q<a—uk—Di m)(‘bk_gjuk,j) dQ + /L/aQ(Lé‘l +(¢k—Uk,j&j)) ni d(0)

This form can be transcribed into the compact differentiahf identity (Cartan for-
mula):
Lxw =ixdow+d(ixw)

which allows a condensed writing of Noether’s theorem: urnle conditiond. xw =
0 (invariance of[, w = [, L dxdt by the group generated by) andixde = 0
(validity of the Euler-Lagrange equations), the followitmnservation law is obtained:

. aL
Div <Léi + (¢k —Uk,ij) m) =0

This identity appears as a balance law for dissipative meudi@rein the Lagrangian
describes the kinetics of evolution of the internal vamahlaccording to previous de-
velopments). This approach seems more natural comparkd teadrk in [5], since the
authors do not truly consider dissipative media per se.

ExAMPLE 19. (Conservation of Deborah number in linear viscoeldgjie\s
a simple illustrative example, let consider the linear e&asticity law relating the
Cauchy stress rai@ to the strain and strain rates, written as the following firster
PDE with initial condition:

9 _ g0y 4 o=E¥e®) _
Delta:— | ot B¢t —m =0
c(0) =0

whereint(T) is a temperature dependent relaxation time, &Jd E> denote the
instantaneous and relaxed moduli respectively. The paeasieg € are here considered
as dependent variables, whereas the tinsehe independent variable. An equivalence
principle is defined as the prescription of two groups of¢farmationsGy, G, s.t.

Gi(t, o, u1) =Gz (t, o, n2)
whenuy = ug, with o solution of A. In terms of the generators, previous condition

is rephrased aprPvi(A) = pr@uy(A), whenA = 0. As a specific generator
that satisfies the previous condition together with theahaonditions (0) = 0, one



Differential geometry, least action principles 201

obtains the time dilatation group (expressing the equnadegrinciple and integrating
the resulting system of ODE satisfied by the coefficients et#o selected generators

= £ (t ')a—i-(tté)a and =Bt ')a
vl_ ’Tieat a?’ aé v2_ 1T168t1

having the generators

: 9 9
vp=t— —é—; Vo) = —T—.
YE%0 T e 2 It

They correspond to the two symmetry groups

{1 = et Hh=t

1=t Ty =@ Hr
Cilt. oo =1 = _ o andGa (t, o, ) := ¢

o1=0 02 =0

denoting the transformed variables with an over bar. Tranduihe equivalence condi-

. e -7 e =T . t . .

tionassy (f1, 01, é1) = a2 (o, 62, €2) gives the relatiomr | —, at, é ), witha = e
o

Thereby, it appears that an identical response of the raatembtained, when a time
contraction and a strain rate dilatation are operated, thighfactors Yo ando re-
spectively. This equivalence between time and strain estdd to the conservation of
Deborah number, defined as the ratio of the internal relemaitine (microscopic time)
to the observer (macroscopic) time scale, viz

T T ot

Np = — = —=—
tobs €/ (aé) t

Applications of this methodology to the time-temperatugeiealence princi-
ples have been further done [19], within a thermodynamimé&aork of relaxation [6].
Thereby, a systematic and predictive methodology for titengaup of master curves of
dissipative media has been elaborated. Note that the symgreups act in the space
of both independent variables (space and time) and depewvalgables (that itself de-
pend upon the selected thermodynamic framework); thesengyries shall further be
exploited.
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G.A. Maugin

BASICS OF THE MATERIAL MECHANICS OF MATERIALS
(M3) FOR ARBITRARY CONTINUA

Abstract. It is shown that the canonical balance of momentum of continmeshanics
can be formulated in a general way, but not independently efuual balance of linear
momentum, even in the absence of specified constitutive egaatié parallel construct
can be made for the accompanying time-like canonical energatiequ On specifying the
energy, previous particular cases can be deduced inclynlirg elasticity, inhomogeneous
thermoelasticity of conductors, and the case of dissipailiel-like materials described by
means of a diffusive internal variable (such as in damage okie®nlocal plasticity). A
redefinition of the entropy flux is necessarily accompaniea lbgdefinition of the Eshelby
stress tensor.

1. Introduction

There exist two opposite viewpoints concerning the stafuseequation of material
(or canonical) momentum in continuum mechanics. The viempef the author [1]-
[2] is that this equation is never independent of the clasgjehysical) equation of
linear momentum, in Cauchy or Piola-Kirchhoff form, beirgsentially deduced from
the latter by a complete pull-back to the reference confifpravhenever constitutive
equations are known for the material. It is, therefore, @miidy at all reqular material
points - but it still is extremely useful on any singular nfatd [3]. This is in agree-
ment with the application of Noether’s identity [4] when ot@nsiders a variational
formulation for a nondissipative material, a point of vielased by J.D.Eshelby in his
original works, e.g.,[5]. The second viewpoint is that ofr@u[6] who claims that this
equation is an a priori statement independent of the claldsadance laws although in
the end itis, for sure, always shown to be related to the phy/balance of momentum
so that Gurtin’s statement is somewhat inappropriate.

Let us be more inclusive. Several phantasms and fallacéestavork in the field
that is our concern. The present work has for main purposen®ct these by pon-
dering the basics of the material formulation of continuigstFit was for long thought
that canonical equations of motion or equilibrium such dsioled initially by Eshelby
can be deduced only when a variational formulation is at Hanstart with, i.e., in
the absence of dissipation and when the kinetic and potemexgies are prescribed
since a Lagrangian density is needed to start with. Thisasblief of, if we may
say, those who know “too much”. Indeed these authors knomeés of field theory
including the celebrated theorem of Noether [4] accordmgvhich a “conservation
law” is associated with any of the parameters describindidié theory under study
when a variational basis is considered to formulate baltaws. One must obviously
distinguish between thigeld equations(one for each scalar component of the involved
fields) - these are the Euler-Lagrange equations of motatstheconservation laws

205
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that follow from Noether’s identity. In pure continuum mectics the fields are the ac-
tual components of the placement or of the displacement.d€Beription parameters
are a set of coordinates - usually the so-called materialdioates in order to avoid
any confusion with any other system of coordinates-, andthielan time, a scalar.
Infinitesimal variations of the latter generate the soechkkquation of canonical - or
material momentum - and the equation of energy conserv@ltiaugin and Trimarco
[7]). If there are more fields, then there are more field equatias many as fields,
but the space-time parametrization remaining unchandgedcanonical conservation
equations are still four in number (the three components®fcanonical momentum
equation, and the scalar energy equation). Accordinglygeneral and working in
Newtonian physics, there may be 3 + n field equations and 4rscahservation laws.
In classical continuum mechanics where the medium invaheeisiner structure (such
as in micropolar, Cosserat or micromorphic media), it haggkat the three field equa-
tions left for the displacement and the material momentuoaggn can, at all regular
material points, be placed in a one-to-one correspondentiecboperations of mate-
rial convection (pull-back and push-forward). Accordipgine has the correct feeling
that nothing is gained from having a conservation of caradnimomentum -as a pure
identity - in addition to that of momentum in physical spa€hke situation is altogether
different when (i) there exist material points in the spatiamain of interest where the
fields suffer a singularity of an appropriate order. The wgitof the global canonical
balance laws will then make additional terms emerge thatspond to the driving
force (amaterial or configurational force acting on the singularity set - this may be a
line or a surface) and an energy sink (so-caedrgy-release ratgsuch as at a crack
tip line or at a surface of phase change) [8]-[9]. The sitrats also more interesting
even in the case (ii) where there are more fields than threadsingularity present,
because both the canonical momentum conservation, theairmigim essentially three
dimensional, and the energy equation, as it should, butlsmeously with the canon-
ical momentum conservation, involve all fields. This fact¥ploited in perturbations
of solutions of systems of partial differential equatiossah as in soliton theory) [10]
and also for checking the accuracy of numerical schemegimiugnature [11]. Notice
that when there are more fields than the classical placettentanonical momentum
equation is obtained by constructing a linear combinatibfietd equations, each of
these being first multiplied in the appropriate way by theerat gradient of the cor-
responding field. In that sense the “canonical momentumtephnis additive and will
include contributions from all fields including those of deatromagnetic nature [1] or
even more surprisingly, rotational internal degrees aédiem although the canonical
momentum itself reflects a translational invariance in miatepace (this is most nicely
illustrated by the case of polar continua [12] and liquidstays [13]). All these aspects
have been duly examined in works by the author and co-warlk&ti, one keeps on
mind that constitutive equations have been suggestedapgdnly through a proposed
dependence of the potential energy, in the relevant caststru

The view point of Gurtin [6] adopted by some authors is thatétexists a priori
a balance of configurational forces, in a sense, a new law ydigh We would say
that this represents the view point of the philistines beeahey seem to ignore that
the number of descriptive parameters, and therefore thebauwf balance laws of
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classical continuum mechanics, is limited so that thereilshioot exist a balance law
of the momentum type independently of the one already andrgly first written in
the spatial framework. These authors generally ignoreethgss of invariance that are
the tenets of modern physics. They are thus led to introduttia energy pressure-like
term in the Eshelby material stress through a dubious argunidey claim, to their
defense, that this is a way to arrive at the material momemguation, or its jump in
the case of a singular surface, without previous knowledgfgeoconstitutive equations
of the medium, and, therefore, even in the presence of dissip

Here we expand the view that the balance of canonical or lmhteomentum,
albeit following from the balance of physical momentum, banformulated indepen-
dently of any constitutive behavior. Moreover, accounfimghe fact that this equation
is the space-like equation associated with a particulan fwirthe energy equation, it is
shown that the former and the latter can be used in parallalitd a consistent ther-
momechanics of many behaviors, especially in the presehdisgipation. It in fact
is dissipative terms that help us construct a true invatiatmomechanics of rather
general continua. In other words we would like to show howofae can first proceed
in the construction of canonical material conservatiomsslaithout previous special-
ization to a certain behavior, it being understood thatipiEsn is not an obstacle to
the formulation of such equations.

2. Reminder of classical local balance laws of continuum méanics

We shall use the standard notation of nonlinear continuuichar@cs such as in Erin-
gen [14] and Eringen and Maugin [15], and a fortiori in Mauffiift[2]. In particular,

X = X = (X, 1) is the time-parametrized motion mapping of material spate phys-
ical Euclidean spaceVr anddivr denote the referential (material) nabla and diver-
gence, andd/dt = 9/dt|y or a superimposed dot denote the material time derivative.
We suppose that the following three local balance laws haen leduced from a
global statement for sufficiently smooth fields (see any bamokhe thermomechanics
of continua). Here we consider the Piola-Kirchhoff formtida of the balance of mass,
physical (linear) momentum, and energy (no external suppgnergy apart from that
related to the body force) at any regular material point X goatinuous body in the
presence of a body fordg per unit reference volume

dpo
(1) — =

ot |y
) —8(5?’) — diveT = fo

X

(K + E
3) % — VR(TV = Q) = fo.v,
X
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wherepg is the mass density = dXat|y is the physical velocityT is the first Piola-
Kirchhoff stress,K = pgv?/2 is the kinetic energyE is the internal energy per unit
reference volume, an@ is the material heat flux. This is complemented by the second
law of thermodynamics written as

S
(4) o|, TVRS= 0. S=(Q/0) +K,
X
whereSis the entropy density] is the absolute temperatu¢e > 0, infé = 0), and
S is the entropy flux. The “extra entropy fluX vanishes in most cases. We note
F = 0%/3 X|; = VrX the deformation gradient.

3. Canonical balance laws of momentum and energy

3.1. A canonical form of the energy conservation

First we shall formulate an interesting form of the energpsayvation equation. A
part of the reasoning is standard. In effect, taking theasgaloduct of both sides of
egn. (2) byv and performing some elementary manipulations we obtaisdhealled
theorem of the kinetic energyg
dK .

(5) W —VR(TV)+T :F—fo.VZO.
Combining this with the first law of thermodynamics (3) weaihtthe so-calledheo-
rem of internal energy

dE .
(6) — —T:F+VRQ=0.

dt
Further, in the case wheke = 0, introducing the Helmholtz free energy function by
W = E — S99, we transform the inequality (¢)Jnto the celebrate€lausius-Duhem
inequality

@ B <dW dé

— +S— |+ T:F-SVro >0.
at + dt) + RO =
As we know, this is exploited as a constraint in the formolaif thermodynamically
admissible constitutive equations, while the “conseoraéiquation ” (6) is the equation
governing heat propagation in a disguise. This can be gieeeral transformed forms.
A most interesting form is obtained straightforwardly byting thatE = W + 9,
yielding

d(S9) : : . 0w
8 —~ 4+ VRQ=h" pM=T:F- —
(8 gt TVRQ ot |y
This is of special interest because of the expression inigine-hand side which a pri-
ori appears as aimternal heat sourcelndeed, for a typically thermodynamically re-
versible behavior such as pure nonlinear elasticity (hsfasticity), whereN = W(F)
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depends only ofr, we have from the exploitation of (7),

oW ,
9 T=—=h"=0
©) 9F

Note that in the situation where (8) holds good, the inetyéH) can also be written
in the following enlightening form

(10) ) + S.VRo < hint

We claim that (8) in fact is the most interesting form of the energy conseovedéiqua-
tion for our purpose (i.e., establishing canonical equesio This we discover by con-
structing the canonical equation of momentum as follows.

3.2. Canonical (material) momentum conservation

Guided by what is valid for pure finite-strain elasticity @tber’s identity; see Maugin
[1]), we applyF to the right of egn. (2) and note that (T = transpose)

(11) <m> F=- ® VR (}povz) + <}V2> (Vrp0),
« 2 2

at ot
(12) (divgT).F = divg(T.F) = T : (VRF)T,

and

where we have set
(13) P:= —pov.F

the material momentum. Introducing plus and minus the riztgradient of an (un-
specified) free energy densiy = W(,, ., ..., X), we then check that egn. (2) yields
the following material balance of momentum

dP , - -
(14) 4~ diveb =M Xt i,
in which we have defined the materiashelby stres$, the materiainhomogeneity
forcefi"M (cf. [1]-[2] for this notion), the materiagxternal(or body) forcef®*!, and the
materialinternal forcef'" by

(15) b=—(Lwlr+T.F), Lw:=K-W
i dLlw Lw AW
(16) M= —2F) = = (P/DVRo0— |
d expl X fixed fields aX expl

(17) o= —fo.F, =T :(VaP) — VRWlimpi,



210 G.A. Maugin

where the subscript notatiomespl andimpl mean, respectively, the material gradient
keeping the fields fixed (and thus extracting the expliciteatefence oiX), and taking
the material gradient only through the fields present in timetion.

Equation (14) is theanonicalbalance of momentum of continuum mechanics
in the absence of specification of constitutive equatidhgs a mathematically strict
conservation equation only when all source terms in itst+igind side vanish. Here the
new notion is that omaterial internal forcevhich appears in parallel and total analogy
with the internal heat source (8)the action of the material gradient replacing that of
the material time derivative. We note that there is no “tiilke* scalar equivalent to
finh in equation (8) because this inhomogeneity force which is automaticalptuwzd
by that equation, has no dissipative nature. An explicitethelence oW on time (in a
nonholonomous system) would yield a nonzero tatf, but this is hardly considered
in continuum mechanics except perhaps in growing and ageatgrials such as soft
tissues (inhomogeneity of the material in time!). Simyathere is no equivalent to the
external material forc&*tin (8); because this equation governs essentially the internal
energy. It would be easy to rewrite eqns. 1(8nd (14) as a single four-dimensional
space-time equation (see [8]) but this serves no specipbgar except for an aesthetic
satisfaction, in engineering applications. Still tt@nsistencyetween the space-like
co-vectorial equation (14) and the time-like equation {8 fundamental requirement
in the thermodynamical study of the progress of singulats (e.g., defects).

Still, in the present approach, in order to proceed furtheneed to specify the
full functional dependence al. The general expressions {&nd (14) are the most
general canonical equations for momentum and energy we dén down without a
postulate of the full dependency ¥f. However, just like for other equations if contin-
uum mechanics, we could also write the jump relations aatetiwith (8) and (14)
at a singular surface by using elements of the theory of tgdiersystems or a more
naive method such as the pill-box method. But since the ‘exvagion laws” (8) and
(14) already exhibit source terms in the bulk (i.e., they rmoe conservation laws in
a strict mathematical sense), the associated jump retatidlh also contain surface
source terms. The latter, a priori unknown but responsilniéhfe dissipation at the sin-
gularity, have to be computed with the help of the standamtpjuelations associated
with egns. (1)-(3).

3.3. Case K#0

Without reporting the whole algebra, starting withAye let the reader check that the
thermodynamical inequality (7) is replaced by

dw de .
(18) — (W + Sa) +T:F+ Vgr.(0K) —SVR8 > 0,

whereS is still give by the general expression £¢4)Equations (8) and (14) are left
unchanged:
d() AW

19 = _VRQ=h" pM._—T.F_ | |
(19) at rR-Q ot |,
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P : .
(20) ((j:j_t — divgh = fint 4 fext  ginh.

On account of (18), eqn. (10) is replaced by
(21) S + S.VrH < hiM 4 Vg.(6K).

Now let us illustrate these general equations by specifiescasome trivial, and some
nontrivial ones.

4. Examples without body force

4.1. Pure homogeneous elasticity

In that casepp = const, andW = W(F) only. We haveni"t = 0, fi"t = 0 since
(9) holds good, and alsB"" = 0, Q = 0 since the body is homogeneous and non
conducting. Equations (8) and (14) reduce to the followingdct Hamiltonian for a
(3+1)-dimensional canonical momentuym 6pS)] system(6p = const):

dP ds
22 — —divgb =0, 6— =0.
(22) at ~9"R 04t
In four-dimensional form this is the formulation of Kijowisknd Magli [16].

4.2. Inhomogeneous thermoelasticity of conductors
In that casenp = o(X), andW = W(F, 6; X). We have the constitutive equations

AW AW
23 T=-——, S=——
(23) oF a0
that follow from a standard exploitation of the Clausiushem inequality. Accord-
ingly, we obtain that

(24) fint = fth’ hint = hth = S@
where
(25) fth .= SVRo

is the material thermal force first introduced by Bui in snsathins [17] and indepen-
dently by Epstein and Maugin in their geometrical consitlens [18], so that (8) and
(14) are replaced by the following canonicab+rHamiltonian) system of balance of
momentum and energy:

d(S9)

dP -
2 el T — flnh fth I\ Ve.0O = hth
(26) at divgb + 1 at + VR.Q ,

as first found in by Maugin [8].
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4.3. Homogeneous dissipative solid material described by eans of a diffusive
internal variable

Let « the internal variable of state whose tensorial nature isspetified. This may
relate to damage, or anelasticity of some sort with a pasdiiffusion of the said

variable so that its material gradient must be taken intoaet(e.g., in strain-gradient
plasticity). This is in the spirit of the thermodynamics dmped at length in a book
[19]. ThenW is specified as the general sufficiently regular function

(27) W = W(F, 0, o, VRa).

First we assume thdt vanishes. Thequations of statéin a sense, mere definitions
of the partial derivatives of the free energy) are giver@igbs’equatioras

W _
T-W g W
oF a6
(28) _ B
ow oW
A=——— B:=-
o d(VRa)
Accordingly, we find that
(29) fint — .I:th + fintr hint — hth + hintr

where the thermal sources have already been defined andnthiesic” sources are
given by

. T .
(30) ™ = AVR)T + B (VR(Vre)T) . ™ = A +B.(Vri),

so that we have the following consistent (non-Hamiltonisygtem of canonical bal-
ance laws:

P . )
(31) B divgb =gt e 9D g o pih it
dt dt
while the dissipation reads
(32) ®=h""_SVgs >0, K=0.

