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Abstract

Several mathematical models describing wave propagation in microstruc-
tured materials are comparatively analysed. The basic model is taken along
Mindlin (1964) and its asymptotic simplification (Engelbrecht and Pastrone,
2003). This asymptotic model describes (i) hierarchical character of wave mo-
tion; (ii) changes in wave speed; (iii) influence of dispersion. The comparative
analysis of lattice models (Maugin, 1999) and models for periodic structures
(Santosa and Symes, 1991) permits to clarify the nature of dispersive effects
including the role of inertia of the microstructure. In addition, the straight-
forward modelling can be used assigning all the physical parameters to every
volume element in a material. In this case, the numerical simulation (Bere-
zovski et al., 2001; 2003) by finite volume method supports the theoretical
considerations. Having the clear understanding about the physical effects and
the accuracy of models, the experiments can be outlined in order to verify the
theories and to determine the physical parameters.
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1 Introduction

The complex dynamic behaviour of microstructured materials at high speeds of de-
formation cannot be explained by the classical theory of continuous media. This
concerns granular materials, polycrystalline solids, ceramic composites, functionally
graded materials, alloys, damaged materials, etc. Such materials are characterized by
the existence of intrinsic space-scales in matter, like the lattice period, the size of a
crystallite or a grain, the distance between the microcracks, etc. that introduce the
scale-dependence into the governing equations. The theories of continua have actu-
ally foreseen the problems of irregularities of media long time ago (Cosserats, Voigt,
Eringen [1], Mindlin [2], et al). The elegant mathematical theories of continua with
voids, planar or ordinary spin, vector microstructure, Cosserat continuum, micromor-
phic continuum, etc. have been elaborated (see overviews in Eringen [3], Capriz [4]).
Clearly every irregularity (or inclusion) creates an additional stress field around itself,
consequently the most general approach in modelling should be the presentation of
all the conservation laws and constitutive equations taking such a stress field into
account. This approach is in detail described by Maugin [5] using the concept of
pseudo-momentum and material inhomogeneity force.

Beside the theory, experiments provide often only indirect data on physical ef-
fects related to the behaviour of materials with microstructure. We have to confess
that there is a gap between the theoretical models and experimental studies in this
field. The obvious reason for such a mismatch is that the macroscopic theories involve
physical parameters (or even functions) that cannot be determined directly from the
experiments. In addition, the influence of nonlinearities causes nonadditivity of phys-
ical effects. That is why all the physical effects must be carefully studied. The list
of structurally sensitive effects is long including complicated dispersion, emergence
of solitary waves, stress-induced phase-transition, kinetic localisation of damage, at-
tenuation characterized by asymmetric resonance curves, etc. The situation becomes
even more complicated when dealing with ferromagnetic effects, physical-chemical
reactions, molecular crystals and nanomaterials.

This way or another, the starting point in describing a certain microstructure is
to determine the scales. However, the scales are not uniquely determined although
many studies are going on. Generally speaking, a characteristic internal length of
microstructured materials is up to 1 µm (Sih [6]; Suresh and Mortensen [7]; Suquet
[8]; Engelbrecht and Braun [9]; Phillips [10]; etc. and references therein). Below that
limit come nanostructured materials with a characteristic length on the order of few
(typically 1-10) nm (Gleiter [11]). In this limit, the full attention should be paid to
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lattice models (Maugin [12]). If the attention is focused primarily to the formation of
physical substructures in materials under loading, then also the concept of mesome-
chanics is used (Sih, [6]), especially reflecting the features of plasticity and dislocation
theory. Another approach in mesoscopic modelling is the dynamics of microcracks
(Van et al. [13]) where the macroscopic-phenomenological and microscopic-statistical
descriptions are used. Notice also Guyer and Johnson [14] on mesoscopic elasticity.
In what follows below, we keep the notion of microstructure in the scale up to 1µm
that could be related to the size of a grain of a granular material, a crystallite of a
polycrystal or a molecule of a polymer (Mindlin [2]). One should also notice that in
terms of field theories, microstructure induces nonlocality (Eringen [3]; Engelbrecht
and Braun [9]).

