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The governing equations for a 1D case of the Mindlin model for microstructured

materials are derived and analysed. These equations exhibit hierarchical proper-

ties assigning the wave operators to internal scales. The dispersion of waves is

characterized by higher-order derivatives including also the mixed derivatives with

respect to coordinate and time.

1. Introduction

Materials used in contemporary high technology are characterized often

by their complex structure in order to satisfy many requirements in prac-

tice. This concerns polycrystalline solids, ceramic composites, alloys, func-

tionally graded materials, granular materials, etc. Often one should also

account for the damage effects when materials have microcracks. All that

shows the existence of intrinsic space-scales in matter, like the lattice period,

the size of a crystallite or a grain, and the distance between microcracks.

This scale-dependence should also be taken into account in governing equa-
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tions. The classical theory of the continuous media is built up using the

assumption of the smoothness of continua. The microstructured materials,

i.e. materials with irregularities have one or more internal scales and their

complex dynamic behaviour cannot be explained by the classical theories.

Within the theories of continua the problems of irregularities of media

have been foreseen long time ago by the Cosserats and Voigt, and more

recently by Mindlin [1] and Eringen [2]. The elegant mathematical theo-

ries of continua with voids or with vector microstructure, or continua with

spins of Cosserat continuum or micromorphic continuum, etc. have been

elaborated since then, see overviews by Capriz [3] and Eringen [4]. The

straight-forward modelling of microstructured solids leads to assigning all

the physical properties to every volume element in a solid introducing so the

dependence on material coordinates. This leads to an extremely complex

system. Another probably much more effective way is to separate macro-

and microstructure in continua. Then the conservation laws for both struc-

tures should be separately formulated (Mindlin [1], Eringen [2, 4]), or the

microstructural quantities are separately taken into account in one set of

conservation laws (Maugin [5]). Here we proceed according to the ideas of

separating macro- and microstructures.

2. Governing equations

The governing equations are derived following Mindlin [1] who has inter-

preted the microstructure “as a molecule of a polymer, a crystallite of a

polycrystal or a grain of a granular material”. This microelement is taken

as a deformable cell. Note that if this cell is rigid, then the Cosserat model

follows. The displacement u of a material particle in terms of macrostruc-

ture is defined by its components ui ≡ xi −Xi, where xi,Xi (i = 1, 2, 3) are

the components of the spatial and material position vectors, respectively.

Within each material volume (particle) there is a microvolume and the mi-

crodisplacement u′ is defined by its components u′i ≡ x′i − X ′

i, where the

origin of the coordinates x′i moves with the displacement u. The displace-

ment gradient is assumed to be small. This leads to the basic assumption

of Mindlin [1] that “the microdisplacement can be expressed as a sum of

products of specified functions of x′i and arbitrary functions of the xi and

t”. The first approximation is then

u′j = x′kϕkj(xi, t). (1)
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The microdeformation is

∂u′j
∂x′i

= ∂′iu
′

j = ϕij . (2)

Further we consider the simplest 1D case and drop the indices i, j deal-

ing with u and ϕ only. The indices t and x used in the sequel denote

differentiation.

The fundamental balance laws for microstructured materials can be for-

mulated separately for macroscopic and microscopic scales using the La-

grangian and the Euler-Lagrange equations (see Engelbrecht et al. [6]).

For the basic single-scaled model we take the potential energy W in the

form of a quadratic function

W =
1

2

(

αu2

x + 2Aϕux +Bϕ2 + Cϕ2

x

)

(3)

with α,A,B,C denoting material constants. Then the governing equations

take the form

ρutt = αuxx +Aϕx, (4)

Iϕtt = Cϕxx −Aux −Bϕ, (5)

where ρ is the density and I the microinertia.

In the two-scale situation (scale within the scale), it is assumed that

every deformable cell of the microstructure includes new deformable cells

at a smaller scale. The displacements at the different scales are then (cf.

(1)):

uj = uj(xi, t), u′j = x′k ϕkj (xi, t), u′′j = x′′kψkj(x
′

i, t), (6)

respectively, where x′k, x
′′

k correspond to the local coordinate within respec-

tive cells. As we are interested in motion on the macrolevel, it is assumed

that

u′′j = x′′kψkj(xi, t). (7)

Then we get

∂u′j
∂x′i

= ϕij ,
∂u′′j
∂x′′i

= ψij . (8)
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As before, we drop the indices i, j, k for the 1D case. Now the potential

energy function is taken

W =
1

2
(αu2

x + 2A1uxϕ+B1ϕ
2 + C1ϕ

2

x + 2A2uxψ +B2ψ
2 + C2ψ

2

x), (9)

where α and Ai, Bi, Ci (i = 1, 2) denote material constants. The governing

equations are then the following:

ρutt = αuxx +A1ϕx, (10)

I1ϕtt = C1ϕxx −A1ux −B1ϕ+A2ψx, (11)

I2ψtt = C2ψxx −A2ϕx −B2ψ, (12)

generalizing the system (4), (5). Here Ii (i = 1, 2) denote microinertia of

corresponding microstructures.