Here the thermodynamical forcésandB are purely dissipative by virtue of the “in-
ternal” character of the state varialle

This approach with =0 favors thecontinuum mechanid€oleman-Noll)stan-
dard viewpointby accepting the classical relationship between heat ammdmnflux,
and assuming that and its material gradient are essentially independent. Aeffredd-
theoreticviewpoint is to envisage the set of eqns.(18) through (2hodding true and
selecting the non-zend such that the divergence term in (18) be identically zerteraf
computation oflW/dt on account of (27), i.e.,

(33) K = —0"1Ba.
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This follows the scheme originally developed in [20] for evédls withdiffusivedissi-
pative processes described by means of internal variabdate.

We let the reader check that eqns. (31) and (32) are thercesplay the follow-
ing equations:

dP . - d(s _ .
(34) — —divgb = fth 4 §intr ¥+VR.Q=hth+h'””,
dt dt
and
(35) ® — fhintr _ S.VRG >0, RNt . Ay

where we have introduced the new definitions

_ SW W W
(36) A== —— = — (a— — VR. 9 ) =A-— VR.B,
Sa o d(VRa)
S:=6"1Q, O=Q-Ba
and
(37) b=—(L1g+T.F=B.(Vra)"), f"" .= A(Vgra)'.

The two thermodynamical approaches just illustrated atetoompared to the recent
constructive comments of Ireman and Nguyen Quoc-Son [2Efehve additionally
show that alteration in the entropy flux definition goes alaitty a parallel alteration in
the expression of the Eshelby stress tensor, thus reinfpthie space-like complemen-
tarity of egn. (34). More on this with the possible interpt&in of« as an additional
degree of freedom when it is equipped with its own inertia re@nt work [22].

5. Conclusion

The above-reported formal developments had for main perfmshow that, guided by
an admissible form of the energy conservation, we are ntlea to the construction
of the corresponding canonical equation of conservatiothie material momentum,
with no specific information on the functional dependencéhef free energy. This
obviously accommodates a large spectrum of dissipativauders, in particular when
we adopt the thermodynamics of internal variables to foatautomplex irreversible
behaviors. This generality is encapsulated in the gengpakssion (27). For instance,
in finite-strain elastoplasticity, we would select only #iastic deformation “gradient”
F€ instead of the fulF = F&.FP and the set of internal variablescan be built up of
the plastic deformation gradieRf itself and a seB of hardening variables, yielding a
sufficiently general framework.

The resulting canonical equations of conservation of nmatexomentum and
energy are those to be exploited to determine the drivingefoon defects in materially
homogeneous or inhomogeneous materials, including agptepgyeneralizations of
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theJ integral of fracture and the driving force on shock wavesifiécent types (true
shock waves and phase-transition fronts). To do this ondatbw the line taken in
a paper by Dascalu and Maugin [23] for cracks and the autfjpfgBfor singularity
surfaces.

What we finally learn from the above analysis is to make a cléstindtion
between various concepts of field theory applied to contimmechanics. These con-
cepts are those of (i) field equations, (ii) balance lawg,d@nservation laws, and (iv)
strict conservation laws. The first type are those equatidrnish govern the fields, the
latter being understood in the sense of field theory, i.dected form the start. This
procedure is particularly well defined in the Lagrangian¥tonian variational ap-
proach. The second type relates to a scrupulous examinaitinat makes a basic
physical quantity (which is not necessarily a basic fieldyva time and space on ac-
count of prescribed external actions in the bulk and at thiase of a body. The result
of this generally is a partial differential equation extiitg a time derivative, a diver-
gence term, and source terms. A conservation law in the praes#ting is generated
by a variation in the describing parameters of the fieldss Thielated to an invariance
requirement. A strict conservation law involves no soueces and is typically written
as a four-dimensional space-time divergence. The fourstgbequations have been
illustrated in this paper on the case of continuum mechanitcsome problems such
as in the theory of exactly integrable systems in solitomtjyehe number of balance
equations is usually small, the (scalar) components of #ie équations may usually
be few, and the conservation laws may be infinite in numbeek,(8.9., [24]). The
relationship between some of the members of this infiniteesemd the conservation
equations addressed in the present paper has been examihediothor in the context
of the wave mechanics of solids (see, e.g., [25]).
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ANALYTICAL SOLUTIONS AND UNSTEADY PROCESSES
GOVERNED BY NON-LINEAR NON-INTEGRABLE
EQUATIONS

Abstract. The benefit of finding particular exact and asymptotic sohgiof non-integrable
non-linear partial differential equations is considerédis shown how explicit analytical
solutions predict important features of the waves behavien eutside their formal applica-
bility. In particular, an arbitrary initial pulse splits @ numerical solution into the train of
localized waves each described by the analytical trawgliave solution. This happens both
for the bell-shaped and kink-shaped localized waves. Alsoerical simulations demon-
strate an incident wave amplification/attenuation to a staldve with the amplitude and
velocity defined by the relationships obtained via an asytigsolution. Physically reason-
able equations are used to illustrate above mentioned stateme

1. Introduction

It would be nice to obtain an analytical solution of a goveghnon-linear equation.

Most of the mathematical work in the realm of non-linear givaena refers to inte-

grable equations and their exact solutions. In this caseerajeneral methods may
be employed to obtain general solutions, see, e.g., [1,.2U8Fortunately, most of

non-linear equations are non-integrable, and only pdaticolutions may be found.

Of special interest are the solutions that keep their shagar@pagation. One
of them is a bell-shaped solitary wave, see Fig. 1(a), tha¢sathanks to a balance be-
tween nonlinearity and dispersion. Another one is a shoslewaa kink-shaped wave,
see Fig. 1(b), that usually appears due to a balance betvordinearity and dissipa-
tion. One can find a lot of papers where particular exact gwlatof these kinds are
obtained. However, most of them do not consider an appticadf the solutions to the
real physical problems. Indeed, exact travelling wavetsmis of non-integrable equa-
tions are obtained as a rule. Hence, they require specifialinonditions. Moreover,
some solutions do not contain free parameters, and spetiionships between the
equation coefficients are needed for their existence. Asgtiegsolutions of non-linear
equations are not travelling wave ones without fail. Howetleey usually describe a
particular process, e.g., evolution of a single solitaryevil]. Real physical problem
requires a more general solution, in particular, evolutiban initial pulse of arbitrary
shape. Usually such a problem may be solved only numericalat is why people
prefer to deal with numerical simulations. However, a dolubf a non-linear equation
is very sensitive to the values of the equation coefficientsta the initial conditions;
this may be missed in a numerical modelling. Also numeriealits may happen to be
unusual, and its justification is needed. So, a natural gpreatises: may one employ
particular analytical solutions to predict a behavior ia tfeneral problem when only
numerical solution may be obtained? May the relationshgisiéen the coefficients
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Figure 1: Various profiles of travelling wave solutions: a)lishaped solitary wave; b)
kink-shaped wave; ¢) oscillatory vanishing solitary wa@ “fat” solitary wave.

of the equation obtained via analytical solutions descttiteeconditions when one or
another stable profile of permanent shape is realized in rias?e

An attempt is done in this paper to answer these questionse 8ie size of the
paper does not allow to study the whole problem, the presents designed using
some instructive examples that illustrate main ideas.t,Rine employment of exact
solutions is considered. Usually exact solutions of na@dimon-integrable partial dif-
ferential equations are obtained using various direct ovsthHere the attention is paid
to one of them- the method of an ansatz. It looks the most effidor non-integrable
equations and rather simple in use. More information anfuuseferences regarding
direct methods may be found in [1, 2, 3, 4, 5]. Some exact wolgtare presented
to illustrate the power of the ansatz method. Then it is shbaw the solutions ob-
tained may help to understand some results of numericallaiions. Next section is
devoted to the employment of asymptotic solutions in theesaranner. The procedure
used for finding asymptotic solutions is familiar [1, 5], leerit is not explained here in
details. Instead, again some examples are considered tieeesymptotic solutions
describe important numerical results. The evolution oftib#-shaped solitary wave
is studied on the basis of one seismic waves model. Then tietiah is paid to the
use of the kink-shaped solutions of the Burgers equationifieddy weak dispersion
and higher-order nonlinearity. It is important to mentitvattthe moderate values of
the small parameter responsible for the weak dissipatialispersion may be formally
used in numerics. It is found that even in this case the feataf the asymptotic solu-
tions remain valid.
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2. Exact solutions

2.1. Direct methods for finding exact solutions

Sometimes, a solution may be obtained using a transformafigariables that allows
us to reduce our equation to an equation whose solution igknénother method,
method of ansatz, allows us to reduce our differential éqnab algebraic equations
for the parameters of the solution.

Important steps in employment of these methods are:

e Reduce non-linear partial differential equation (PDE)naadinary differen-
tial equation (ODE) considering only travelling wave s@us (or self-similar);

e Reduce the obtained ODE to an ODE whose solution is alreadwinby
means of a suitable transformation of variables or

e Reduce ODE to coupled algebraic equations for the parageténe solution
by means of a suitable ansatz.

As an example, consider the double-dispersive equatiorE(j(MD, 5],

2
1) Upt — ap Uxx — @2 (U%)xx — o3 Uxxtt + 4 Uxxxx = O.

that describes, in particular, longitudinal strain waveslation in an elastic rod. Its
travelling wave solution depending on the phase varidble- x — V t is obtained
from the ODE reduction of Eq.(1),

(2) (V2 — a1) Ugg — a2 (UD)gg + (s — a3 V2) Ugges = O
Using substitution of variables,

6(a3V?2 — V2 —
u = dwVioaw o Vi—a
o2 200

equation (2) is transformed to the Weierstrass equation,

(V2 —ap)?

1 2 3 _ _ — =
3) WO =47 —gv -0 &= 15— U5

whose known exact solution is expressed through the elljgierstrass function,
v = (@, g2, 93).

In order to transform the problem of finding exact solutioiSODE to the
problem of finding solutions of algebraic equations, it vebbke nice to express an
ansatz through the functions whose derivatives are exgulemsy through these func-
tions. That is why various elliptic functions are widely dst® obtain periodic so-
lutions. One possibility is to use the set of the Weierstfasstion g and its first
derivative py. Indeed, we haveyy = 602 — 0.502, ppes = 126y etc. An
important limit of the Weierstrass function correspondshe choicegy, = 8k*/3,
gs = —8k8/27. Inthis casep = k?/3 — k?Seclf (ko) that accounts for a bell-
shaped solitary wave solution. Also the solitary wave sohg are obtained directly
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using the hyperbolic functions for an ansatz. One can find aflpapers where the
hyperbolic tangent is employed. Indeed, we have Tfas = k(1 — Tanhk6)?),
SecK(kf)y = 2(Tank(k9) — Tanhkd)) etc. A more complicated ansatz through the
Ricatti functions was suggested in [6]. These functionisBathe Riccati equations,

/

4) o0 = —ot,7 = 12— Ao+ 1
Certainly any derivatives of the Riccati functiomsandr are expressed through them-

selves. Egs. (4) possess the exact solution that allows epiess the Riccati func-
tions through the hyperbolic functions,

1 CoCoshk) + C1Sinh(k)

A+ C1Coshkd) + CoSinh(kg)’ t= A+ C1Coshks) + C,Sinh(kd)

(5) o =

A power series in Tanh or/and in Sech is often used to cortdtra@nsatz. Use
of the power series in the Riccati functions allows us to lfwla solution as a rational
function of the hyperbolic functions while power series pimation in terms of the
hyperbolic functions appears as a special case. Indeedy Ghe= A, C, = 0, we
get from Eq. (5) L ) )

0 0
o = 2ASeci"r( > ), T = Tanh > ).

However, substitution of an infinite power series into theagipn yields a com-
plicated algebra to find the coefficients of the series. Fur#implification may be
done using the pole analysis of the solution to define thetimmal form of the ansatz.
One can see that the critical points of the elliptic and higpkc functions are poles (in
the complex plane). Let us consider the DDE (1), for exanguie, assume that its so-
lution possesses a pole of ordg ~ 6~". ThenuZ, ~ 672""2, upggy ~ 6 "4
Comparing higher order derivative (dispersion) and naairterms one finds = 2.
This provides a balance between nonlinearity and dispersiquired for existence of
localized bell-shaped solitary wave solution. Then theatmmay be suggested,

(6) u = B SecKkd).

Substituting (6) into (2) integrated two times one obtains
Secl(kd)Blag — V2 — 4k?(ag — azV?)]+
Secl(k0)Blaz B + 6k?(a — a3V?)] = 0

Equating to zero combinations at each power of Sech, onénslatigebraicequations
for B, andk whose solutions are
3(v2 - — V2
@) B — Q, K- _“a-v
200 4(ag — azV?2)

There may be more than one higher-order derivative or nwewsli terms in the
equation. Consider the Korteweg-de Vries-Burgers (KdVd)ation,

) Ut + U2 + b Uk + S Uk = O,
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In this case we gaet = 2 comparing nonlinearity and dispersiaggx andn = 1
comparing nonlinearity and dissipatiany. We have to satisfy both possibilities in
order to provide a common balance between nonlinearitpedson and dissipation.
Hence the solution should contain both the second and thefder poles. The suit-
able ansatz is

9) u = B SecK(kd) + F Tanhké) + C.

It allows us to find the well-known kink-shaped solution oé tidVB equation with
parameters defined by

6b k 3b? b 6b?
B = 6k’s, F = 5,c :|:255,k :I:lOS,V :t25s

More examples regarding the method of ansatz may be foundfs B, 4, 5].

2.2. Exact bell-shaped solitary wave solutions

Following the procedure described before one can find exagtisns to many non-
integrable equations. However, most of them are singlesliiag wave solutions that
require special initial conditions. In particular, therfoof the initial condition for the
exact solitary wave solution of the DDE is defined by Eq. (8),witht = 0in 6.
What happens when an initial condition differs from the "Sesitape? Certainly, it is
unlikely to describavholeevolution of an arbitrary input analytically. But if we find
such a solution numerically, what is the reason for findirecsgd exact travelling wave
solution?

Numerical simulation of the DDE has been performed in [5jvdis found that
for ap > O rather arbitrary initial pulse with positive amplitudeligpinto a train
of solitary waves with different amplitudes while negatimput is dispersed, and no
travelling localized wave appears. The higher is the anngditof the wave, the larger
is its velocity. The distance between the localized waveeemses in time, hence the
waves interaction becomes weaker and weaker. Hence eaehmay be considered
as a single travelling wave and comparison with the exacttisol may be done. It
is found that each localized wave generated by positivetiapolves according to the
exact travelling wave solution (6), (7). Moreover, realifithe parameters in (7) gives
rise to the conclusion that only positive amplitude sojitaaves may exist fax, > 0.
Similarly, negative amplitude solitary waves arise fromegative amplitude input for
a2 < 0 Hence exact solution allows us to choose suitable signeoinut amplitude
to provide generation of localized stable solitary waved sndescribe each solitary
wave thus confirming numerical results.

Sometimes numerical simulations yield rather unusuallt®siRecently, the
Gardner equation,

(10) U 4 a U2 + cu + bukxx = 0,

was studied in [8]. It was found that a train of solitary waspgears from certain initial
pulse. However, there is an input that produces rather vty wave followed by
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a sequence of usual bell-shaped waves. These results maplagmed using known
solitary wave solution of the Gardner equation [7]:

3b k2
a(BiCoshké) +1)°

9bck?
B = 1+ 2°¢ g = x— bkt
2a2

The solution has an interesting feature for negatiiendency to the extensive or "fat”
shape ak — /—2a2/(9b c¢). The amplitude of the wave tends to the limiting value
equal to—2a/3c, while the width growths without limits, see Fig.1(d). Likethe case
of the DDE, numerical simulations are successfully chediethe exact solution (11)
both to account for the usual bell-shaped waves and the stdifary wave [8].

Even more interesting unusual profiles appear studying rically the equa-

(11) Us =

where

tion
(12) U+ 2D U Uy + 3CUPUx + T Ulyyyx+ S Uy Uxx 4+ d Uz + f Usx = O,

which is often called the extended KdV equation [5, 9]. A esviof its exact bell-
shaped solitary wave solutions may be found in [3, 5]. An appece of the solitary
waves described by the exact solutions from rather arlitrgout was studied numer-
ically in [5, 9]. It was found that sometimes there is a gootkagent with the exact
solutions, namely, in the shape of generated solitary wamdsn dependence of their
parameters upon the equation coefficients. Also the camditrequired for existence
of exact solutions were realized in numerics. At the same tithe localized waves
were obtained that differ from those described by the aitallysolutions. In particu-
lar, an oscillatory vanishing at infinity, see Fig.1(c), awhulti-humps localized waves
have been discovered in [5, 9] as well as the "fat” solitarwevf®]. One has to note
that all known exact solutions of Eq.(12) either do not comfeee parameters or exist
under special relationships between the equation coeff&ieSo the absence of free
parameters or additional restrictions do not allow us toaxset solutions so efficiently
as in the case of the DDE whose solution (6) contains the faegnpeteN and in the
case of the Gardner equation having free paranketer

2.3. Kink-shaped solutions
The Burgers equation
(13) ut + (Uz)x + buxx =0,

is widely used in many physical problems [10, 11]. In pattcLit possesses the well-
known shock-wave solution (or a kink),

(14) Up=b pTanh p(x — Vt)) + V/2.
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Figure 2: Evolution of the exact solution of the Burgers diumeforb < 0.

wherep andV are free parameters to be defined by the boundary condit@ns. f
The Burgers equation is integrable, and a more generaisolot the Cauchy problem
may be obtained. However, integrability fails for most sfgieneralizations caused by
an inclusion of the additional terms like dispersion, higheder non-linearity etc.

Figure 2 shows stable movement of the kink wave of permanwaes (14).
This is because the shock-wave solution of the Burgers &guatises as a result of a
balance between nonlinearity and dissipation.

The same simulations for the KDVB equation (8) yield a prdfilgerent from
that of the exact solution since it contains oscillationstenupper or on the lower parts
of the step depending upon the signspBee Fig.3. A possible reason of it lies in the
fact that the exact solution of the KDVB equation (9) doesawsitain free parameters
in contrast to the two-parameter solution of the Burgersa&qo (14).

In order to check this idea let us add an additional non-titexan to the KdVB
equation,

(15) Ut + U2 + b Uxx + S Uxyx +q U2, = 0.
Its exact kink-shaped solution

(16) U = %Tanr( P(X — W) + W/2,

contains is a free parametprand fixed velocity

s—bq

W = 2
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Figure 3: Evolution of the initial Burgers shock wave for< 0,s > 0.

The solution (16) never coincides with the Burgers kink §otu(14) since the equality
in the amplitudesb = s/q yieldsW = 0 for the velocity in the solution (16).
Now numerical simulation of Eq.(16) demonstrate almostial to the Burgers kink
evolution for certain values agfandg. However, the amplitude in the solution (16) does
not depend on the value bf It means that the wave shown in Fig.2 might propagate
for positive values ob, and this prediction of the exact solution is realized aldtere
exist domains of the values sfandq where initial Burgers kink evolves like in the case
of the KdVB equation with oscillations on the profile, see.BigAnother scenario is
the smoothness of the initial profile shown in Fig.4. It isyrely that oscillations are
caused by dispersion while higher-order nonlinearity pomsible for the smoothness,
and observed deviations in the kink shape are caused bytboé#te balance between
dispersion and higher-order nonlinearity. So, additiothefhigher-order nonlinearity
allows us to provide two balanceeparatelybetween nonlinearity and dissipation and
between higher-order nonlinearity and dispersion. Inmamttto it, the solution (9) of
the KdVB equation should satisfy two balans@sultaneouslyhat fixes its parameters
and prevents the appearance of the solution from an anpitrput.