A crucial point in modelling is to choose the theory. The first decision should be
made to choose between discrete and continuum models. In discrete approach the
volume elements of the matter are treated as pointmasses with a proposed topological
structure and the interaction between the discrete masses. This gives a good chance
to model crystal lattices with certain symmetries, vacancies, impurities, defects, walls,
etc. (Maugin [12]). The governing equations are then deduced following the Newton’s
law and the key problem is the modelling of forces between the pointmasses. Starting
from the Born-von Karman model for an one-dimensional atomic chain such models
have gained much attention (Maugin [12] and references therein).

¿From the viewpoint of continua, the straight-forward modelling of microstruc-
tured solids leads to assigning all the physical parameters to every volume element
dV in a solid introducing so the dependence on coordinates Xk. Then the governing
equations include space-dependent parameters and the most effective way to solve
the governing equations is the numerical integration. Another probably much more
effective way is to separate macro- and microstructure in continua. Then the con-
servation laws for both structures should be separately formulated (Eringen [1, 3];
Mindlin [2]) or the microstructural quantities are separately taken into account in
one set of conservation laws (Maugin [5]). Separating the macro- and microstructure
gives two possibilities: either to consider both structures inertial or to suppose the
microstructural quantities to behave noninertially. The first case is exactly following
Eringen [1, 3] and Mindlin [2], the second case leads to the formalism of internal
variables (Maugin [15], Maugin and Muschik [16]).

Both approaches - discrete and continuous - are closely related. One could, for
example, to replace the set of n differential equations with its continuum analogy
using the Taylor-series expansions. The most celebrated case is that of the Zabusky-
Kruskal approximation of the Fermi-Pasta-Ulam problem, producing the Korteweg-de
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Vries equation for the description of waves influenced by the quadratic nonlinearity
and the cubic dispersion.

One should also stress the importance of a special case of microstructure - periodic
(or laminated) structures (mostly composites). In this case, contrary to functionally
graded materials, the periodic layering is important. One of the possibilities to ac-
count for such layers is to analyse the frequency spectrum of time-harmonic Bloch ex-
pansion (Ziegler [17]). An important presentation in the form of a dispersive effective
medium is given by Santosa and Symes [18]). This approach is recently generalized
for linear (Fogarty [19]; Fogarty and LeVeque [20]) and nonlinear (LeVeque and Yong
[21]) cases. The dispersion relation is derived from Bloch expansion and then the
equation of motion is restored accounting for dispersive effects caused by periodicity.
The clear correspondence of this model to the Mindlin-type model (Engelbrecht and
Pastrone [22]) is obvious and explains the role of the scale parameter related to pe-
riodicity. In addition, the comparison of two models (see Fogarty and LeVeque [20];
Engelbrecht and Pastrone [22]) permits to analyse the effects of inertia prescribed to
microstructure.

Here we concentrate our attention to modeling dispersive effects due to the pres-
ence of microstructure in solids. Our further aim is to understand the possible balance
of nonlinear and dispersive effects in wave motion, however the dispersion analysis is
within the linear framework, that is why this part needs a special attention. Section 2
describes our basic model where for the sake of clarity one-dimensional (1D) approach
is used. In Section 3 other possible models are briefly presented. Section 4 includes
the comparative analysis and conclusions.

2 The basic model

Here we follow Mindlin [2] who has interpreted the microstructure ”as a molecule of
a polymer, a cryctallite of a polycrystal or a grain of a granular material”. This
microelement is taken as a deformable cell. Note that if this cell is rigid, then
the Cosserat model follows. The displacement u of a material particle in terms of
macrostructure is defined by its components ui ≡ xi − Xi, where xi, Xi(i = 1, 2, 3)
are the components of the spatial and material position vectors, respectively. Within
each material volume (particle) there is a microvolume and the microdisplacement
u′ is defined by its components u′

i ≡ x′
i − X ′

i, where the origin of the coordinates
x′

i moves with the displacement u. The displacement gradient assumed to be small.
This leads to the basic assumption of Mindlin [2] - ”the microdisplacement can be
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expressed as a sum of products of specified functions of x′
i and arbitrary functions of

xi and t”. The first approximation is then

u′
j = x′

k ϕkj (xi, t). (1)

The micro deformation is

∂u′
j

∂x′
i

= ∂′
i u′

j = ϕij. (2)

Clearly, beside macrostrain εij = 1
2
(∂iuj + ∂jui) in linear approximation, we need

also a relative deformation

γij = ∂iuj − ϕij, (3)

which is actually the difference between the macrodisplacement gradient and the
microdeformation. Mindlin [2] has also used a microdeformation gradient ∂i ϕjk, but
here we do not go so far.