3. Hierarchies of waves

Whitham [7] has described certain complicated wave systems where a scale

parameter δ plays a crucial role. Depending on its limit values, δ → ∞ or

δ → 0, one or another wave operator governs the process asymptotically.

Thus, the full system includes a hierarchy of waves with certain stability

conditions [7]. Here we show that waves in microstructured materials ex-

hibit the hierarchical behaviour governed by a parameter which is the ratio

of the characteristic scale of a microstructure and the wave length of the

excitation.

First, the single scale. Let the scale of the microstructure be l and the

excitation characterised by its amplitude U0 and wavelength L. Then we

can introduce the following dimensionless variables and parameters

U = u/U0, X = x/L, T = c0t/L, δ = l2/L2, ǫ = U0/L, (13)

where c2
0

= α/ρ. We also suppose that I = ρl2I∗, C = l2C∗, where I∗

is dimensionless and C∗ has the dimension of stress. The difference of

densities is embedded in I∗. By means of series representation and the

slaving principle (Christiansen et al. [8]) we get finally

UTT = (1 − k)UXX + δI∗m (UTT − nUXX)XX , (14)

where k = c2A/c
2

0
, m = A2/B2, n = c2

1
/c2

0
, c2

1
= C/I, c2A = A2/ρB.

In case of multiple scales we have to introduce

δ1 = l2
1
/L2, δ2 = l2

2
/L2, (15)
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where l1 and l2 are the scales of microstructures ϕ and ψ, respectively. The

coefficients Ii, Ci, Ai are scaled as above. The same technique as for the

single scale yields the governing equation

UTT = (1 − k1)UXX + δ1I
∗

1
m1 (UTT − n1UXX)XX +

+ δ2I
2

2
m2p2 (UXX)XX − δ2

2
I∗
2
m2 (UTT − n2UXX)XXXX (16)

with k1 = A2

1
/αB1, m1 = A2

1
/B2

1
, n1 = C∗

1
/αI∗

1
, m2 = A2

1
(A∗

2
)2/B2

1
B2

2
,

p2 = B2/αI
∗

2
, n2 = C∗

2
/αI∗

2
.

4. Discussion

Equations (14) and (16) reflect clearly the hierarchical character of wave

propagation in microstructured materials as indicated by Whitham [7]

within general wave theory. Indeed, in case of eq (14):

(i) if δ is small, then the last two terms are negligible, if δ is large, then

the first two terms are negligible and the properties are governed by

properties of microstructure;

(ii) the wave speed in the compound material is affected by the mi-

crostructure (1 versus k = c2A/c
2

o) and only A = 0 (no coupling)

excludes this dependence;

(iii) the influence of the microstructure is, as expected, characterized by

dispersive terms; however, contrary to the idealized models, the dou-

ble dispersion (different terms UTTXX and UXXXX) is of importance.

The multi-scale model (16) actually prolongs the hierarchical properties

of the single-scale model (14). Indeed, the wave operators macro versus

micro 1 and micro 1 versus micro 2 are related by similar sign convention,

and the wave velocity in microstructure 1 is affected by the properties of

microstructure 2 in a similar way as the wave velocity in macrostructure

is affected by properties of microstructure 1. It is seen that higher-order

dispersive terms UXXXX , UXXXXXX , . . . coincide with those derived from

the lattice theory [9] but again mixed derivatives UTTXX , UTTXXXX , . . .

reflecting the role of microinertias also enter the equations.

The dispersion analysis [6] shows explicitly how the dispersion curves

tend asymptotically from one velocity (macrostructure) to another (mi-

crostructure). Although the eqs (14) and (16) are asymptotical, the cor-

responding dispersion curves are close to the exact ones derived from the

system (4), (5) and (10), (11), (12), respectively.



September 13, 2005 14:41 Proceedings Trim Size: 9in x 6in Deformatwaves

6

In case of nonlinear waves, the potential energy W should include also

the cubic terms. Such problems are discussed in [10, 11]. The balance

of nonlinear and dispersive effects in microstructured solids may lead to

the emergence of solitary waves. The nonlinearity at the macroscale to-

gether with dispersive effects results in a symmetric solitary wave while the

nonlinearity at the microscale [10] causes the emergence of an asymmetric

solitary wave [11]. The prospects of using special characteristics of waves in

microstructured materials briefly described above for Nondestructive Test-

ing (NDT) of materials are now extensively studied (cf also [11]).
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