3. Asymptotic solutions

The balance between nonlinearity and dispersion may beogestdue to the influence
of dissipation and/or accumulation. When this influence iaky@asymptotic solutions
may be obtained to account for the bell-shaped solitary veaedution. Introduction

of the fast (usually phase) and slow (time or space) varsaallews us to study more
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Figure 4: Smoothness of the initial Burgers shock wave.

general processes than those described by exact travetivegsolutions. In particular,
asymptotic solutions may account for an amplification oeratation of a wave. The
ODE describing the solitary wave amplitude variation magduxt the case when an
increase or a decrease in the amplitude happens to some\ihite defined by the
values of the coefficients of the original PDE. We call thisqass the solitary wave
selection. Selection frorbelowis accompanied by the growth of the initial amplitude
while selection fromaboveis provided by the decrease of the initial solitary wave
amplitude.

Similarly the case may be studied when the balance betweaimearity and
dissipation is destroyed by the presence of dispersion gytethorder nonlinearities.
In this case, the asymptotic solution allows us to accounafpropagation of a kink
with stationary deviations on its front and to establish ar@ztion between the shape
of these deviations and the structure of the perturbationgen the equation. Both
for the bell-shaped and kink-shaped waves the featuregagdpmptotic solutions are
realized in numerics even when the small parameter chaizntgweak perturbations

achieves moderate values.

3.1. Evolution of the bell-shaped waves

The asymptotic solution allows us to describe seismic waesction on the basis of
the model equation obtained in [12]:

a7 Ut + U Uy +d Uxxx = —¢ (alu —apu® + a3u3) ,
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a1, ap, ag are positive constants aads a small parameter. One can see that Eq.(17) is
nothing but the disturbed KdV equation that possesses eer#lethaped solitary wave
solution in the absence of disturbances. In the general Easg17) may describe an
appearance of microseisms. Following [5, 13] assume thetitmu depends upon a
fast variablet and a slow timeT , such as

&=1 &=-V(), T=c¢t.
The asymptotic solution is sought of the form
(18) ugé, T)=up&, T)+eur(¢, T)+...
The bell-shaped solitary wave solution of the KdV equatinses in the leading order,
(19) Up = 12d k(T)%SecK (k(T) &)

However, now its parameters depend upon the slow fimlext order solution yields
the equation for the wave amplitu@@= 12d k(T)? of the form [5, 13]:

(20) Qr = —%5 Q(24a3Q? — 28a,Q + 35a).

The behavior of the solitary wave amplitud@, depends on the value §fp =
Q(T = 0). Indeed,Q will diverge atQp < Q1, whenQ1 < Qp < Q2, Q will grow
up to Qz, while if Qg > Q2, it will decrease byQ,. HereQ1 < Q2 are the roots of
equation 243Q? — 28a,Q + 35a; = 0. Hence parameters of the solitary wave tends
to the finite values prescribed by the equation coefficiantand theselectionof the
solitary wave takes place.

Despite this solution requires special initial conditiomymerical simulations
[5, 13] confirm the behavior of the wave predicted by the tiieawen when an initial
condition is arbitrary or in the presence of solitary wavagiaction. In the former
case, the situation is close to that of the DDE when the inptiainsformed into the
train of solitary waves each separately being describedthéwasymptotic solution. In
the latter case, it is found that the interaction does notgmesolitary waves amplifi-
cation, vanishing or selection that are realized for thdfuxents of Eq.(17) prescribed
by the asymptotic solution. Itis important that the ampulés of the resulting localized
waves in the numerical solution are equal to those of thetlavaves obtained from
the asymptotic solution. Moreover, the value of the amgbtof the selected solitary
wave remain valid when is not small.

Similarly the amplification, attenuation and selectiontd bell-shaped nonlin-
ear waves may be studied using an equation

2
Vit — Uxx — €a1(V)xx — Y2 Uxxt + 6(@3 Vxxxx — @4 Uxxtt)+

(21) ¥ 8 (a5 Uxxxxt + 06 Uxxttt) + 7/2017Uxxtt =0,

that appears to account for the strain waveés, t) in a microstructured medium [5,
14]. Whené = O(e), y << 1, this equation is nothing but the DDE disturbed by
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Figure 5: Influence of the weak dispersion on the Burgers fanbk < 0: a)s > 0;
b)s < 0.

dissipative/active terms. Its asymptotic solution is oi#d in [5, 14] similar to the
solution of Eq. (17).

The same procedure may be applied to study the bell-shapatizied wave
evolution in the two-dimensional case. An example of the-taensional selection
of the lump of the Kadomtsev-Petviashvili equation may hefbin [15].

3.2. Evolution of the kink-shaped waves
Let us consider the KdVB equation

(22) Ut + (Uz)x + buyxx = —8SUxxx,

whens is a small parameter. The asymptotic solution accountinghi® perturbation
of the kink-shaped wave is sought in the form

u®) = uo(0) +dus(®) + ...

whered = x — V't, andu; — 0 for6& — +oo. Substituting this series into Eq.(22) we
obtain in the leading order an ordinary differential eqoaifODE)

(~VUg+U3+buggly = 0,

which is satisfied by the travelling wave solution of the Banggequation (14). In the
next order an inhomogeneous linear ODE appears for theifumat,

(—Vu1 + 2upus +bugg)g = —Sug,eee,

whose solution is
uy = 2p?s Secl(ps)Log(Cosh p 6)).

Figure 5 demonstrates affect of the weak dispersion on thpesbf the Burgers shock
wave,u = Ug + du;. Here and in the following the unperturbed solution is shdayn
dashed line. One can note non-symmetric influence on the appdower parts of the
wave. For positives, a "hat” appears at the upper part while the lower one is stije
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Figure 6: Evolution of the initial Burgers shock wave ®r> 0 and smalb.

to a smoothness of the wave front. The mirror profile appearadgative values .
We see that all deviations are concentrated around the wane f

Our travelling wave asymptotic solution requires specidial condition in the
form of already perturbed kinky(t = 0). However, one can check numerically that
the Burgers unperturbed kink transforms into another onesetshapes agrees well
with that described by our solution, see Fig. 6. One can saepirturbations of the
shock wave profile are stable, they are located near the wamednd do not evolve
far from it. Moreover, even fo8 = O(1), the initial Burgers kink wave still evolves
into the profile predicted by the asymptotic solution whismot valid in this case in a
strict mathematical sensé is not small). Typical evolution is shown in Fig.3, where
this new wave continues to propagate with one and same tyelowl the shape. Hence
asymptotic solution explains what was not covered by thetes@lution (9).

Next equation to be considered is similar to the extensidheKdVB equation
(15),

(23) Ut + (UZ)x + DUxx = —8(SUxxx + qUZ,).
Its asymptotic solution is
U = Uo + 8p?Sech(pd) [2(s — b gq)Log(Coshp 6)) — V q6]

An influence of the higher-order quadratic nonlinearitygsisin Fig. 7 fos = 0. A
smoothness is achieved fgr < 0 the same happens for the numerical solution shown
in Fig. 4. Again the asymptotic solution reveals the featwas not discovered by the
exact solution (16).

Similarly one can study an influence of the higher-orderipan uxxxx and
other linear and non-linear perturbations on the kink sofuof the Burgers equation.
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Figure 7: Influence of the weak higher-order nonlinearitytbe Burgers kink for
b < 0:a)g > 0;b)g < 0.

4. Conclusions

One can see that exact travelling solitary wave solutiork f#ee parameters arise in
a more general numerical solution, they may predict impotfisatures of an arbitrary
input evolution. However, exact solutions with fixed pargengare not necessary real-
ized in computations. In the case when exact solution wéh frarameters is unlikely
to find, an asymptotic solution depending upon the fast amglthw variables may help
to understand the behavior of the wave, in particular, dinption and selection of the
bell-shaped solitary wave.

Even more speciatravelling waveasymptotic solutions predict deviations in
the profile of the Burgers shock wave that are realized in mioaesimulations of
unsteady processes. Like for the bell-shaped waves, thregiéciions remain valid
even outside the formal applicability of the asymptotiausioh at moderate values of
the small parameter.

Both the exact and asymptotic solutions provide us with tHationships be-
tween the coefficients of the equation required to achiewearanother kind of the
wave evolution. One can use this information in advance fdesign of numerical
study, it does not allow us to miss one or another scenaribeofMaves localization.
On the other hand, analytical solutions may be used as aggsbint for a design of
numerical scheme. To sum up, they deserve time requiretiéarfinding.
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THERMOELASTIC STRESS ANALYSIS FOR LINEAR
THERMOELASTIC BODIES

Abstract. The thermoelastic stress analysis for linear thermoelastiiek is developed as
a mathematical support to the infra-red radiometric method T&PApplied to structures
under cyclic loading conditions.

1. Introduction

The use of high-tech materials for structural applicatioas shown in recent years that
the study of mechanical behaviour of such materials is dftadequate. Studies on

the interaction between mechanical and thermal effectslid bodies have therefore

received considerable attention.

Thermographic stress analysis has been adopted as a [zalyiconvenient
mean of experimental stress analysis based on the therstioadfect. The thermoe-
lastic stress analysis tecnique is based upon the use oPHEES Stress Pattern Anal-
ysis by the measurement of Thermal Emission) equipmenhé&radiometric monitor-
ing of the temperature changes induced by cyclic loadinpéndiastic range [1], [2],
[9], [10], [11].

In [8] a theoretical analysis of the thermoelastic effect baen developed in
order to provide a mathematical model as a support to SPATREtenresults of tests
carried out on concrete and mortar [1] are reported as expetal evidences of the
theory described.

The aim of this paper is to generalize the results obtaing8]in the intrinsic
formulation of the linear theory of thermoelasticity is atied [3] and the linear rela-
tions given in [8] between the variation of temperature dr@wariation of stress are
obtained after suitable assumptions.

In Section 2, within the linear theory of elasticity for amtiopic continuum
body, we deduce from the First Law of Thermodynamics a difiial equation which
gives a relation between stress and temperature.

In Section 3 we integrate this equation and we remark thheiftincipal stress
components are two and three the solution depends on tharfdshe second invariant
of the stress while the second invariant vanishes in the eisee component of the
principal stress.

In Section 4 we show that if we linearize the equations olethim Section 3,
we get, at least for the case of dimension one, the sameses|f].

*This work was supported by the Italian M.U.R.S.T. researciegt “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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In Section 5 we apply the results obtained in Section 3 to th&T& model
considering sinusoidal principal components of stress.

2. The mathematical equations

Let us consider a continuum body as defined in [4] and let usnasghe bounded
regular region of space occupied by the body in a fixed reteraonfiguration be
closed with respect to mass transfer and open with respecetay transfer. The body
can be considered a thermodynamical closed system.

According to [3] we recall that the local form of the First La# Thermody-
namics for the system considered is:

(1) pé=S.F —divq + pr,

wheree is the internal energy per unit masgis the heat flux vector per unit surface
area and unit time, is the heat supply per unit mass and unit timés the mass density,
S andF are respectively the first Piola-Kirchhoff stress tensad #re deformation
gradient.

If n is the entropy per unit mass aidthe absolute temperature, we introduce
the free energy per unit mass [3]

2 Y =e—nd.

If we assume that the body is elastic, the Second Law of Theymamics im-
plies the following restrictions:

3) v =¥ (F, ), S=SF, ), n=nF,0)

4) S(F, 9) = pdry (F, 9), A(F,0) = a9 (F, 0).

If we differentiate (2) and (3)with respect to time, by means of (4), from (1)
we get:

(5) pnd = —divg + pr.

Defining the finite strain tens@ by [3], [4]:
(6) D=%(TF—1),
wherel is the unit tensor, the restrictions (3) and (4) are sulistitbyy:
(7) v =v(D,v), S=FS(D, ), n=i(D,9)
and

€) S(D, ) = pdey (D, 9), (D, 9) = =3, % (D, 9),
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as a consequence of material frame indifference [3], [4].

By differentiating (8} with respect to time and introducing the specific heat at
constant deformation [3]:

9 c=vadyn(D, ),
from (5) we get:
(10) —993S- D+ pcd = —divg + pr.

Now we assume that the gradient displacen®atand its rate of chang®u
are small and that the body is subjected to small incremetetoperature.

Nevertheless the stress tenSatepends on the temperature through the material
functions which appear in the constitutive equations.

Therefore, introducing the infinitesimal strain tensor, [3]:
1 T
(11) E_§<Vu+Vu>,
if
(12) F=1+Vu,

from (6) we get:
1.1
(13) D=E+ EVu vu.

If we assume that the body is isotropic, then the constituiguation is [3]:
(14) S=2uE + [AtrE — B(¥ — ¥p)]1.

In the above equatioh and . are the Lard moduli, whileg is related to the
coefficient of linear thermal expansianby [11]:

(15) B = (3Br+ 2w

From the experimental data we deduce thaind . are functions of the tem-
perature? ([6], [11]).

Moreover from (13) and the assumption of linear approxiorator the gradient
displacement we can obtain:

(16) DxE

Therefore by substituting (14) in (10), with the use of (1@ get the following
equation:

(17) pc = —divg + pr + 1 {209 LE + [0y AtrE — 35 B(9 — o) — BIL}E
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Let us assume that the thermodynamical process is adiabigliout internal
heat sources, that is [3]:

(18) —divg+ pr =0

From experimental results and from the analysis of the cofleragnitude we
can deduce thdty (% — o) is negligible with respect t@, while 0y uE anddyAtrE
are relevant, therefore, with the use of (18), equation ¢hr)be written as:

) . .
(19) 'OCE = 209 uE - E + [0 ArE — B] trE.

Equation (19) represents the thermoelastic coupling kestveérain and temperature.

Let us now deduce from (19) a similar expression in termsretst Because of
the isotropy of the material we can assume ihat 0, 3\ + 2 > 0 [5]. Therefore the
constitutive equation (14) can be inverted in

1

20 E=—S—-———
(20) 21 21(3r 4 2u)

trS1+ a(d — 9o)L.

Let us now recall the well known relations between the Eamodulix, © and
the Poisson’s ratio and the Young’s modulug:
Ev

M= AT nd—)
(21)
E

hS

By means of (21) we gety; 2 anddy u in terms ofdy E anddy v, then with the
use of (20) and the assumptions that b@th-9¢) and its time-derivative are negligible,
from (19) we deduce:

D ) .
(22) - =— |:i — FltrS] rS+1IS-S
9 pC

where

1 v 1
MN=—|—-—=0E+ =0yv
pC

E? E
(23)
1[1+v 1
N=—|—0d3E—- =0
) pC[EZ ) Ew}
Let us now set:
o=11=1trS
6 =trS L
24 withi =1,2,3
@9 oi = (S

i = ()
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where(S); are the principal stresses with respect to an orthonorngsba). If we
3

recall thatS- S = Z(S)i (S)i, with the use of the (24), the relation (22) becomes:
i=1

: 3
0 o . .
(25) 52_[;)_0_F10]0+F2;_10im

3. Stress-temperature relations

In order to get from (25) a relation between temperature ame$swe must suppose
that:

i) the mass density is constant during the thermodynamical process;

i) the partial derivatives with respect to temperattiref the Poisson’s ratie and
of the Young’s modulu& are constant with respect to time and temperature.

It follows therefore that"; andI'> given by (23) are constant. If we introduce
the “thermoelastic constant”

(26) k=2

pC
and we denote with the second invariant of the stress tensor:
(27) T = lp = 0102 + 0103 + 0203,
under the assumption thét = g, 0 = og andr = 1o fort = 0, the integration of
(25) with respect to time gives:
(28) Inl% — k(o — 00) + % (T'1 +T) (02 - 002) — Tt — 10).

It is interesting to remark that in the two-dimensional cta is when the
principal stresses are:
(29) o1 #0, o2 #0, o3=0
equation (28) still holds assumimg= 1, 2 in (24) and replacing (27) by
T = lp = 0102,

while in the one-dimensional case in which
(30) o1 # 0, op=03=0 ando; =o
the second invariant of the stress tensor vanishes andq28placed by:

9 1
(31) Ins- = k(> ~00) + 5 ("1 +T2) (52 — ag) .

Let us remark that the solution of (25) shows a non linear ddpece on the
first invariant of the stress in all the cases (see (28) anj) (8hile only in two and
three-dimensional cases a linear dependence on the sec@nidint appears.
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4. The linear case

In classical theory [2], [7] from the generalised heat cardun equation, by assuming
that straining occurs adiabatically with no conduction eadhand with no heat supply,
the Kelvin formula has been deduced:

AD

(32) — = —kAc
Yo

with k thermoelastic constant defined in (26).

We shall prove that, from (28) and (31) of the previous sectadter suitable
linearizations, it is possible to get linear relations bestw the variation of temperature
and the variation of stress which are comparable to (32).

Infact, let us define the average values of the principakse®, of the stress
invariants and of the temperature by the following linedatiens:

1
oim = 5(0i +oi0), oio=oi fort=0i=123
(33)
1 1 1
om=5(0 +00), Tm=3(+w), Im=0+0)

We assume moreover that the principal stresses, the sinemsants and the
temperature are related to their variations by:

oi =oim+ Acj, i=123
(34)
o=0om+ Ao, T=1Tnhn+Atr, U =0n+ AV
From (33) with the use of (34) we get:
oy —0ogig=2Aci 1=1,23
(35)

o—op=2A0, T—10=2AT, ¥ —09=2A0

By using the relations (33), (34) and (35) and linearizing ldgarithm, as usu-
ally done if|2A9% /99| < 1:

% 2A0 2AY
36 Inf—)=mh{14+— )~ —
. &)=+ 5) =%
we obtain from (29) and (31) the linearized equations:
AY
oo [-k+ (T'1 4+ T'2) om] Ao — MN2AT
0
37)
AV

— =[-k+ T1+T2)om] Ao
o
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Let us remark that (33)can be compared with the Kelvin’s formula but the
coefficient of Ao is the thermoelastic constant plus a coefficient dependimgnp
and on an elasticity modulus [9]. We remark also that {3Hows a dependence on
the variation of the first and the second invariant of thesst@nd on the Poisson and
Young moduli .

5. SPATE model results

The SPATE model allows us to obtain the temperature variattated to the elastic
deformation by spectroscopical experimental analysis.

The fundamental ipothesis of the SPATE model are the fotigwi
1) the deformation must be adiabatic,
2) there must not exist other heat sources.

Now the relations obtained in Section 3 will be applied to $EAnodel, analysing a
cyclic loading [11] in which the temperature variatigh — ) is small compared to
the initial temperaturég. We assume that the principal stress are:

(38) 0i = oim + @ sin(wt), i=123
whereoim, withi = 1, 2, 3, denote the average stresses andvithi = 1, 2, 3, are

arbitrary constants. Let us set:

q

3 3
(39) Om = foim, a=
i=1 i=1

The equation (28), with the use of (36), (3,/038) and (39), becomes:

2A0

(40) vl Asin(wt) + B[1 — coq2wt)]
0
where
3
A= —ka+Tioma+T2 ) oimd
(41) =1

1 1
B= 2 (T1+Tp)a? — Er‘z(alaz + a1a3 + axag)

Formulas (40), (41) are the generalization of the resultsrgin [11] and include the
particular cases of dimension 1 and 2. Infact, # 1, 2 formulas (38)-(41) are valid
replacing (41) by

1 , 1
B= 2 T1+Tpa— Erzalaz;
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if i = 1then
(42) 01 =0 =om+asin(wt), om=o1m, a=ay,
(39) and (40) still hold, with:

A= —-ka+ ('t +I'2)oma

(43)
1 2
B = Z. (Fl + FZ) a

Let us remark that, in the case of dimension 1, from (43) ar®) (& deduce that
the elastic behaviour of the material is described by thengomodulus, while in the
cases of dimension 2 and 3 both Poisson and Young modulus\arledad, as it turns
out from (41) and (23). Moreover in case of dimension 1 it isgible to analyze the
relation between the temperature variation and the sti@sstion. According to [1],
let us replace in (42), (43) the constant a by the variatigiressAos and let us assume
in (43) that the thermoelastic constanbe relevant with respect to the other terms.
Then from (40) we observe that according to the first addenalftihe right member
there is a loss of temperature for an increase of stress aiti@ase of temperature
for a reduction of stress. The second addendum of the rightbeeof (40) is relevant
only for large variation of stress. In [1] a detailed diséassof tests performed on
various specimens is reported and the conclusions are éeagmt with our remarks.