According to [2, 4, 23], the fundamental balance laws for microstructured materials
can be formulated separately for macroscopic and microscopic scales. Here we use
the simplest 1D model and get (cf. [22, 24])

ρ utt = σx, (4)

I ϕtt = ηx + τ, (5)

where τ is the macrostress (Piola stress), η is the microstress and τ is the interactive
microforce; ρ is the macrodensity, I is the microinertia and indices x and t denote
the differentiation. As usual, we have (cf [22])

σ =
∂W

∂Ux

, η =
∂W

∂ϕx

, τ =
∂W

∂ϕ
, (6)

where W is the free energy. At this moment, we neglect the dissipation which was
discussed earlier in [24].

Now the simplest free energy function describing the influence of a microstructure
is a quadratic function

W =
1

2
α u2

x − A ϕ ux +
1

2
B ϕ2 +

1

2
C ϕ2

x, (7)
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with α, A, B, C - constants. The balance equations (15) are now specified as follows:

ρ utt = α uxx − A ϕx, (8)

I ϕtt = C ϕxx − A ux + B ϕ. (9)

For further analysis we introduce dimensionless variables and use the slaving prin-
ciple [25, 26] for eliminating ϕ. Omitting the details (for those see [22]), the final
governing equation in terms of nondimensional displacement U reads:

UTT =

(
1− A2

αB

)
UXX + δ

A2

B2

(
I∗UTT −

C∗

α
UXX

)
XX

. (10)

Here δ = l2 L−2, l is the scale of the microstructure and L, for example, is the
wavelength of the excitation. The quantities I∗ and C∗ are determined by I = ρ l2 I∗

and C = l2 C∗.
Equation (10) is the sought ”skeleton” of the wave equation for microstructured

solids.

3 Specific models

3.1 Lattice theory

There has been a wide interest to lattice theory and corresponding models (see [12]
and the references therein). The simplest 1D model is that of Born-von Karman
which describes the longitudinal wave in an infinite elastic chain of particles, placed
at the equal distance a at equilibrium and linked by identical springs of stiffness k.
The longitudinal motion in such a chain is described by the equations of motion

m
d2Un

dt2
= k(ξn+1 − ξn), (11)

ξn = Un − Un−1, (12)

where m is the mass and Un - the displacement. In continuum limit, Un is derived
into the Taylor-series and then the standard wave equation

Utt − c2
0 Uxx = 0, c2

0 =
ka2

m
(13)
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follows. If, however, to replace eqs. (11) by equations of more general type

m
d2Un

dt2
= − ∂φ

∂Un

, (14)

where φ is the potential then the situation may be more complicated. Considering
more terms in Taylor expansion (for details see [12]), the continuum limit gives

Utt − c2
0 Uxx −

1

12
c2
0 a2 Uxxxx = 0 (15)

in the linear version. It has been shown [12] that even higher-order terms (Uxxxxxx)
can be taken into account.

3.2 Periodic structures

Periodic microstructure is quite a typical case of composite and functionally graded
materials. A suitable model may be constructed by homogenization of periodic media
that approximates well the dispersive nature of waves [18]. Homogenization is possible
when the shortest wavelength of the initial excitation is several times larger than the
of the microstructure and the time scale is large. Santosa and Symes [18] have used
the Bloch wave expansion for that, i.e. the solution of an eigenvalue problem is used.
The medium with cell size 2πp is considered and ε = p/λ << 1, where λ is the
lower limit of the Fourier components of the initial disturbance. Then the dispersion
relation may be constructed (for details see [18]):

ω(k) = Ω1 k +
1

6
ε2 Ω3 k3 + ..., (16)

where ω and k are the frequency and the wavenumber, respectively. For a two-
component structure with densities ρ1 and ρ2, and moduli µ1 and µ2, one has the
velocities c2