6. Conclusions

The assumption of the dependence of the Poisson and Younglinbdlasticity from
the temperaturé allows us to get a relation between the temperature vaniatial the
stress variation. This relation presents coefficients iwvhie not only the thermoelastic
constant, as in the classical Kelvin’s formula, but depemthe average stress, on the
first and second invariant of the stress and on the moduluksti@ty. This result is
supported by experimental results [11]. The applicatioowf results to the SPATE
model gives a solution which is the superposition of two icyftinctions with a phase
difference ofz /2 one with respect to the other. The relation between the ¢esnp
ture variation and the stress variation obtained can be aoedpwith the experimental
results given in [1].
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A. Casasst

NONLINEAR WAVES IN PLANE COSSERAT SOLIDS

Abstract. As it is well known, the propagation of nonlinear strain wawveay be governed
by a nonlinear dispersive-dissipative equation. In thiskwee study models in one or two
dimensions. The final purpose is to apply the analytic tearegveloped by Samsonov [7]
to dynamic equations arising in the theory of microstructw@étls. To do this we search to
reduce the 2 or 4 Euler-Lagrange equations of the model to pat.2. each depending only
on one field variable.

1. Introduction

Nonlinear wave dynamics in dissipative solids has beerudged in two recent books
by A. Porubov [6] and A. Samsonov [7], with the same goal ohabihg and exploiting
physically and mathematically meaningful results reldtetthe propagation of solitary
waves mostly in complex wave guides. In particular in [7]sitpresented a method
of reduction of the dynamic p.d.e. to a second order Lie eéguahence to the Abel
equation, but only for the 1D-case.

Now, we want to apply the same passages even for the 2D-chseis possible
if, after, we have reduced the 4 Lagrange equations to a eafgbartial differential
equations each depending only on one field variable. Thisctash is the main purpose
of this work, and it is used in one-dimensional or bi-dimensi models.

We want to remark that in our model the non linearity is due &train en-
ergy density which depends on the deformation variableh tmacro and micro, the
dissipation is introduced trough a linear combination ddistvelocities.

2. Method of reduction

The aim of this work is to find the travelling wave solution (T@{}he initial p.d.e., that
depends only upon the phase variable- £Vt and describes the wave propagation
along the x-axis in tim¢ and velocityV. The process used can be resumed in two
principal steps. In the first we reduce the Euler-Lagrangeggns to one or two p.d.e.
equations each depending only on one field variable. To dowhichoose a suitable
form of the potential energy W, we calculate the Euler-Lageequations (two for
the one-dimensional case and four for the two-dimensioaséxand then we reduce
this system to the wanted partial differential equatiomgshe method of the “slaving
principle”, (for a general treatment of this principle, sk instance, [4]).

The second step requirs to distinguish the one- from thedim@nsional case.
For the one-dimensional case we introduce the phase vadablx + Vt, where V is

*This work was supported by the Italian M.U.R.S.T. researciegt “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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the wave’s velocity. We consider the vector
r=r(x,t) =u(x,t)i
for the macrostructure and the vector
d=d(x,t) = g(x,t)i

for the microstructure. So we transform the function u(igtla function u(z) that
depends only on the variable z:

ux,t) =u(

For the two-dimensional case, the procedure is a bit mofiedif To simplify it, we
suppose that the components of vectoasd of vectod depend only on one direction,
such that we have:

rX, ¥, t) = ux, i + v(y, )j
and

d(X, ¥, ) = o(X, )i + x (v, V)j.
Hence two phase variablesandz’

z=x=+Vt, Z=y+£Vt
and two new functions(z) andv(Z') are introduced:
ux,t) =u@@, v(y,t) =v(2)

Thereafter, we reduce the starting partial diferentiakgign to an ordinary differential
equation using the funtiom(z) for the one-dimensional case am@) andv(Z) for the
two-dimensional case. Then we reduce this ordinary diffégaéequation to a second
order Lie equation, we pass to an Abel equation, a first orgeaton, and, last step,
we reduce, if possible, the Abel equation to the Weierstegsstion and we integrate
it to find the solution called “soliton”.

3. One-dimensional case

We consider now an example of model in one dimension. We dihlthe vectorr
andd defined above and we choose the following form for the kinetiergyK and for
the strain energyV:

K:%[pﬂz—i-lq')z]

1 1 1 1 1
W = Eozuﬁ + 6,8u§ — Apuy + §B<p2 + E(:<p§ + ngof

With the above mentioned formulas, the Euler-Lagrange tampswhich in general
read
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ow oW
pUtt = -
X

dUy ou
| <8W) AW
o=\ ———
8‘Px X a(p

become

pUtt = alxx + BUxUxx — Apx
(1)
lprt = CoxX+ Doxpxx + Aux — B

To reduce this system to one partial differential equatiepeshding only on the
funtion u, we introduce the dimensionless form of the variahlex, t and two new

parameters:
u X c.t \?2 U
U= — X==, T="25=(—) . e=(=2
Uo L L L L

wherelL is the wave’s length, is the size of the microstructure. We suppose
also thatl , C and D verify the following equalities

| =pl?l*, C=1%C*, D=1°D*

Now we use the slaving principle. It means that determined in terms dfix
using a power expansion: = ¢o + 8¢1 + 8%¢2 + .... The dimensionless form for
equation (1) yiels this expression fap:

8

A . . D*
(2 ¢ = EEUX + B Cloxx —al o + T¢x§0xx

We evaluatepg ande1 in terms ofU and its partial derivatives obtaining:

A A D* Ae
Yo = GEUX 1= 6@ <C*Uxxx —al"Uyrr + Tuxxuxxx>
Inserting them into the governing equationyiits dimensionless form, we get finally
the single differential equation fdu:

Be [ 2 A2 S A?
Urr = Uy + o (UX)X - Euxx - EC*UXXXX‘F
3A? D* Ae
+ o B2 |:aI*UXXTT T BL (Uxxexx)x]
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To apply the second step in a simple way we supfddse 0 in the previous
model. In this case the microstrutured part of the straimggndepends only o and
@2, andW is written as

1 2 1 3 1 2 1 2
W = Eaux + E'BUX — Apuy + EB(p + EC(pX

Let us introduce three positive dimensionless parameters:

e ¢ :=V << 1 accounting for the elastic strain;
2

o §:= 2 << 1 characterizing the ratio between the microstructure aimkthe

wave lenght;
d - . o
oy = T characterizing the influence of the dissipation.

We assume the dissipation is weak and we introduce the anwti = ux. Then the
governing nonlinear p.d.e. for the macrostra{®, t) is:

2
Vit — Vxx — €@1(V)xx — Y 02Vxxt + 8 (@3Vxxxx— 4Vxxtt) + ¥ 8 (05 Vxxxxt+ e Vxxttt) = 0

whereasy, ..., ag are given in [2]. Where = O(8) nonlinearity and dispersion are in
balance. If in additiory = 0 we have the non-dissipative case governed by the double
dispersive equation:

2
Ve = Vex — € |:O[1(V )xx — O3Vyxx + a4v><xtt] =0

. . A
Using the function(z) = v(x, t) and the boundary condltlonasz—ll: — 0 for|z] — oo,

k =0, 1, 2, 3 we obtain the Abel equation:
/ (V2 -1 3 €01 2.3

vV = >— VU Vv
eaz — eVéay

ez — eV,
and the Weierstrass equation.

V-1 2¢ay 8

N2 v
W) = 5V — ——
caz — eVéuy caz —eVéay 3

The exact bell-shaped travelling solitary wave solutioises as a result of balance
between nonlinear and dispersive terms and it is given by:

3(VZ -1 |eas — eV2ay
v(2) = TalseCﬁ 2 W(Z_ C)
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4. 2D-case

Now we try to do the same thing for a two-dimensional modethis case, we suppose
that the vectors andd are written in this form

r=r(x,y,t) =u(x,t)i+v(y,t)j

d=d(x, y,t) =X, i+ x(y, )

We can see that in this casendy depend only on the directidrandv and y depend
on the directiorj. We choose the strain energy in termaugf vy, ¢, x, ¢x, xy as
follows:

1 1 1 1 1 1 1 1
W= EAU§+§BU§+§C¢2+EDX2+§E¢J§+EF)(3+§GU)2(¢+§HU§X

Then the Euler-Lagrange equations become:

pUtt = Alxx + Guyxe + Guxpy

pvtt = Boyy + Hoyyx + Huyxy

3) 1
loit = Egxx — Co — EGUE

1
I xtt = Fxyy — Dx —EHv§

To obtain two partial differential equations, each one delreg only on one field vari-
able, we couple equation 3o (33 and equation (3)to (3.

As in the one-dimensional case, we introduce the dimersssnariables and
parameters

2
U:i,V=1, Zi’Y=X7T=CLt7 — I_ e = @
Uo Vo L L L L L

and we also suppose thigtE andF verify the following equalities:

| = pl?l*, E=I°E*, F =I°F*

Now we must determine in terms ofUy and x in terms ofVy. We expand them in
powers of§ and we use the slaving principle in the same way as in the Ha:cd/e
get (from egs. (3)):
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G
Urr = Uy + —+ (Uxx¢ + wax)

A

¢ = _Gg_(e;zUx2 + %(E*(pxx — Al%¢rq)
Vyr = Vyy + % (Ve + Vo xy)

X = _';_EZVYZJr %(F*xw = BI"Xrr)

We proceed as in the one-dimensional case, and finally we ficmuple of partial
differential equation depending on the functibhand V. In conclusion we have
trasformed the starting system of four Euler-Lagrange tous in the functionsu,
v, @, x in this system of two equations in the functiddsandV::

22
€e“G” (1
Urt =Uxx — {

1)
AC §U>%U><>< + Euxx [E* (Uxex)X —Al” (UXUXT)T]
)

~UZ + 2Us [E* (UxUs), — AI” (UXUXT)XT]}

VT =Wy —

€2H? (1 8
=5 {EVYZUW + 5 Vey [F* (VW Vi), = BI* (Y Vor), |

)

2

V2, + 5% [F* (VyVyy),, — BI® (VYVYT)YT]}

Now we consider another two-dimensional model. The veat@asdd are the

same as in the previous case while the strain eng/gg slightly different: we add
cubic terms for the derivatives of v, ¢, x:

1 1 1
W =S AUZ +0)) + 5B + 4 + 5C5 + 1)
1 1 1
+§ D(uigo + v)z,x) + éE(ui + vg) + éF(go)::’ + X?)

So, we obtain the Lagrange equations in this forms:

pUtt = Alxx + Duxxep + Duxey + EuxUxx

pvit = Avyy + Doyyx + Doy xy + Evyvyy
4)

1
lott = Coxx + Foxoxx — Bo — EDui

1
I xtt = Cxyy+ Fxyxyy— Bx — EDU5
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The procedure is the same as in the previous case, and so, italdhe passages. We
can prove that, from equations {4gnd (4} we obtain the following system

Urr = Uy + TI?\ (Uxx‘p + wax) + %Uxuxx
2 *
0= =35U7 +§ (Conx— Al%vrr + Tono)
and from equation (4)and (4), the system
Vir =Vyy + % (VYYX + VYXY) + %VYVYY

2 5
x =G5 V7 b (Crr = Alrr + Eavxe)

Now we writeg and x in terms ofU andV using the slaving principle. Our finally
result is the reduction of the starting system (4) to thigesys

3D2¢2 2 §D2%e? 2 2 2
Usr =Uyy (kmux T TARZ {C*[ Uxx (UXT + (UXT)X)+(UXUXTT)X]

AB2
—Al” [ Uyx (Ux +Uxp)r + Uy (Uyy + UXXT)T]

De?F* €E
_T [ Uxex(Zufxufuxxxx) + Uxxx(Ufuxx)x]} +

KUXUXX

3D22 2) §D2¢2 {C*[ Voy (VYZT + (V\(ZT)Y)+(V3UYTT)Y]

VTT:VYY<1_ 2AB ¥ | AR
_Al * [ VYY(VY + VYT)T + VY (VYY + VYYT)T]

cE

De2F* 3.3 3
- [VYVYY(ZV V, VYYYY)+VYYY(VYVYY)Y] +_VYVYY

BL

YY 'Y A

5. Conclusions

At this stage we have obtained the Abel equation, followlmg nethod presented by
Samsonov [7], only for a one-dimensional model. The pouwgosfuture researches
is to extend this work also to a two-dimensional model. Iripatar we want to reduce,
if it is possible, the four Euler-Lagrange equations of a-tlumensional model, to a
system of two Abel equations. Thereafter, our aim is to obassoliton solution.
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P. Cermelli - T. Armano*

FINE CROSS-SLIP OF A SCREW DISLOCATION IN
ANTI-PLANE SHEAR

Abstract. In this work we present the main results of Armano and Cermélli¢garding
the motion of a screw dislocation in a crystalline solid. Iwisll known that dislocations
can only move along a finite number of crystallographic dimewdi in two dimensions, the
resulting trajectories are piecewise rectilinear patheweter, in special situations such as
near an attractor, dislocations are forced to move alongecupaths: we characterize this
class of motions as fine mixtures of crystallographic motioasiaithe notion of generalized
curves due to L. C. Young, and explicitly compute the parametrimeasure associated to a
sequence of polygonals.

1. Introduction

We present here the results of Armano and Cermelli [1], afed te that paper for the
proofs of the main theorems and numerical simulations.

We study the motion of a rectilinear screw dislocation in iéndyical crystalline
elastic body, in the framework developed by Cermelli andti@(]. Peculiar to crys-
talline materials is the fact that dislocations are resddo move along special planes,
the so-called glide or slip planes.

In elastic materials, a state of stress induces a force oslacdtion, the so-
called Peach-Khler force (cf. [6], [3] and [2]), and the defect moves pkalaio the
direction on which the projection of this force is maximalgxmum dissipation cri-
terion). Now, the motion of a straight dislocation can becdbégd in terms of the
intersection point of the dislocation line with an horizainplane. The motion of the
representative point can be viewed in turn as the solutienméne dynamical system,
obtained by projecting the PeactoKler force on the crystallographic directions. Since
the number of such directions in a crystal is finite, it folkthat the trajectories are
piecewise rectilinear paths.

The general properties of this dynamical system have begtest in [2]: we
focus here on a special situation, namely the motion neana& &which is an attractor.
The dislocation is attracted b§: when it reaches it, it cannot escape (since it would
violate the maximum dissipation criterion), but it cannaiva alongs either, since it
would, in general, violate the crystallographic restdntion the direction of motion.
Hence, it seems natural to approximate the motion of thectlefeS by a sequence of
polygonals, which are piecewise parallel to the crystaipgic directions but do not
necessarily satisfy the maximum dissipation criterionllgiraes.

The main result of [1] is the proof that, if such a sequence iBaximizing

*This work was supported by the Italian M.U.R.S.T. researciegt “Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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sequence for the dissipation, it converges to a unique $nmotion onS, which we
refer to adine cross slip.

To study the limits of maximizing sequences we use the naifageneralized
curves due to L.C. Young, in their formulation known as pagtiimed (or Young) mea-
sures in the literature on the calculus of variations. Yooreasures provide a richer
characterization of finely oscillating sequences tharr theak limits: we compute the
Young measure associated to sequences of polygonals nzéngrtine dissipation, and
characterize fine cross slip as a fine mixture of crystallpigiarectilinear motions,
with weights depending on the direction of the attra&or

2. Statement of the problem

We shortly summarize in this section the model discusse@]in Consider an elas-
tic cylinder B = © x R, with © a domain inR2. A screw Volterra dislocations a
singular displacement field dB which can be constructed by the following ideal pro-
cedure [8]: first cut the cylindeB along a vertical half-planél, then translate one of
the faces along the cut by a constant vertical vebtaglue back the faces alorg,
and let the cylinder relax to an elastic equilibrium statig@Fe 2). The resulting dis-
placement field, measured with respect to the initial comdiion, is smooth irB \ IT,
but is discontinuous acro$s with constant jumpb. The vertical linedIT is called the
dislocation line andb is theBurgers vector In order to avoid dealing with discontin-
uous displacement fields, it can be shown that a screw disdooean be characterized
equivalently in terms of a deformation field @&\ aI1, singular abIl. In simple cases,
the deformation field generated by a dislocation is independf the vertical coordi-
nate, and the problem admits a two-dimensional formulaticerms of planar fields
on €2, which are singular at = 91T N Q (cf. [2]).

Figure 1: A screw Volterra dislocation in the cylind@rx R.

Precisely, le€2 be a domain irR?, with cartesian coordinatex, y) and asso-
ciated basige;, &), and letx denote a generic point if2.

*Fine cross slip of screw dislocations has indeed been erpatally observed (cf., e.g., [5] and [4]).
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Fix a defect positiorz € Q and consider the solution : @ — R of the
Neumann problem

Au=0 in Q
1) ou

— =—Qp-Nn onog2,

an Jgo-N+o0
with A the Laplace operatofi/on the normal time-derivative of<2, n the outward
unit normal tod2 and

2 Jo = 9o(X, 2) = e x (X — 2),

2w |x — 7|2
whereb is a real constants = e; x e is a unit vector inR3 orthogonal to the plane
containingQ (so thatez x (-) represents a counterclockwisg2-rotation in theQ2-
plane), antbp = op(X) is an assigned function o#2. The fieldu represents the
regular part of the displacement due to the dislocation athile g is related to the
singular part of the deformation.

For each fixedz € 2, the Neumann problem (1) has a unique smooth solution
(modulo an additive constant), which we henceforth dengte b

3) u=u(x, 2, X € Q.
Consider now the smooth vector fielddh
(4) J(X) = bVu(x, X) x e3, X € Q,

whereVu(x, X) = VxU(X, 2)|,—y IS the gradient of the solution(x, z) of (1), for a
dislocation located at = x. The vector fieldJ (x) only depends on the domain
and the boundary conditiorg, and may be identified to the Peaclitider force on a
dislocation located at € Q.

Let nowt denote time andlO, T] be the time interval of interest. In order to
study the behavior of a defect under the action of the forgec@hsider a dislocation
motion

z:[0,T] — Q.

Introducing the (finite) set afrystallographic directions

CZ{SL’SH},

with s fixed unit vectors irR2, the basic physical idea is that a dislocation can only
move parallel to a crystallographic directisre C on which the projection of the force

J - sis maximal, provided this is greater than a given thresHqlthe so-called Peierls
force (Figure 2). Therefore, we write the basic equationegowg the motion of a
dislocation as

5) 7=V (2, zeQ,
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where the superposed dot denotes time-derivative, andewthervector field/ is de-
fined by

o if JX)-s<F VseC(,

whereM > 0 andF > 0O are given constants, aradx) € C is determined by the
maximum dissipation criterigni.e., the requirement that the projection &fx) on
e(x) be maximal, i.e.,

(7) J(X) - e(x) = o« CmJa;<>F{J(X) - s}

It may happen that at some poixtthe maximization problem (7) admits two
solutions: at such points the fiedgx), and by consequence al¥dx), is multi-valued.
Indeed,J - s can have at most two maximadhfor J given. Assume in fact that there
exist three distinct unit vectors, sp, s3 such thatl - s; = J - sp = J - s3; then the
endpoints of;, s andsz belong to the same straight line perpendiculad fevhich is
impossible since thg are unit vectors.

Sz
T_>s, >

V=M(js-F)s

Figure 2: The definition of the vector fieM.

A detailed analysis of the phase portrait of the dynamicatesy (5) has been
performed in [2], where it is shown th& splits into (i) regions wher&/ (x) = 0,
and the dislocation is stationary; (8)ngle slip regions Rs) (open regions iR?), in
which e(x) = sis constant; and (iii) curveS on whiche(x) is multi-valued. We are
interested here in the motion on a so-cali¢tlacting curve(Figure 3).

Figure 3: Attracting curve separating two single-slip o

The motion of a dislocation, solution of (5), can be desatihe follows: con-
sider, to fix ideas, a dislocation initially & € R(s;): the evolution equation (5)
reduces to
z=V1(2)s1,
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with V1(z2) = M(J(2) - s1 — F). Hence, the dislocation moves along a straight line
parallel tosy, until it reaches some point at the boundanRg§;). If this point belongs
to an attractor, then the solution of (5) cannot be prolorigaalthe adjacent region,
since it would violate the maximum dissipation criteriongiire 3).

Hence, the problem seems to be ill-posed in the presenceatfrantor. In order
to remove the ambiguity, it was suggested in [2] that, whendislocation reaches an
attractors, it continues to move along it according to an evolution égueof the form

(8) z=w(2), with  w(2) = V12(2)(a1(2)81 + 22(2)S2),
whereVia(2) := J(2)-s1— F = J(2) - s2 — F, anday, a2 are determined by solving

(9) a1 top = 1:
@1(s1 — S2) - (VI)s1 +aa(s1 — S) - (VI)s2 = 0.

The resulting smooth motion of the dislocation, referreadfine cross slipis therefore
non-crystallographic, since it does not occur along a etlggiraphic directiors € C.
The purpose of the next section is to show that motion by fiessslip (8) can be
realized as the limit of a sequence of infinitesimal crogssdicross the attracting curve
S, when this sequence maximizes the dissipation.

Remark. Letting

0, if J.-e<F,

(10) V(e,J):={ M(J-e—F), if J.-e>F,

we may rewrite condition (7) as the requirement that motiay mnly occur in those
directionse which maximize thalissipationV (s, J)J - s, i.e.,

(11) V(e,J)J-e:max[\?(s,J)J~s],
seC

provided thatV (e, J) > 0. The equivalence of (7) and (11) follows from the fact that
the functionM (¢ — F)& is monotonic with respect tofor & > F.

3. Convergence of sequences of admissible polygonals

We study here the motion of a dislocation near an attractimges; in order to justify
(8) rigorously. From now on we regard the vector figldx) in (4) as assigned and
smooth in<2.

Letz: [0, T] — Q be a given motion (not necessarily a solution of (5), (7), and
(6)); writing

(12) z(t) = V(t)e(t), te[0, T],
with V = |z| ande = z/|z|, we say that is admissibldf

(i) zis continuous and piecewise smooth;
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(ii) the direction of motione(t) belongs to the set of crystallographic directions, and
the velocity is a function of the projection of the force oatthlirectior, i.e.,

(13) et)eC and V() =V(et), J(zt))),
at each time, with VV given by (10).

An admissible motion does not necessarily satisfy the masindissipation
criterion at all times, but its trajectory is a polygonal védges parallel to the crystal-
lographic directions.

We assume from now on that the set of crystallographic doestis

with s; = e; ands; = e, and consider two adjacent single slip regidds;) and
R(sp), connected open sets §hsuch that R(s1) N R(sp) # @ andR(s)) N2 = 0,
R(s2) N 02 = @. By definition, inR(s1) and R(sp) the dissipation is maximal in the
directionss; ands; respectively, i.e.,

(15) X € R(s1) = S1-J(X) >s-J(X), Vse(C, s# sy,
X € R(s2) = S2-J(X) >s-J(X), Vse(C, s# sp.

Also, we assume that

J(X)-s1>F and J(X)-sp > F, X € R(s1) U R(sp).

3.1. The definition of attracting curve
Let
(16) G(X) == (s — s1) - I (%),
and assume that is such thavG # 0 in Q. By definition,

G(x) <0 for x e R(sp) and G(x) >0 for x e R(sp),
so that, by the smoothness@fand the fact thaV G # 0, the set

S=R(s) NR(s2),

is a smooth curve on whicB vanishes, i.e.,
a7 GX)=0 & $5:-JX)=s-JX) X €S

We say thaSis anattracting curvefor R(s;) andR(sp) if it satisfies the supplementary
conditions

(18) s1-VG(X) > 0, S2 - VG(x) < 0, X € S.

TFor z continuous and piecewise smoo#tis the right time-derivative at corner points.
*HereR denotes the closure of a SRtC Q.
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Hence, at an attracting curve; points into R(sp) and s, points intoR(sy) (Figure
3(c)). We denote by
VG

BT

the tangent vector t8.

No admissible motion satisfying the maximum dissipatiatedon can origi-
nate from an attracting curv®. To see this, consider an admissible motion aleng
with initial point on S: by (18), G is increasing alongi, and the dislocation moves
into the single slip regioR(sz). But in this region the dissipation is maximal in the
directions,, and the maximum dissipation criterion is violated.

Moreover, writing

(19)

{ Vi(%) ==V (s1, (X)) = M(s1- I (x) = F),
V2(x) := V(s2, J()) = M(s2- I(X) = F),

for the admissible velocities in the directiogsands; at x € R(s1) U R(sp), (17)
implies thatV1(x) = Va(x) atx € S, and we denote by

V(X) := V1(X) = Va(X) X €S,

their common value. However, since &the maximum dissipation criterion admits
boths; ands; as solutions, the vector fieM in (6) is multi-valued, with values

V (X)s1 and V(X)sp,

atx € S

3.2. Admissible polygonals

We study here admissible motions which do not necessattigfgghe maximum dis-
sipation criterion. By definition, an admissible motinis a time-parametrized polyg-
onal with sides parallel to the crystallographic directisne C and piecewise continu-
ous speed given by (10). Restricting to admissible moti@esiming inR(s1) U R(sp)
along the directions; ands; only, we have

either 2(t) = Vq(z(t))sy or Z2(t) = Vo(z(t))so,
fort € [0, T], whereVi andV5 are given by (19) and(t) is the right time-derivative
at the corner points of the polygonal.
3.3. Sequences of admissible motions

The natural notion of convergence for sequences of adnfessibtions should account
for the fact that the velocity oscillates between the dicests; and sy, and there-
fore may only converge in average. Weakonvergence itWw1>°((0, T), R?) serves
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the purpose. We say that a sequence of Lipschitz mofiagsconverges weak-in
WL ((0, T), R?) if there exists a motio§ € WL>°((0, T), R?) such thatzx — &

strongly inC([0, T], R?), andz — & in L>®([0, T], R?), i.e.,

sup |z(t) — &) — O,
te0,T]

and
/I<'zk(t> — &) dt — 0,

for any intervall c [0, T], provided{Zz(t)} is bounded in_L>([0, T], R?).

The weak limit of a sequence of admissible motions is charaed by the
Young measure associated to the sequence of the velocitieé®(ng [9] or, for a more
recent approach, [7]). Consider in fact a sequefige : (0, T) — R?} converging
weak= to wg in L>((0, T), R?). A Young measure associated with the sequénge
is a family of probability measureSi }te(o, 1) in R?2 which depends measurably bn
i.e., for anyp : R? — R continuous, the function

(20) G(t) = / o (w)du (w)
RZ

is measurable. The fundamental propertywofs that, for any continuoug, the se-
quence{p(w)} converges (modulo a subsequence) wedk-¢ in L>°((0, T), R?),
ie.,

(21) /Iw(wk(t))dt% /I/szp(w)dw(w)dt,
for any intervall C [0, T], provided thafe(wy)} is bounded inL*° ([0, T], R).

THEOREM1. Consider a sequence of admissible polygomza($) in the direc-
tions s; and sp, converging weak-in W-°°((0, T), R?) as k — —+oo to a Lipschitz
motion& € WL((0, T), R?). Then the Young measure associated to the sequence
{2z} is
(22) vt = A1(t) Svyectyys; + A2(t) Svye sy te(T),

With v, e (t))s;, and dv,e(t))s, Dirac measures localized at;¥(t))sy and Va(§(1))s2
respectively, and

EM) st HORE
23 r) = , Ao(t) = )
@3) O=ven 0= Vem)
Notice that, since the velocity of the limit motion is
(24) (1) = 2 (DVLE®)SL+ A2 Va(E (1),

it follows that the weak limit of a sequence of admissible iomd is not necessarily
admissible, but can be represented as a fine mixture of dogt@phic motions in the
admissible directions; ands;.
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COROLLARY 1. Let S be an attracting curve separating two single slip ragio
R(s1) and R(sp): any sequence of admissible polygonalét) with directionss; and
Sy such that

(25) dist(z(t), S) — 0,

uniformly int e [0, T] as k— +oo, converges weak-in W->((0, T), R?) (and, in
particular, uniformly) to a smooth motidf(t) on S with velocity

: VE®)
26 1) = T(&(1)),
(26) 0= 50 e TED
with 7 the unit tangent vector to S and(¥) := V1(X) = V2(x) the speed evaluated at
x € S (cf. (19)). Moreover, the Young measure associated tceteesice z} is

(27) v = A1(E(1) Svietys, + 226 (1) Svetys,
with
(28) J) = — )3 ha(x) = — )%

T TX) (1t S) T TX) (1t S)]

fora.e.x € S.

Notice that, even though each admissible motigt) does not necessarily sat-
isfy the maximum dissipation criterion for alle [0, T], the sequencek is a max-
imizing sequence for the dissipation, since the limit mofosatisfies the maximum
dissipation criterion (recall, though, that the limit natiis not admissible). To see
this, letJ(X) := J(X) - 51 = J(X) - s andV (x) := Vi(X) = Va(x) for x € S(cf.
(17)): the maximum dissipation (among all admissible matjoatx € Sis (cf. (11)
and (15))

(29) mg,v(\?(s, J(x)) I(X) - 8} = I(X)V (),
Sse

while the dissipation relative to the limit motidtt) is

V(E)
T(¢(1) - (s1+52)

sinceJ = J(s1 + ), and these expressions coincidexat &(t).
Also, it is not difficult to prove that (26) coincides with (8)n fact, solving
system (8) and recalling (16), we obtain

(30)  JEWMm)-EM) = JEM®) - TEM) = VEMD)IED),

oy = (2—s1) (V)5 _ VG- s
(2—51) - (VI — (=51 - (VI)s1 VG-5—-VG-s1’
—(s2—951)-(VI)s1 VG- s

2T sm—s) (VI)m—(2—s)-(Vd)s1 | VG -5%-VG. 5
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with G given by (16). Now, noting tha?G - sp = VG- e3 x S1 = —e3 x VG - 5 =
—|VG|t-s1,andVG - 51 = -VG-e3x S =e3x VG- s = |[VG|T - S, We find
T-9 TS

o= ———, 0=,
T-914+717T-S T-91+7T-S

which yields (26) recalling tha¥;, coincides withV in our present notation.

3.4. Sequences of admissible polygonals maximizing the sligation

In this section we show that every sequence of polygonalsmiaixg the dissipation
converges to the smooth motigron S given by (26).

Forx € @, let Vi (x) andey (x) denote the speed and direction of motion se-
lected by the maximum dissipation criterion (11) among athasible velocity fields,
i.e. such that

(31) Vi 00em (X) - J(x) = max{\?(s, J(x) s- J(x)} ,
seC

whereV is given by (10). Notice that, even thougfy (x) is in general multi-valued
at S, the maximum dissipation (31) is single valued everywh@ansider the function
D : © x R?2 - R defined by

(32) D(x, w) = J(X) - (VmM(X)em(X) — w).

For a given motiorz € W1-2°((0, T), R?) the real functiorD(z(t), z(t)) belongs to
L*°((0, T), R), and measures the difference between the maximum possdsipat
tion and the actual dissipation at each time.

Fix zg € Sand consider the set of admissible curves originating fegm
A = {z: [0,T] > R? : z piecewise smoothz(0) = zg € Sand

either z(t) = Vi(z(t))sy or 2z(t) = Va(z(t))sp, t € [0, T},

wherez denotes the right time-derivative at corner points of thigganals.
By definition

(33) D(z(t), 2(t)) > 0,  Vze A, vt [0, T],

althoughD can be negative for some non admissible motion.
Consider now the functional associatedp

T

T
(34) E(2 =/0 D(z(t), (1)) dt =/O J(z() - (Vm(z)em (z(t) — z(t)) dt,
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defined forz € W1°((0, T), R?). By the discussion following (18), no admissible
motion satisfying the maximum dissipation criterion caigimate fromsS, so thatkE is
strictly positive onA. Indeed, as we shall show in the next section,

(35) Z|en}‘l E(z) =0,

and the infimum is not attained o4.

THEOREM 2. Any sequence of admissible polygon@s} ¢ .A minimizing E
(or, equivalently, maximizing the dissipation), i.e., stitat

(36) lim E(z) =0,
k—+o00

converges weak-in W1 ((0, T), R?) to the smooth motio&(t) on S, whose velocity
is (26).

Theorem 2 is the main result of this paper.
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INEXTENSIBLE NETWORKS WITH BENDING AND
TWISTING EFFECTS

Abstract. Families of inextensible fibers forming a surface are consitleEach fiber sup-
ports a twisting couple proportional to the torsion of thefibThe strain energy density is
written in an additive form, such that the contributions dushearing, twisting and bending
effects are taken into account separately. The equilibegmations, here obtained, are a
particular case of the ones obtained by Luo and Steigmani.in [1

1. Introduction

We are interested in the theory of inextensible networkgadrticular in the case in
which a set of inextensible fibers forms a surface with bepdgtiffness and in which
the twisting fiber effects are taken into account, such thatcan model the static
behaviour of textile fabrics.

In 1986, Wang and Pipkin [5] formulated a theory of inextelesinets with
bending stiffness. The resulting continuum theory is a isppéarm of finite-deforma-
tion plate theory in which each fiber has a bending couplegtamal to its curvature.

In 2001, a theory of bending and twisting effects in thremafisional deforma-
tion of an inextensible network is presented by Luo and &taiwn [1]. They derive
the Euler-Lagrange equations and boundary conditions inyg ke minimum-energy
principle. (A simplified version of these equations repnts¢he equilibrium equations
obtained by Wang and Pipkin [5].)

The aim of this work consists of finding the equilibrium eqoas for a net of
inextensible fibers taking into account the twist and thedmof fibers. In section 2,
we give the constitutive hypotheses. In section 3, we olataiet of equations where the
effect of the twist of the fibers on the deformation of the sheexibited. We assume
that each fiber in the fabric supports a twisting couple,esiwe are looking at some
expressions which take into account the twist of fibers warassthat each couple is
proportional to the torsion of the fiber. In section 4, we f@cun the energy of strain
for sets of fibers that undergo shear and twist deformations.

2. Inextensible fibers, constitutive hypotheses

We consider two families of inextensible fibers forming aace that initially lies in a
region B of the (x,y)-plane. We assume that initially thetfiesnily of fibers,d;, stays
parallel to the x axis and that the second family of fibeks,stays parallel to the y

*This work was supported by the Italian M.U.R.S.T. researciegt "Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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axis. We suppose that fibers are continuously distributdtiaoevery line x=constant
or y=constant in B is regarded as a fiber. Each fiber is perntgrielentified by its
initial coordinate, x or y. We suppose that cross-sectidnsach fiber remain plane,
suffer no strain, and are normal to the fiber in every configoma(Bernoulli-Euler
hypotheses). We denote the position in the current configaravith r (x,y), namely
the point of the fibers that initially lies in the position yxmoves to the place(x,y)
in three-dimensional space.

Let
ar ar

Za—xzr,x d2=8—y=r,y

be the tangential vectors to the curve occupied by a fiber ystemt and x=constant,
respectively, when the sheet is deformed. We postulatenthatart of any fiber can
change its length in any admissible deformation so the veat and d, are unit
tangent vectors [3]. Since x and y are the arc length oftthandd; lines, Frenet's
formulas allow us to attach to each fiber the normal ventand the binormal vector
b, so for the fibed; the triad{d1, ny, by} satisfies:

di

adq
— =kqin
™ N1
an
(1) Sl kdy + by
X
abyg
-~ — —71Nn
™ 1Ny

with kj the curvature of the; line andz; torsion of thed; line. Similarly, for the fiber
d> we introduce the Frenet triddio, no, by}.

The sets of fibergl; andd, are related through the angle of shearthat is
defined by the relation

Sin)/ = dl . dz
this angle describes the local distortion of the sheet. lhdee we introduce the normal
vector:
. di x do
|d1 x da|’

3. Twisting effects

Wang and Pipkin in [5] assume that each fiber in the fabric stpm bending couple
proportional to the curvature of the fiber:

¢y =I'dy x dq,x co=TIdy x dz,y.

The stiffness coefficiert is the same positive constant for all the fibers. They find the
following equations:

t1 = Tidg + Sdo — I'dy,xx
) to = Todo + Sdy — I'da,yy

tix+toy+f =0
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with: T1 andT» fiber tensions (reactions to the constraints of fiber inesitglity), S
the shearing stress; the force per unit length exerted acrosdzaine x=xg by the
material on the sidexxxg on the material on the other side<{xp), t2 the force per unit
length exerted acrossd-line y=yp by the material on the sidexyyg on the material
on the other side (yo).

The equations (2) include the effects of couple-stressovethat account for bending
couples in the deformed sheet.

The aim of our work is to find the equations that express thecefif the twist
of the fibers on the deformation of the sheet. We assume tlchtfézer in the fabric
supports a twisting couple, since we are looking at expoessivhich take into account
the twist of fibers we assume that each couple is proportimntie torsion,;r; or 1o,
of the fiber. Secondly, chosen a set of fibers, dayines, we want that the vector
associated to the couple is directed like the tangent velgtaronsequently we choose
the twisting couples:

3) i1 =Aby x by, i2=Ab2Xb2,y

with A twisting coefficient. Recalling (3)we have:i1 = At1d; andiz; = Atodo.
Taken a directed ardr = d1dx + d2dy, whose initial length igls, the force
tdsexerted across it is:
tds=t1dy — todx

with t1 andt; the forces defined before. The couplper unit initial length across a
directed arc is given by:
ids=i1dy—i2dx.

For translational equilibrium we have that, for any part fed sheet, the sum of the
external forces and of the forces exerted through the bayrdees is null, so the
following equation holds:

(4) ‘f(hdy—mzdm—k/:/fdxdyzo

where the area integral is taken over the considered partlirie integral is taken
around its perimeter andl is an externally imposed force per unit of initial area that
acts on the surface of the sheet.

Equation (4) holds for any part of the sheet, consequerifety, andt, are smooth,
using the divergence theorem we obtain:

(5) tix +tay+ f =0.

For rotational equilibrium, we have that the moment of theedés exerted on any part
of the sheet plus the twisting couples has to be zero:

(6) fr x (t1dy — todx) +//r X fdxdy+?§(i1dy— iodx) = 0.
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The associated differential form is:
(7 (rxti+i)),x+(r xta+iz,y+r x f =0.
If (5) is satisfied, then (7) becomes:
(8) Fx xty+r,yxta+izx+izy=0.
Recalling thad; = r,x d> =r,y, using (1) and (3), we find:
(9) dixti+Ariky(bixd1)+A(r1),x d1+dox to+Arako(bpx d2)+A(12),y d2 = 0.
Starting from equation (9), we obtain:
di x [t1 — Argkab] + A(71),x d1 = —d2 x [t2 — A2kobp] — A(72),y d2.

If the torsion remains constant along the fibers, for examptée case of helicoidal
fibers,(r1),x and(z2),y vanish. The equation above reduces to

dq x [t1 — Atikib1] = [t2 — Atokoby] x d2

where the first member of the equation is orthogonatifcand the second member
is orthogonal tad, and since the two member are equal one to the other they have a
common value salpd; x do. Consequentely

d1 x [t1 — Atikib1] = [t2 — Aokoby] x do = Ddy x d»

and
d1 x [t1 — At1kiby — Dd3] = [t2 — Aokoby — Dd1] x d2 = 0.

Hence, the vectoft; — Atikiby — Ddy] is parallel tods, say it has a valu&/d;.
Similarly, [to— Atokobo— Dd1] is parallel tody, say it has a valug,d,. Consequently,
we find:

t1 = Dd2 4+ Anikiby + V1dg
to = Dd1 + Atokoby + Vodo

9
(10) S (=0

0
@(TZ) =0

4. Strain energy

In the work of Wang and Pipkin [5] the energy of stralhhas an additive form:

1
(11) W = Wop(ds - d2) + Er(dlwdl,x +d2,y -d2,y).



Inextensible networks 265

The energy componeity is due to the shearing stress, since this stress component is
that which resists to the changes in the angle between ths fibandd,, they assume
thatWp is a function ofds - d2; the second component of the strain energy is associated
to bending, it is a quadratic form in the fiber curvatures. &ptun (11) can be written

in the following explicit form:

(12) W = Wo(siny) + STIkn? + (ko).

In [1], Luo and Steigmann assume the strain energy to be difumof shear,
of the curvaturek,, ko of the fibers (they denote them Iy and of the twists81, 82
of the fibers. Applying the minimum-energy principle theyide the Euler-Lagrange
equations ([1](5.5)) in the form:

9 [IW oW A
=——|—=—n ——dy + —kiby + Thd
1 8x<8k1 l>+83|ny 2+8ﬂ1 101 + 1101
a [OW oW oW
Fo=——|(=—n di + —koby 4+ Tod
2 ay(ak2 2) asiny 1+8,82 202 4 1202
a (0W
(13) —|—)=0
X \ 9f1
a [OW
(5o
dy \ 9p2
oF1 0F»>
— 4+ —+f=0
aX + ay +

with F1 and F» the respective forces on cross sectionslpfindd; lines. Using as
special case (12) in (13), they obtain the equations:

d W,
F1=Tidy+ ———da — [dy.xx
d siny
d Wp
14 Fo = Tod di1 —I'dy,
( ) 2 22+dsiny1 2,yy
oF1 0F»2
e f =
ax + ay +

that corresponds to the equations (2) and (5) found by WaddPgkin.

We are looking at sets of fibers that undergo twist and she#tismeaningful
to consider the deformation energy per unit of initial area in the form:

1
W = Wp(d; - d2) + EA(bl,x -b1,x +h2,y b2,y )
or equivalently, using Frenet formulas and expres$\fgghrough the angle of shear:

(15) W = Wo(siny) + S AL + (2)7]
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We recall formulas (2.12) find by Luo [1], which relate the 4881, 82 of the fibers
with the torsionsy, t2:

0601 262
16 =7+ — =T 4 —=.
( ) ﬂl T1 3% ,32 2 8y

in (16), 61 is the angle defined by:

ay = cosH1ny + sind by

a7) .
az = — sinf1n1 + cosb1by

where{d1, ap, az} is an orthonormal basis. The angleis defined in a similar way.
Differentiating with respect t@; and 8, respectively, equations (16) we have:

d
1 _q %:1
1 B2

By mean of (15), equations (13) read:

d Wo oW oty
—d2 + — —kiby
d siny at1 081

d Wo oW d12

AL
dsiny 11 95,98, 22

0 (W 0 (1 a

0 oW 0 1A2 A 0 (t2) = 0
— —_— = — — T = — (T =
oy \agz) oy \27°7 ay

oF1 0dF»2
— 4+ —+4+f=0
aerayjL

F1=Tid1 +

Fo=Teds +

since the torsiong; andt, are constant along the respective fibers, we get the final
form:

d W,
Fi1=Tidy + ——>dy+ Arskeby
d siny

d W,
Fo=Todx+ Oy d1 + Anokoby

d sin

a
(29) A X (r1) =0

d

A—(12) =0
ay

oF1 0F»2

x| ay

+f=0

that could be easily compared with equations (5) and (10).
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If also the bending effects are considered, the strainggnemction may be
written as:

. 1 1
(20) W = Wy(siny) + EA[m)Z + (22?1 + ér[(knz + (k2)?]

the following equations hold:

d W,
Fi1=Tidy1 + Oy do + Atikiby — T'dy,xx

d sin

d W
F = Tadz + ————di + Atokoby — I'd2,yy
d siny

0
(21) Aa—x(tl) =0

Ai(fz) =0
ay

oF1 0F»>
— 4+ —+4+f=0
aerayjL

or equivalently

d W,
F1= (T + D(k))dds + ——da + (A — D)7akaby — Tky,x My
d siny
d W,
Fo = (T2 + (k)2 d2 + ———di1 + (A — )12kl — I'k,y N2
d siny
d
22 A— =0
(22) aX(Tl)
d
A—(12) =0
ay
oF1 0F»>
LARESTRLASE S )
aX + ay +

Equations (22) describe the mechanical behaviour of sétexfensible fibers forming

a surface when shearing, twisting and bending effects &emtiato account, such that
some elementary modes of the behaviours of woven fabricremie fibers are the
weft and the warp, can be exhibited.

5. Conclusions

An overwiev on the works of Wang and Pipkin [5] and of Luo andi@hann [1] has
been given. A first model that describes a fabric formed bytamesible fibers has been
found. In this model, both shear and twist are considere@ Blance equations are
expressed through the torsions 2 and the curvatures,, k, of the d, d families of
fibers. Strain energy for sets of fibers that undergo she&t amd bending has been
given in a suitable explicit form.
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The results presented in this paper represent a first stefy sésearch, whose main
purpose is to develop a model for textile fabrics within treiework of Cosserat shell
theory, where the shell itself is made of two families of Gwasrods, namely the weft
and the warp of the fabric. This model would encompass mdmeegk phenomena,
typical of fabrics, such as wrinkles and krinkles.
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MICROSTRUCTURES AND GRANULAR MEDIA

Abstract. A general model of solids with vectorial microstructures isaduced. The field
equationsare the obtained as Euler-Lagrange equatiorsudbéle energetic functional. The
Cosserat model is encompassed in this model and it can be usteaiyotise behaviour of
granular media. A first approach to this problem deals with@dimensional model, since
in such a case the field equations have a simpler form, theontatithe single grain depends
on one parameter only, the angle of rotation, but the modeilipsysically meaningful. In
order to obtain constitutive equations rigorously dedutenh the principles of Continuum
Mechanics, we must take in account both the interaction mgtains and grain-grain. As
a first step, we deal with linear dissipation, as already domgneral for vector microstruc-
tures, such that we can also study some simpler problems of wagagmstion.

Key words : Microstructures, Cosserat solids, granulariened

1. Introduction

A wide class of phenomena can be described by means of nriescasial models of
solids and fluids, where the microstructure can be desclijacector fields over the
body. In principle, there are no restrictions on the numifereator fields, which are
unknown variables of the problem, but there are obviousicgisins due to the possible
physical meaning of each vector field.

The use of the Cosserat continuum theory to describe thevioemaf granular
materials or powders has been proposed in several papetddsénstance, Grekova
[7] and references therein quoted). Basically we refer 4, [iut we follow a different
approach, in the framework of a general theory of microstmes as developed by
Capriz [1], Maugin [8]. In particular we deal with a so-calleector micro- structure,
which includes the Cosserat theory. These theory has glieeen used with some
success by Pastrone and others [2, 3, 4, 10, 11, 12] to study prapagation in one
and three-dimensional microstructured solids.

In Section 2, the three dimensional Cosserat model is inted. A Cosserat
microstructure is defined by a triple vector fidldi }, such thatd; - dj = §;. The
vector fieldsd; = dj (X", t) are often called “directors”, whed¢"'s are the Lagrangian

coordinates of a poinK in a reference configuration of the body which represents

the grain, and is time. The main feature of such a microstructure is itstiota
which is expressed through an angular velocity vector argpatfal” spin tensor. The
basic equations of motion in the three-dimensional caseleriged via a variational
principle. In fact, we assume the existence of a strain grfergction and we take in
account the dissipation by means of the expression of thépgower expended.

*This work was supported by the Italian M.U.R.S.T. researciegt "Modelli matematici per la scienza
dei materiali” (Cofin 2002).
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The case of a plane Cosserat solid is introduced in Sectiwhi8h can be used
to model plane granular media. By this way, the model is muokersimplified since
we restrict our attention to a two-dimensional plane bodhe fotation is fullydescribed
by a scalar functio® = 6(X", t) and the field equations reduce to four differential
equations. Some interesting identities are derived, swethnecan easily compare our
model with

that one introduced by [14] ina general contest and used Jpy(if we do not
neglect thecoupled-stress. On the other side, we provethibastress tensor is not
symmetric (as natural in such models) and its skew symmp#itis related to the
micro body force. Finally, alternative forms of the field etjons are provided.

In Section 4, we make a first step toward the introduction g@irapriate con-
stitutive equations, taking into account the friction am@articles and describing this
phenomenological aspect through a dissipation functionsetexplicit form is sug-
gested by the total power expended in any motion. A simplengle, obtained after
further simplifications on the dissipation function, is yided, but the problem of a
correct constitutive theory for such models is not solvedl iawill be the main subject
of further researches.

2. Vectorial microstructures

The usual approach to microstructure is assumed to be teahtmduced by Mindlin
[9], where the model is the linear theory of elasticity. Widw his basic ideas for the
kinematics, but in the general framework of non linear &#gt both in the macro and
in the micro-structure. We will obtain a model which could bemehow, encompassed
in the model of Capriz, even thought it is not a straightfaxvarocedure.

Let B be the body, as a manifold embedded in a 3-dimensional affiaeesxX
a point of this body in its reference configuratiGf, andx the corresponding point in
the actual configuratio@®. As usual, the displacement is given by the vector function

(2.1) u=x-—X

and, assuming the coordinat¥§ of X as material coordinates, for any motion it will
be:u = u(X", 1), sincex = (X, t), wheref is the deformation functionf(: C* —
C).

The macrostructure is a three-dimensional bBdgnd it can be equivalently be
described by a position vector, from some fixed origin = x—o, r = r(X", t) where
the X"’s are material coordinates anis time. Commas denote partial derivatives with
respect toX" and superposed dots denote partial derivatives with respéme, e.g.:

- or P ar
= axn oot
By microstructure we mean that it is possible to apply a nicope to each
pointx € C and discover a “small world”. As shown elsewhere( [10]), sdgatures
of this "small world” can be captured by a suitable set of sextly = dy (X, t),
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H =1, 2,...,n, which can be called "directors” and represent the micreomotTheir
number depends on the physical aspects we want to desaritiee present case, we
can reduce this number to three or less, hence we shall usarielower case indices
as for coordinatesd; = dj (X, t),i =1, 2, 3.

The kinetic energy density of the body is defined as a quadfatm in the
velocitiest andd;:

(2.2) T= E[p(Xh)f-f+2p'(Xh)f -di + p'ldj - djl.
In Eq. (2.2),p is the usual three dimensional mass dengityandp'l are coefficients
including density and inertia terms, which must satisfydbaditions:

T>0, T=0si=d =0

As it is well-known, it is always possible to diagonalize foem making linear trans-
formations orr andd;, such that

p' =0p" =pl;
the 1'l’s are effective inertia terms of the microstructure.
We assign a strain energy density function

(2.3) W = W(r,i;dj; djn X" + W

whose existence follows from the assumption that the tatalp expende®y is given
by P, = dW/dt and the total energy is given by

2.4) E— / (T — W)p dX2dX2dX3 — / Whp dX1dX2dX3
B B

whereW, is the potential of the external body forces, which depemdsand X" only.
We avoid internal constraints and leave apart the probletheoboundary conditions.
The equations of motion can be derived as the Euler-Lagraqgations of the
; 1 .
energy functionat = fto Edt:

oW oW  doaT

ari); or  dtor
(2.5)

() ow e

8dj,i i 8dj Tdt ad,-

Since the microstructure can have a dissipative effectntveduce dissipation
in the field equations Egs. (2.5). The deformation velosiéiee given by

ar ar,i - ad; . adj i
(2.6) f=—, fj=—1 d = —, di j = —
ot ot ot ot
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The total power expended is the sum of scalar products akkatvi
(2.7) PT=b'f+Zi°'i";,i‘i‘zifi'di‘f‘Zij’?ij'di,jy

The quantitied, o, i, n;; are forces, stresses and generalized (or coupled) stresses

We can split the “conservative” part from the dissipationnbgans of the de-
composition:

dw
(2.8) Pszw—I-PD:E—i—PD
wherePp = 6-r‘+Zi Gi-fi+Yti-di+Y ij -di j, the hat meaning that we deal
with the dissipative part of the stresses, or the so-cakedeaquilibrium stresses. The
dissipation implie?p > 0 for any admissible deformation, hence the non-equilibriu
stresses cannot be arbitrary, but they must satisfy thipizidy.

Finally the stresses can be written in the additive form

W, .«
b = —-Z245b
ar
ow
o = —— +0j
or.,i
(2.9) o W s
i = ad Tj
ow
njp = m + 1jj
and the field equations read
doT
i +b = =
(2.10) it dt or
' et = doT
A dt ad;

which obviously include (2.5). In many cases the body foraesneglected, hence
b = 0 and the microbody force included i vanishes as well, but; # 0, because
the coupling part remains.

3. 3-D Cosserat solids

Let us introduce Cosserat solids as a particular model dbviet microstructure and
obviously it can encompass Cosserat shells and rods as wellosserat models the
microstructure is described by a rigid trigd] }, which is attached to each particle of the
body. It means that one must add to our field equations (263 dhstraint equations:

(3.1) di - dj = §jj.
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Formally we can apply the Lagrange multipliers method toghergy functional
(3.2) 5:/[W+A”(di-dj—Sij)+T]dB
B

and easily derive the equations of motion as a determinedfgedrtial differential
equations

(aw> oW,  daT
i

ar,i or — dt oF
(33) OW N AW daT g
8dj,i i 8dj Toat ij I
di - dj = §jj

Moreover they contain the constraint reactions (nameéyl igrange multipliers) whi-
le the main interest here is to obtain equations of motioa &fereactions, sufficient to
determine the motion.

This goal can be attained following an intrinsic approashpmeans of the an-
gular velocityw such that

(3.4) di = @ x d;
(since we deal with a rigid microstructure), with
(3.5) o=0@,.d.1, qd =g X"

being suitable measures of the rotations in an affine thimestsionalEs (i.e., Euler
angles), and a “spatial spi2 € Lin such that

(3.6) di.h= Sikj Qg]dk
wheres!! is the Levi-Civita symbol, an@ = Q(q', ¢’ ,n , 1).
Henceforth, we can write
W =W(r,i, 2, x"
3.7)
T=T(, w)

whereT is a quadratic form in the variablésandg'.
At this point we have to apply the usual variational techegto the functional

(3.8) £ = / [W(ri, @, X" + T, ©)]dB.
B

The Lagrange equations are (3.8nd

doT
) h ) —



274 F. Pastrone

where
W 92 0T dw h a oW 9 oW 9Q
iW=——=, 0l =_———, dhoj W= = O An i
3% aq dw 3q’ ! XN aq,l — 9XMaQ aq,L
If we introduce SW 9T
Wo=s—, Ty, = —
T YT o
the equations of Cosserat microstructure can be written as
oW A S _doaT
ari); or ~ o dtoor
(3.10) a0 IQ d 9 3
Wo o) —well = —<Tw—_w.)—Tw—Q
aq', N aq' dt aq' aq'

An open problem is to write the (known) explicit expressidmwan terms of theg' and
g' and the explicit expressions of the spin in terms ofdhey' 1, hence to write down
explicit forms of of the strain energy funtions, such that freld equations become
suitable and useful both to obtain analytical results anéjplications.

4. 2-D Cosserat solids and plane granular media

If the body is a 2-D solid and its configuration at any time isoandin contained in
R2, we can choose an orthonormal spatial bdsig, h = 1,2 and a material basis
{gn}, wheregn = r.n, hence writer = x"(XK, t)e, ; the functionsx"(XX, t) have the
meaning of deformation function components.

The director fields can be reduced to one vector field d(X¥,t),d - d = 1,
because one director is sufficient to define the orientati@my particle (grain). In the
spatial basis it isd = cosfe; + sinfey, 8 = (XX, t) being the angle of rotation of
the particle with respect to the fixed basis. Physically, nterpretd as the kinematical
characterization of the grain and it is fully determined bg scalar functios (XK, t).

If we introduce the unit vectar = — sinfde; + cosfey, v - d = 1, the time and spatial
derivatives of the director are given by:

d=wxd=0v, dp=R,xd=0,v,
wherew = 1/2d x d, &, = 1/2d,,, xd. The kinetic energy density becomes
(4.1) T:%[pf-r'—l—ZJf-d—i—léz]
wherep = p(X") is the density in a reference configuratidn= | (X") the inertia

term of the grainJ a coupled inertia term that vanishes if we reddceo a diagonal
form, as always possible. The strain energy density becomes

4.2) W =W(x"k;6;0,;t)
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while it is convenient to split the potential of the body fesan two parts
(4.3) Wh = WM £) 4 WMCro, 1)

such that the total potential energy density is given by

(4.4) W = W + wpacro .y yymicre,

the total energy of the body by
(4.5) E= / (T — W) pdXtdx?
A

whereA is the domain ifR? occupied by the reference configuration.
The field equations now read

W gwMacro _ daT _ en

axh,; N axh Tt ax'h =P
(4.6) ,

W oW oW daT

3.) ; 00 3 dtas

In Eg. (4.6) we used the diagonal form for the kinetic energy
1 i 2

(4.7) T=§[p8ijx x) +164]

The power expended for any motion

-h AW . AW .
X k+—0+ —0,n

AW, W
axh i 20 90,h

4.8 P= X
(4.8) axn T
suggests us how to introduce the macro and micro stresses

AW AW AW
4.9 h_ oh= 2T 22T
(4.9) KT oaxk T T B0 30

and the macro and micro body forces

ath)\/Iacro 5 aWtr)nicro

4.10 B = , b=
(4.10) h =P R P
which we refer to intrinsically a&s, », t, B, b}. Hence the field equations read

pli = Divo + pB

(4.11) { 1§ = Divyp — 7 + pb



276 F. Pastrone

5. The constitutive equations

The system in Eq. (4.6), or alternatively Egs. (4.11), mestbmpleted with proper
constitutive equations, which allow us to describe the biela of some real material.
If we want to model the behaviour of granular media, we must fato account the
friction among grains, which are described kinematicatig dynamically as Cosserat
microstructures. One way to describe this kind of frictisttd make use of the theory
of viscosity or, equally, to introduce some dissipatiorgttmeans we assume a de-
pendence of the constitutive functions on the velocity dbdweation also. Moreover,
from a phenomenological point of view we must consider thatrbtation of a single
grain makes the other neighbouring grains to rotate, nahénsame sense: usually,
because of friction, if a grain rotates clockwise, anothrairgin contact with it rotates
counter-clockwise. This problem has been faced by [7],quaidifferent approach.

The form of the total power expended, where we must take iotount both
the conservative and dissipative parts of the stressessuggest the choice of the
dissipation function. Hence, we assume again that thessiseme “split” in an additive
way, S0 we can write:

~

dw . .
(5.1) Pr = W+PD=E+UD'L+0D-G+‘L’D9

where L is the gradient of the macro velocify,the gradient of the micro velocity. In
Eq. (5.1)op, np, o are the dissipative parts of stress and forces (or, as saikab
the non-equilibrium stresses and forces). They must gdtisfdissipation inequality

(5.2) Po=op-L+5p-G+1pf >0

for any admissible motion.

The simplest meaningful assumption we can use on the digsiga thatop -
L +9p -G =0andrp = D, such thatPp = D6 andD = D(X', t).

Finally, the simpler form of the field equations for a gramydane body, with
friction among grains, is given by

IW
(2, o
L

BXh,i
(5.3)
. [OW W .
=YY Y pgiob
(ae,i )’i 30 T

Obviously, one can imagine more complicated situationsinfstance that the dissipa-
tion is given by non linear relations or by a functional in tledocities of deformation,
but this model, extremely simple, allows us to claim thasihot necessary to neglect
the couple stress, as assumed in [7].

The different equations of motions here obtained allow usttmly problems
of equilibrium, stability, wave propagation. With regamwave propagation, some
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results have been obtained in [2, 3, 4, 5, 10, 11, 12, 13], In&inone-dimensional
solids with scalar microstructure, with non linearity, mhssion and dissipation. The
possibility of propagation of solitary waves has been pdoes well as the possibility
of decay and/or amplification of the amplitude.
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A.V. Porubov

ON FORMATION OF THE ROGUE WAVES AND HOLES IN
OCEAN

Abstract. Two-dimensional nonlinear models are developed to accourdtfoormal sur-
face ocean waves generation and propagation. These modddased on the Kadomtsev-
Petviashvili equation, the 2D Benjamin-Ono equation and2beGardner equation. Pos-
sible mechanisms of the waves formation suggested are theargsimteraction between
semi-plane waves or waves with curved fronts or the tranevastability of a plane surface
wave.

1. Introduction

This paper intends to consider some models describing sessved abnormally high
amplitude, or the so-called rogue (or freak) waves [1, 2].séations of the rogue
waves and various accidents with the ships in ocean causttelattacks require a
development of the theory of the rogue waves and understgride mechanisms of
the rogue waves formation. What is really dangerous thatdbae waves suddenly
affect the ships even in the absence of a storm, and the cravotsee these waves far
from the vessel. Despite numerous works done by now [1, 2], 3ndny features of
the waves remain unclear.

As arule, rogue waves are considered as elevation freeceusfaves [2]. How-
ever, recently abnormal waves with negative amplitude vedrgerved in the ocean
[5, 6]. Certainly these wave are even more dangerous for sel/fsan the elevation
rogue waves, since their detection is unlikely either bysayer by a locator. The am-
plitude of the rogue wave may exceed 10 meters, hence, nialg, lit is nonlinear
wave. There is no common point of view what kind of wave isafd or short [2].
Estimations done on the basis of some observations of bethi¢ivation waves [7] and
the deep holes [8] allow us to consider the rogue wave as ariongdinear wave.

In this paper, main attention is paid to the mathematicalef®drheir detailed
physical justification may be found in our recent papers[7A8ong the model equa-
tions employed are the Kadomtsev-Petviashvili (KP) equiatihe 2D Benjamin-Ono
equation and the 2D Gardner equation. The localization d@fiéial wave is suggested
as a possible mechanism of the rogue wave generation. katiah of the wave is
accompanied by an increase in its amplitude. In the two-dsiomal case, localization
may happen both along the direction of the wave propagafitamé localized wave)
and in the plane where the wave evolves (2D localized waves)fdund that the former
case may be described by exact solitary wave solutionsewiihd latter case requires
a study of the transverse instability and numerical sinnutest The conditions are ob-
tained that establish the parameters of the incident wav@/®athe ocean stratification
required for the rogue wave or hole generation.

279
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2. Long wave modelling of rogue waves

2.1. Kadomtsev-Petviashvili equation

The simplest model implies that the ocean is an inviscidididayer of permanent
depthH with free deformable surface. Assume the plane= 0 of the Cartesian
coordinates coincides with undisturbed free surface ofaker, hence fluid occupies
the region—H < z < 7, n(xYy,t)is a free surface disturbance. Let us denote
velocity components along axesy, z by u(x, y, z, t), v(X, y, z,t) andw(X, y, z, t)
respectively. Let is time.

As usual, it is convenient to introduce the velocity potahti = oy, v = ®y
andw = ®;,. The basic equations and the boundary conditions may bedfouf®].
The scales are introduced as follovis(typical wave size) fok, Y for y, andH for z
, L/+/gH fort, B for », andBL./gH/H for ®. The small parameter of the problem,
¢, is chosen according to estimations of the observed etevatigue waves [7],

e = B/H = H?/L?

The simplified governing equation may be obtained if weakgvarse variations are
assumedlL/Y = O(H/L) = O(y/¢). Introducing the phase variabde= x — t and
the slow timer = ¢ t, one can obtain from the basic equations [7] that the functio
n(6,y, t) satisfies the equation

(2.1) (2 + 3nmg + 1/3 1969)g + nyy = O,
that is nothing but the Kadomtsev-Petviashvili (KP) equafil0, 11].

2.2. 2D Benjamin-Ono equation

As a rule, freak waves are considered as elevation freeceuwaves. However, there
exist similar waves with deep troughs or surface holes tlEatwbserved in various
places [5, 6]. It is important that these waves satisfy thaimshipA/H = O(H/L),
hence, the KP equation is invalid in this case since its apbliity requires another
ratio betweenA/H andH/L, A/H = O(HZ2/L2). We consider the model contain-
ing semi-unbounded inviscid and incompressible air lagtaracting with a finite size
layer of inviscid and incompressible water by the normatsges. The wind in the
atmosphere is taken into account in order to check its infla@m the 2D localization
of the wave on the water surface.

Assume that the width of the water layetsand it is bounded by the rigid bot-
tom from below. The Cartesian coordinatesy, z) are put so as the plaze= 0 co-
incides with undisturbed free surface of the liquid layeat #(x, y, t) is a disturbance
of the water surface. Then the water occupies the regibn < z < 5, while the air
occupies; < z < oo. Let us denote constant density of the watepbthe velocity
components along the directiorsy, z by u(x, y, z, t), v(X, y, z,t) andw(x, y, z, 1)
respectively. Similar notations for the air agg, u'(x,y, zt), v'(x,y, z,t) and
w'(X, Y, z,t). Itis convenient to use in the equations and in the boundamngitions
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the potentialsp, @’ defined byu = @y, v = @y andw = @, U’ = @}, v' = ¢{ and
w’ = .. Suppose the wind in the air has the velotitydirected along th&-axis.
Then the basic equations are written as usual [9] while thmbary conditions

are:
(2.2) ®, = Oatz= —H,
(2.3) ® — Oatz — oo,

and forz = n we get

(2.4) p(Pr+1/2(P2+DZ+D2)+gn) = p'(®{+U/ D +1/2(P 2+ D2+ ) +g 1),

(2.5) nt + Oxnx + Pyny D,.

(2.6) n+ Pynx + Pyny = ).

The following scales are used:- for X, Y- for y, H-for z in the water and
L - for z in the air,L/,/gH-for t, A-for n and AL,/gH/H- for ®, ®'. The small
parameteke is introduced as

e = A/H = H/L.

Itis assumed additionally that/Y = /.

The governing equation is obtained following the well-kmoprocedure [12,
13]. Finally, the phase variabte= x — /1 — ot and the slow timg = ¢ /1 —o0o t
are introduceds = p’/p, and the equation for the functionis obtained,

o0
1 o0 do’
(2.7) 2n¢ + 3y + b= / e'6
) -0

—00 0

+T]yy = 0.

where

U’ 2
b=o (1 - —> .
vOH1 —0)
Equation (2.7) is reduced to the Benjamin-Ono (BO) equdtidhe one-dimensional
case, hence it may be called the two-dimensional genetializaf the BO equation or
the 2DBO equation.

2.3. 2D Gardner equation

Another model where the ratia/H = O(H/L) may be realized is the two-layer fluid
model. It is known that it may be employed to account for thetéication in the ocean.
Let the upper finite width layer has densityand thicknesfg, while the lower one has
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densityp > p’ and thicknes#i. Assume that both the interface and the free surface of
the upper layer are deformable while an influence of the gpimar® is negligibly small.
In the one-dimensional case, long nonlinear waves wereidenes early in [14]. It
was shown there that both surface and internal waves areloedby the Korteweg-de
Vries (KdV) equations ifA/H = O(H?2/L2). However, the coefficient at the quadratic
nonlinear term in the KdV equation may be small itself ata@iartelationship between
widths and densities. In this case the balance betweennsamity and dispersion
required for propagation of localized waves, is realizad4gH = O(H/L), just the
ratio observed for the deep holes [8].

Basic equations have the form similar to that used in theipusvsubsection
(we denote now byvariables in the upper liquid layer) with the exception & thind,
nowU’ = 0, and of the boundary conditions to be imposed at the upperdarface
z=ho+h(x, y,t),

O+ 1/2(PF + P2+ DA +gh=0,

(2.8) hy + dLhy + dLhy = @

Like in the previous subsection, weak transverse variatéye considered with
L/Y = /e, whereg is defined in the previous subsectiofy; typical amplitude of
both the surface and internal waves. Ng, y, t) is the interface disturbance, other
notations arex = p’/p, m = hg/H. The scales are the same as in the previous
subsection but for the scale farin the upper layer now chosen equallo Like in
the one-dimensional case [14], we obtain that the coefficiethe quadratic nonlinear
term is equal to zero fam = m*,

1
m* =s++s_+§(3—30 —0?),
where

Sy = (%{27(1 +0)+202(9— 18 — 902 — 03]

+

1/3
0(1+20)\/(1—0)(27+50)
: )

Assume thain = m*+emj + ..., v = v* +ev1 +.... In this case, standard asymptotic
procedure allows us to reduce basic equations to the gowgaguation for the free
surface disturbance:

(2.9) (h; +a h3 + ch + bhgge)s + dhyy = O,

whered = x — ut, T = &2,

02 = %(1+ m* — /(L + M2 — 41— o)me),
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_3my[(@m* (o — 2) +3—50)v*2 + (1 — 0)(2Mm*2 + 3m*o — 1)]
B 20*[(1 + m*)v*2 — 2(1 — o)m*](1 + m* — 2v*2)
v [(L+ mH{1 — (1 - 30)m* + m*3}v*2 — (1 — o)m*(1 + 3m*o + m*2)]
6[(1+ m*)v*2 — 2(1 — o)m*]
_ m*(1—0)(4m*2 4 m* — 1+ 4m*o) — H*2(m2(1— o) — m*(1— 20) + 1)
B v [(1 4+ m*)v*2 — 2(1 — o)m*] '

’

b =

s

d = —,
2
Itis easy to check thdt > O, cis always negative, while the signafs defined
by the sign ofm;. Equation (2.9) is nothing but a two-dimensional geneadiin of
the Gardner equation or the 2D Gardner equation.

3. Mechanisms of the rogue waves formation

3.1. Resonant waves interaction
It is known that plane solitary wave solution of the KP eqoiat?.1),

2 2 2
(3.1) n= ﬁcoshfzk(emz— Mr),
3 6

is stable to transverse disturbances, and exact two-diora@aidocalized travelling
wave solution requires an opposite signnatz or atnggge [10, 11]. In our case it
is unlikely. Hence we cannot anticipate an appearance ob2Blized wave from the
single solitary wave. However, the KP equation possessgs-aalitary wave solution
[10, 15],

2

4 9
=352 log(F), F = 1+ exp(&1) + exp(&z) + exp(A1s + &1 + &),

L a4k (ki — k2)? — (Mg — my)?
(B2 & =kO+mZ- 6 (k1 + k2)? — (Mg — mp)?

L 1), expArp =

It contains a hump in the area of the waves interaction. Thmephonoves keeping its
shape and velocity, and its maximum amplitude may be up totfmes higher than
the amplitude of each interacting solitary wave. Detailedlgsis of this solution and
its possible application to the rogue waves descriptioroisedin [4]. Now we only
mention that this solution describes propagation but natraétion of the localized
structure, the last should be presented in the initial dardi

Recently we developed the idea of the use of the waves ititenaddowever,
we consider another solution of the KP equation [7] that de®slescribe the waves
interaction att = 0 in contrast to the exact two-solitary wave solution sutggbin
[4]. Numerical solution describes a formation of a localiégh wave (or a stem) only
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when the angle between the incident crested waves liesnaatleertain interval. Our
estimations demonstrate rather fast formation of the shatmhay be a reason why the
rogue wave appears suddenly for the crew of a vessel. Anaserm amplitude is up
to four times. Much higher increase is achieved, up to 14ifes when the incident
waves with curved fronts interact [7]. In the last case, thddtalized wave is unstable
and exists for a short time period. However, fast formatiba lsigh wavenearthe ship
gives rise enough time to it to affect the ship before an bikta destroys the wave.

The well-known exact solitary wave solution solutigr= 5o of the BO equa-
tion may be written as

(3.3) no= vk
3 (k&2 +1)

where¢ = (9 — 0.5bv/kr). It accounts for a moving elevation plane wave in the two-

dimensional case. It is always stable to transverse datwds for the positive sign of

b [8, 13, 16]. One can see that the wind cannot affect the sign dte sign of the

amplitude is defined by the sign bf and holes are not described by this solution.

Hence the 2D localization elevation wave may only arise dubé plane waves
interaction. This process was studied numerically in [1fpre it was found a simi-
larity with the KP case. Again a stem appears due to the wanesaction and its
amplitude depends upon the angle between the incident plames. However, how
the highest amplitude may be eight times larger than the itudpk of the incident
waves. The case of the curved initial waves interaction ixonsidered by now.

A similar scenario may be realized for the known solitary evaglutionh = hg
of the Gardner equation [14]:

_ 3b k2
" a(Bicoshké) +1)°

[ 9bck? 2
B, = 1+—2a2 .6 = 6 —Dbkor.

In the two-dimensional case, Eq. (3.4) accounts for thegmapon of a plane solitary
wave. In contrast to the exact solution of the 2DBO equation the amplitude may
be of either sign. The hump propagation is described fortipesialues ofa, while
the wave with a trough propagates #or< 0. The solution has an interesting feature
for negativec: tendency to the extensive trough shapd at- /—2a2/(9b ¢). The
amplitude of the wave tends to the limiting value equakt#a/3c. This solution is
stable to transverse disturbances [8]. Similar to the KP2Z&BIO equations, numerical
solution reveals a localization with a great increase inldoge of the wave as a result
of semi-plane or curved incident waves interaction [18]e Tasults look very similar
to those of the KP equation. However, no stem is observediatl siegative values of
the coefficient at the cubic non-linear term. Possible neasdn the fail of reality of
B; that happens in the exact solution (3.4) as soon as negatigereases.

(3.4)

where
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3.2. Transverse instability of plane solitary waves

The Gardner equation (2.9) possesses an extra solutienh, that may be employed
for explanation of the holes. It appears due to the balantwedss cubic nonlinearity
and dispersion and may be written through the Jacobi @lfptiction,

2b a
(3.5) hp = ,/—? kKSﬂ(kE,K)—§

whereé = 6 —st,k,0 < k < 1, is the Jacobi function modulus, while the velocity is
s = —bk2(1+ «?) —a2/(3c). Its minimum is larger that the maximum for negative
a. Moreover, the troughs in the solution became extensive as= 1, and they are
separated by the extensive areas of moderate elevatiohe ltwb-dimensional case,
these troughs are similar to the shape of the solution (3i#h) tie exception of the
absence of the limiting amplitude [8].

The transverse instability of the solution (3.5) is studsadilar to that of the
solitary wave solutions [8]. One can check that the wave)(3.&lways unstable.
This may result in an appearance of a periodical train of thees modulated in the
transverse direction, hence the sequence of two-dimeaisiocalized waves. Then
another mechanism of the rogue waves and holes formatiorbmayggested based on
the 2D localization due to the transverse instability. lbi$e noted the exact solution
of the KP equation that may be obtained when the sign at dis@eor transversgyy
term in Eq.(2.1)is negative [19]. This solution describésaasverse modulation of an
initial plane solitary wave which is accompanied by an iaseein amplitude. However,
this increase is not very high, 1.5-2 times. Much more ingeeaay be achieved if a
2D input is used. It was found [20] that growth up to 12 timepgens if the input
is not so smooth as the 2D Gaussian distribution. The praafase formation of the
stable 2D localized wave is fast that may be used to explaldesuappearance of the
rogue wave near the ship.

4. Conclusions

The solutions of the model equations considered reflect featares of the abnormally
high or deep waves: their fast but rare appearance. The dastre as well as the
growth of the amplitude depend upon the shape of the incideres and the angle
between them. The second feature is caused by the strigttiests required for the
existence of the solution, in particulan should be near the special valoé for the
solution of the Gardner equation. Itis found that the caadd yielding 2D localization

are governed by physical factors through the signs of th#icieats of the equations.
Thus the sign o& separates an appearance of the elevation wave or the haote thav

is defined by the sign ah; or by the ocean stratification. This dependence upon the
physical factors is important for a prediction of the rogus/@s and holes in the sea.
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FAST FERRIES AS WAVEMAKERS IN A NATURAL
LABORATORY OF ROGUE WAVES

Abstract. The evolution of solitonic waves traveling in slightly difent directions is anal-
ysed in the framework of the Kadomtsev-Petviashvili equatibionlinear interactions of
solitonic waves generally lead to phase shifts of the copatés. If the amplitudes of the
interacting solitons, the angle between their crests aadviiter depth are specifically bal-
anced, interactions result in particularly high wave hungsembling the phenomena occur-
ring during the Mach reflection of solitary waves. Surfaavation up to four times as high
as the amplitude of the counterparts may occur, and the sldape &bnt of the hump may be
eight times as large as the maximum slope of the fronts of thesictiag waves. Although
such a balance occurs seldom, the resulting structure maigtpfensa long time until the
balance is violated. Solitonic waves occur relatively seidn natural conditions. However,
leading waves of wakes from contemporary large high-spegx$ sailing in shallow wa-
ter frequently have solitonic nature. The described imtiBvas are realistic in areas hosting
intense fast ferry traffic.

Key words: nonlinear ship waves, high-speed ships, shallater waves; extreme
waves; solitons, soliton interaction

1. Introduction

The concerns related to intense ship traffic are traditipealsociated with possible ac-
cidents such as ship collisions or grounding, technicalrewigation problems caused
by severe weather or human errors etc. These concerns agedfdctively managed
by international shipping and harbor communities with tee of the basic assertion
that the risks of water surface transport are localizediwighsmall area around the
ship.

The continuing introduction of evermore faster ship sargiduring the last two
decades has created new major worries, which are no mortetb@a small areas.
For example, the massive growth of exhaust emissions (t&apébreating substantial
changes in the atmosphere at the height of many hundredstefsiadove sea surface,
Durkee et al. [1]) may become a part of global troubles andytieat increase of the
ship-generated noise may adversely affect quality of fifareas adjacent to ship lanes.

The most important issue is the wake generated by large dpgbd ships
(Guidelines [2], Wood [3]), in particular, specific feataref waves excited by strongly
powered ships sailing at shallow and moderate depths (upGar). Large-amplitude
wake wash propagating shoreward has become an issue ddlasaricern for coastal
communities, because it has a significant impact on theysafepeople, property
and craft (Guidelines [2], Parnell and Kofoed-Hansen [4]arge wake waves are
frequently compact entities which cause violent energyceatration not only in the
vicinity of ship lanes but also in remote sea areas (Hamér G no more unusual that
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holidaymakers are forced to “flee for their lives when enanmwaves erupted from
a millpond-smooth sea”, or that waves look like “the whitéfglof Dover” (Hamer
[5]). There exist several coastal areas which have rouglewanditions but still the
contribution of ship waves is significant. For example, ghgffic in Tallinn Bay, the
Baltic Sea, is so intense that ship-generated waves forheaat, about 5-8% from
the total wave energy and about 18-35% from the wave powéreitdastal areas of
Tallinn Bay exposed to dominating winds [6,7]. They may k&pansible for the ero-
sion of the coastline and the sea bottom [8], and may seyialzshage the biological
environment.

The most well-known components of a nonlinear ship wake angefveg-de
Vries (KdV) solitons (Wu [9], Li and Sclavounos [10]). Thegrtbe generated either
directly by the ship motion or by the long-wave part of claasship waves. When the
latter approaches coastal area, its components frequestiyme non-dispersive and
highly nonlinear shallow water waves that often resembkegbles of KdV solitons
(Soomere et al. [11]). Ship wakes may at times contain sorner @pecific types
of disturbances such as monochromatic packets of retathlert waves (Brown et al.
[12]), depression areas penetrating into adjacent basorsian [13]), or supercritical
bore (Gourlay [14]) that are qualitatively different frolmetusual Kelvin wake.

In this paper, | give an overview of some aspects of nonlim@ractions of
nearly unidirectional KdV solitons. The description of ttlassical Kelvin ship wave
pattern and its changes for increasing ship speeds arehskkficst for completeness.
Further, | describe recent developments of the analysipedific features of interac-
tions of (possibly ship-induced) solitonic waves in thenfeavork of the Kadomtsev-
Petviashvili equation. Finally, potential modificatiorfstioe wave shape and applica-
tions of the described results in realistic shallow-watarditions are discussed.

2. Linear wakes

The classical problem of kinematics of ship waves consistietermining the steady
pattern of wave crests (more generally, the phase curveajed by a moving ship in
the framework of the linear wave theory. The first descriptid the stationary wave
pattern exited by a point source in terms of two sets of walvasrmove forward and
out from the disturbance (diverging waves), and one set akewdhat move in the
direction of the disturbance (transversal waves) was gisefrroude in 1877 [15].
Traditionally, this pattern is called Kelvin wave systemKelvin wake (after William
Thomson, Lord Kelvin, who constructed the correspondirepti for deep water in
1887 [16]). The work was expanded by Havelock starting fr®@8L[17] to resolve
some discontinuities in the Kelvin model and to include tfieats of water depth.

A quick derivation of the Kelvin wave pattern can be found 18], §256, or
[19] 83.10. The relevant analysis relies on the dispersitettion and needs to apply
only three basic ideas: (i) the wave system is stationajyth@ constant phase curves
are perpendicular to the wave vector, (iii) the local phadeaity (celerity)cs must be
equal to the projection of the ship’s velocity in the direatbf the wave vector [20,21].
The first and the third conditions simply mean that the patbéwave crestereated by
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ship moving steadily with speed can only be stationary if the wave component trav-
eling under anglé with respect to the sailing line has the phase velotjty= V cosf.
Since the celerity of surface waves in water of an appreeidepth is smaller than
the group velocitycy, energy of a steady wave system can only exist within a triang
lar area called Kelvin wedge The half-angleof the wedge satisfies the geometrical
condition sink = 1/(2CfC§l — 1) and is defined by sim = 1/3 in deep water. The
basic features of steady wave patterns in deep water therdfonot depend on the
sailing speed. If the ship sails in water of finite depth, thiéorof the phase and the
group velocityct /cg = 2/[1+ 2kH sinh~1(2k H)] additionally depends on the water
depthH. Yet anglex only depends on the ratig, = V/./gH of the ship’s speed and
the maximum phase velocity of surface waves for the giveremd¢pth. This ratio is
called depth Froude number. FBr < 1, half anglex can be found from equation
cof o = [8 — 16k H sinh 1(2k H)] x [3 — 2k H sinh~1(2k H)]~2 [22].

Shallow-water effects become important when wavelengthagmately twice
exceeds the water depth, equivalently, wkéh < 7. The limiting depth Froude num-
ber for diverging waves at the edge of the Kelvin edgBrs~ 0.687. For somewhat
longer transverse waves at the sailing line this threstoléhi ~ 0.56 [22]. There-
fore, at depth Froude numbers above 0.55-0.7 the ship-atedervave system should
response to the water depth.

If the ship’'s speed/ = ./gH , anglea reaches the maximum valae= 90°.
Frequently, it is claimed (perhaps after [17,22]) that ttams$verse and the diverging
waves form a single large wave with its crest normal to thiénggline that travels at the
same speed as the disturbancEat> 1. Such a description is conceptually imprecise,
because what exactly happens at these speeds cannot ibatkbgrthe linear theory.
However, it is true that that wave heights increase conalgrat F, — 1 and wave
periods increase gradually as the ships speed increases.

The threshold~, = 1 serves as a natural basis of classification of navigational
speeds. Operating at speeds resulfifg< 1 is defined as subcritical, &, > 1 as
supercritical and aFp, = 1 as critical. There is a relatively wide transcritical spee
range 084 < Fn < 1.15 in realistic conditions, where no clear distinction begw
sub- and supercritical regimes is possibléigig et al. [23]).

3. Solitonic ship waves

In restricted waters, solitary waves can be generated affehd ship bow. John Scott
Russell first documented this phenomenon as he watched dd&nal boat pulled by
horses stopping suddenly (see his description reprintgd,ie [24]). Helm [25] prob-
ably first reported that a ship model advancing steadilywvirig tank can radiate many
solitons subsequently. At certain speeds close to the sifekd maximum wave resis-
tance, the influence of the ship model extended to 4-5 lerajttiee model upstream
whereas up to 7 wave crests (precursor solitons [9,26]) detextable. This is a highly
intriguing phenomenon, because it is very unusual that ecitig disturbance moving
steadily...in shallow water can generatmntinuously and periodicallya succession
of solitary waves, propagating ahead of the disturbancal [8) my italics).
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This phenomenon is not restricted to ship waves only and rcayran many
other areas of research and engineering [9]. It is a genegithemism of excitation
of disturbances in situations where the nonlinear and dispeeffects are specifically
balanced, and becomes effective when the group velocitynof Waves radiated from
the forcing area is close to the velocity of the disturbantkee local wave therefore
obtains energy from the source during a relatively long tirve meteorological ap-
plications, examples of a single long high wave generated boving low pressure
disturbance when the disturbance speed is approximatelgritical speed were re-
ported long time ago. The resulting wave resembles tsunawéwand is sometimes
called “meteorological tsunami” [27].

Solitonic disturbances resembling Korteweg-de Vries (Keditons frequently
occur far ahead a ship sailing in confined waters at certaadgp(Neuman et al. [28]).
The ship speed is the decisive factor in forming these wéexsause for speeds much
less than the critical one the linear waves will effectivedyry away energy. However,
a ship may excite solitary waves starting already fregn> 0.2 and such waves can
be found in numerical computations f6p > 0.4 (Ertekin et al. [29]). They are the
largest for the transcritical speeds, and are accompari@ddoastic dropdown of the
water surface near the vessel (Forsman [13], Li and Scla®i{d0]). There exists
an opinion that these solitons are responsible for somestéisa(Hamer [5], Li and
Sclavounos [10]). A more probable source of solitonic wdees the long compo-
nents of diverging waves that become highly cnoidal (Paerel Kofoed-Hansen [4])
or obtain the shape of KdV solitons (Soomere et al. [11]) iallskv areas.

The theoretical explanation of the phenomenon of generatiprecursor soli-
tons was given in (Akylas [30], Cole [31]) for the basicaltyugvalent environments of
a moving disturbance and for a flow past a bump. The upstreapagating solitons
can be described by a forced Korteweg-de Vries (fKdV) equatiith a singular forc-
ing function. Letp = p(x+Vt) andb = b(x+ Vt) represent moving surface pressure
patch (the simplest model of the moving ship) and topograpigreas the velocity
is nearly critical so thaF, = 1+ €5, wheree = (H/1)? « 1 for long waves and
§ = O(1). In the coordinate system moving with the pressure patclopography,
evolution of the water surfacg is with the accuracyO(e2) described by the forced
KdV (fKdV) equation [9]:

1 3 .7. HZ_ 19 (p
(3.1) ﬁﬁt*‘[(':h—l)—mﬂ}ﬂx—?Uxxx—éa—x(ﬁ+b>.

For F, = 1, p = b = constthis equation is the classical homogeneous KdV equa-
tion. The framework of Eq. (1) intrinsically contains onlgespatial dimension. First
two-dimensional numerical results showing the existerfogaves ahead of the ship
were probably presented by Wu and Wu [32]. They used the gined Boussinesq
model of Wu [33] and showed that a solitary wave emerges atfghé pressure distur-
bance and propagates upstream when a pressure patch wagmithi a near-critical
speedV ~ ./gH in a two-dimensional tank. Numerical experiments basedhen t
Green-Naghdi fluid sheet equation also demonstrated ass#nigpstream-propagating
soliton-like disturbances ahead of the ship at transatitspeeds K, = 0.9...1.2,



Rogue waves 291

Ertekin et al. [34,35]). Lee et al. [36] established thatfilreed KdV model and the
generalized Boussinesq model give similar prediction$iaf phenomenon and show
a satisfactory agreement with experiments. A comparisawesn the fully nonlin-
ear model and the two models above was carried out more hedsnCasciola and
Landrini [37] with the use of the boundary integral approt@hkimulate the flow.

4. Interaction of solitonic wakes

Analysis of propagation and interactions of KdV solitoneggibly excited by contem-
porary ships if they sail at transcritical speeds) has amginihg application not only
in the framework of abnormally high waves in shallow coast&as hosting intense
ship traffic but also in the general theory of rogue waves. &lgmt has been sug-
gested by many authors that an appropriate nonlinear mechaould be responsible
for extreme waves [38].

The interaction of unidirectional KdV solitons is today Wehderstood. It does
not create any drastic increase in wave amplitudes [24]. é¥ew amplitude amplifi-
cation may occur under certain conditions when KdV solitorapagating in different
directions meet each other [39, 40]. It is known as one of ¢éherhechanisms able to
create long-living extremely high wave humps in shallowev§38].

A suitable mathematical model for the description of therattion of nearly
unidirectional KdV solitons is the Kadomtsev-Petviash{ilP) equation that admits
explicit formulae for multi-soliton solutions. A well-kman feature of such interactions
is that they may lead to spatially localised extreme suréeeations. For interacting
waves with equal amplitudes the high humps resemble Mach atel can be up to
four times as high as the incoming waves. Although known fiong time for solitary
waves reflecting from a wall [41], this mechanism has beey mdently proposed as
an explanation of the freak wave phenomenon [42]. The reisibrat it may become
evident only (i) provided long-crested shallow water wagas be associated with
solitons and (ii) provided the KP equation is a valid model $ach waves. These
conditions are not common for storm waves; however, they bwyften satisfied
when two or more systems of swell approaching a certain aneadifferent directions.
Groups of solitonic waves intersecting at a small angle nisy appear if wakes from
two ships meet each other in shallow water. Their interactiay be responsible for
dangerous waves along shorelines mentioned in [5].

The nondimensional KP equation for surface gravity waveshallow water
reads (Segur and Finkel [43])

(4.1) (1t + 6nnx + nxxx)x + 3nyy = 0.

The nondimensionalx, y, t, n) and physical variable&, ¥, , 7) are related as fol-
lows: X = Je(X — T /gH)/H,y = €Y/H,t =f\/e3gH/H, n = 37j/(2¢H) + O(e)
whereas = |ijmaxl/H <« 1. The two-soliton solution to the KP equation can be de-
composed into a sum= s; + S + 12 of two incoming solitons;, s, and residues; »
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Figure 1: Surface elevation in the vicinity of the interactiarea, corresponding to
incoming solitons with equal amplitudes = ap, 11 = —l2 = 1/3, kres = 4/1/3 and

k = 0.99%es. Area 0< z < 4ay, |X] < 30, |y| < 30, in normalised coordinates is
shown.

(Peterson and van Groesen [44]):

S12 =+ A12ki2®_2 COSh((pLzX +Iny A12) )

(4.2) S12 =202 [(kl — k)2 + Az (ki + kz)z] .

p2

— In A
® = COSh(plT + Cosh(pl-i_(pz—-i_lz_

2

Hereg; = kix+liy+oit, «i = (k, 1), a10 = %kiz,i =1, 2, are the wave vectors and
amplitudes of the incoming solitons, the frequencigsatisfy the dispersion relation
kiwi + k* + 312 = 0 of the linearized KP equatiory, = [A% — (ki — k2)?]/[A? —
(k1 + k2)?] is the phase shift parameter ahd= 11k;* — Iok; L. Within restrictions
of the KP model, interaction may result in either the positir the negative phase
shift A = —In Az of the counterparts. The interaction pattern (Fig. 1) isagisv
symmetric with respect to a particular point called intémactcentre, and is stationary
in a properly moving coordinate frame.

5. Phase shifts, extreme elevations and slopes, and cresbgwtry

The phase shift8; » of the counterparts (Fig. 2) only depend on the amplitudes of
the incoming solitons and the angle between their crestatiBes for the phase shifts
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Figure 2: Idealized patterns of crests of incoming solitgrmdd lines), their position in
the absence of interaction (dashed lines) and the interastliton (bold dashed line)
corresponding to the negative phase shift case.

81,2 = In A12/|k1,2| and for the intersection angle Ztéﬁlz = X can be simplified to
one transcendental equation with respect to either of th@itutes of the interacting
solitons [44]

8202 — 2(8, — 81)%@?
(5.1) 51y/2a1(1+ A2/4) = £1n -2 (%2 — %) a;

8512 — 2(82 + 81)%af
This anglex12 and the magnitudes of the phase shifts can be estimated, e.g. from
aerial photos. If the sign of the phase shift is known, equatb.1) uniquely defines

the heights of the interacting solitons. The sensitivityto§ method and several sim-
plifications of Eq. (5.1) are discussed in Peterson and vae$an [45].

For the negative phase shift ca&g, > 1 (that is typical in interactions of soli-
tons with comparable amplitudes) an interaction patterarges, height of which ex-
ceeds that of the sum of the two incoming solitons (e.g., 4], Tsuji and Oikawa
[46]). When two waves of arbitrary amplitudas anda, meet, the maximum ampli-
tudeM of their superposition can be written &= m(a; + az), where the “nonlinear
amplification factor'm may depend on botly anday and their intersection angle. The

maximum surface elevation for equal amplitude solitorsgis = 4a1,2/ (1 + Azzl/z

[41,47]. Thus, nonlinear superposition of two equal aropli solitons may lead to a
fourfold amplification of the surface elevation in the reapce casé\;, — oo. Ina
highly idealized case of interactions of five solitons scefalevation may exceed the
amplitude of the incoming solitons by more than an orderdiRen [48]).

The extreme water level elevations occur if the solitonersgct under a phys-
ical anglex1, = 2 arctan/3#/h [42]. This angle for two intersecting ship-generated
solitary waves in realistic conditions is reasonable. lalwut 36 for waves with
heightsf7 = 1.8 m (the maximum ship wave height mentioned in [6]) meetinchea
other in an area with a depth of 50 m, and about ft® waves with heights; = 0.8
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m in the coastal zone with a depth of 5 m. Solitons intersgctinthe former angle
apparently can be described by the KP equation. The lattge anay be too large for
this framework.

For unequal amplitude solitons the maximum elevatiggy for finite Aj> and
the amplitude of the resonant soliteg, at Aj> = co are

a1+ a ki + k2)?
(5.2) 8max = a12 + ZAi/ZZ%, 8o = %
(A5 +1)

The expression foa,, probably has been first obtained for exact resonance of ion-
acoustic solitons in a field-free plasma [49] directly frohe tresonance conditions
assuming that the new structure is a KdV soliton and re-ddrivom the conditions

for stationary points of the explicit two-soliton solutiofithe KP equation in [50]. A
simple derivation of expressions (5.2) based on deconipng#t.2) is given in [51]. It

is easy to show that both the incoming solitons and the redidwe an extremum at
the interaction centre. The nontrivial part of the deriwatconsists in proving that the
global extremum of the composite structure is located as&inee point. An elementary
proof can be constructed with the use of the fact that evetngmum of a 2D surface
must correspond to a singularity point of a certain isolB#| [

Certain geometrical features of interaction of long-@dswvaves in the frame-
work of two-soliton solutions of the KP equation have beealgsed in [42,47,51].
In the simplest approximation, the high hump in the framéwadrsoliton interactions
may be associated with the area where the interacting wasss & common crest
[42]. Its length is proportional td.12> ~ In A1> [42] and therefore is modest unless
the interacting solitons are near-resonant. For equaliirdplincoming solitons, the
length of the area where the elevation exceeds the sum oftadgs of the counter-
parts may considerably exceed the estimates based on theettg@f the wave crests
[47]; however, this length also is roughly proportional mod; ».

The amplification factom = 1 + 2k1k2/(kf + k%) ~ 2 when the amplitudes
of the interacting solitons differ insignificantly and isosk to 1 when the incoming
solitons have fairly different amplitudes. Therefore, Fargely different amplitudes
of the interacting solitons the amplitude amplification e#ns modest. However, the
spatial extent of the influence of nonlinear interaction alitens with considerably
different amplitudes is roughly as large as if the ampligrdeere equal. The interaction
mostly leads to bending of the crests of both the countes§gigy. 3). This effect may
lead to hits by high waves arriving from an unexpected dioect

The process of formation of the high wave hump has been fgcsmtlied in
[52] based on numerical simulation of collision of trunch{gemi-infinite) structures
with sech profile, height of which varies along the crest. Since théahprofiles of
the interacting waves are effectively two-dimensionangversal energy flow along
the crests supposedly occurs, and the results are notlgicechparable with the ones
presented above. However, an extremely high wave hump,dighthof which con-
siderably exceeds the sum of the heights of the counterpartsrmed quite fast in
a certain interaction region. Evolution and interactiohsalitary waves localized in
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Figure 3: Surface elevation in the vicinity of the interactiarea, fok, = 1/3,11 =
—lo = 0.2, kres = 0.6 andk; = 0.999%;¢s in normalised coordinate&, y). Area
IX| < 60,|y| < 90 is shown.

one half-plane have been studied numerically by Tsuji arida@a [53] also in the
framework of the modified KP (mKP) equation in which the quidrterm of the KP
equation is replaced by cubic term%jy. As different from the classical KP equation,
the mKP equation admits both positive and negative solitealye solutions. Inter-
action of positive solitary waves results either in stroesucontaining very high and
narrow wave hump or in transforming the incoming waves ingeguence of much
smaller waves.

Plots of two-soliton solutions in Peterson et al. [42], IPeia and van Groesen
[44], Haragus-Courcelle and Pego [54] suggest that the-nesanant high hump is
particularly narrow and its front is very steep. This feataan be recognized also in
experiments with the Mach reflection of supercritical shigkes in narrow channels
(Chen et al. [55]) where the highest part of the wave hump gdigés narrower than
the incoming solitons. The area of extreme elevations ig marrow indeed whereas
the front of the resulting structure may be very steep. Theimam slope of the front
of the two-soliton solution may be eight times as large assthpe of the incoming
solitons, giving the relevant maximum “nonlinear slope éfigation factor” equal to
4 [47]. For unequal amplitude solitons, the amplificationhaf slope of the front of the
interaction pattern is proportional to the amplitude afigation [56].

The extraordinary steepness of the front of the near-regdnamp, although
intriguing, is not totally unexpected, because the resbKaiV soliton is higher and
therefore narrower than the incoming solitons. This featuay be a manifestation of
the new physics, which seems to be necessary to correctyidesactually measured
rogue waves [57].
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6. Soliton interactions in realistic conditions

The above has shown that the extension of the particulagh hump in nonlinear

interaction of KdV solitons normally is modest, and has asitderable length only

when the heights of the incoming waves, their intersectiogle@and the local water
depth are specifically balanced. Consequently, the fracisea surface occupied by
extreme elevations is apparently small as compared witlatba of a wave storm or
area covered by ship wakes.

However, an important difference should be underlined betwhigh waves
possibly excited by the described mechanism and those@risving to focusing of
transient and directionally spread waves. In the lattee easumber waves with differ-
ent frequencies and propagation directions are focusedeapoint at a specific time
instant to produce a time-varying transient wave group tieatally does not propa-
gate far from the focussing area [38]. A wave hump from nadminteraction, theo-
retically, has unlimited life-time and may cross large sea in favourable conditions
[38]. Thus, one should account for the expected life-timaadflinear wave humps
(additionally to the sea area covered by extreme elevatian certain time instant)
when estimating the probability of occurrence of abnorgnhlgh waves. One could
speculate that such high and steep wave hump might easihk lfirefore it reaches
its theoretically maximum height, or after if propagate®ian area where the condi-
tions for existing of the two-soliton solution are not stidid [42]. The possibility of
breaking of the high and nonlinear wave hump makes a hit byemsonant structure
exceptionally dangerous.
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