1 = µ1/ρ1, c2 = µ2/ρ2 and impedances z1 = (ρ1 µ1)
1/2, z2 = (ρ2 µ2)

1/2.
Then

Ω2
1 =

(θ/µ1 + (1− θ)/µ2)
−1

(θ ρ1 + (1− θ) ρ2)
, (17)

Ω3 = Ω3 (zi, ci, θ, Ω1), (18)

where θ denotes the volume fraction of the mixture. The wave equation, correspond-
ing to (16) is:

Utt = Ω2
1 Uxx +

1

3
Ω1 Ω3 p2 uxxxx. (19)

¿From (17) follows that Ω1 < c1 and it can be shown [18] that Ω3 < 0.
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3.3 Periodic structures with microinertia

A special case of periodic structures is considered by Wang and Sun [27], who have
used a continuum model for macromotion involving also micro-inertia terms in en-
ergy densites. Assuming the linear approximate local displacement field, the macro
displacement equation of motion yields

Utt =
L

ρ
Uxx +

H

ρ
Uxxtt, (20)

where

L =
µ1 δ1 δ2

δ2 f1 + γ δ1 f2

, (21)

H =
1

6

f1f2(γ δ1 − δ2)(p f2
1 − f 2

2 )

(δ2 f1 + γ δ1 − f2)(p f1 − f2)
(d1 + d2)

2 ρ2, (22)

ρ = ρ1 f1 + ρ2 f2. (23)

Here ρ1, ρ2 are the densites, µ1, µ2 are the elastic moduli of layers with widths
d1 d2, respectively. Further, γ = µ1/µ2, p = ρ1/ρ2 and σi = 2(1−νi)/(1−2 νi), fi =
di/(d1 − d2) for i = 1, 2 while ν1 ν2 are the Poisson’s ratios.

4 Discussion

The basic model (10) for waves in microstructured materials reflects the following
physical phenomena:

(i) it describes the wave hierarchy in Whitham’s sense [28] including two wave opera-
tors - one for macrostructure, another for microstructure; if the scale parameter
δ is small then the last two terms. i.e. influence of microstructure can be
neglected; if δ is large then on contrary, the influence of first two terms, i.e. in-
fluence of macrostructure is weaker and the process is governed by the properties
of the microstructure;

(ii) the wave speed in the compound material is affected by the microstructure (1
versus A α−1 B−1) and clearly only A = 0 excludes this dependence.
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(iii) the influence of the microstructure on wave motion is, as expected, characterized
by dispersive terms; however, the double dispersion occurs due to the different
higher order terms (UTTXX and UXXXX).

The other models described in Section 3 are based on weaker assumptions. In
order to compare them we list below all the models (scaling see Sect. 2, 3):

(i) continua:

UTT = c2 UXX + δ (β1 UTT − γ UXX)XX ; (24)

(ii) periodic structures

UTT = Ω2
1 UXX +

1

6
Ω1 Ω3 p2 UXXXX ; (25)

(iii) lattice theory

UTT = c2
0 UXX −

1

12
c2
0 a2 UXXXX + b UXXXXXX + ... (26)

(iv) continua with microinertia

UTT = c2 UXX + h UTTXX . (27)

First, the wave speed. Clearly all the models, except lattice theory (26) take the
influence of the microstructure into account while the speed is definitely different
from c0 - the wave speed in the macromaterial.

Second, the dispersion. Clearly the basic model (24) takes into account two phe-
nomena: inertia of the microstructure (term UTTXX and velocity in microstructure
(term UXXXX). Other models are in this sense less general, paying the attention only
to one or another phenomenon. The further analysis should show the accuracy of
models (25), (26), and (27). Clearly the sign of UXXXX terms coincides in all the
models where it is kept. The double dispersion is also important for describing strain
waves in rods [29].

Third, numerical simulation. We have used the finite-volume method [30, 31] that
permits to assign all the physical parameters to every volume element in a material.

The wave propagation in metal-ceramic composites is considered. The elastic
properties of the metal matrix and ceramic reinforcement are the following [32]: Young
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modulus 70 GPa and 420 GPa, Poisson ratio 0.3 and 0.17, and density 2800 kg/m3

and 3100 kg/m3, respectively. Volume fraction f = Vc/V , where Vc is the volume
of ceramic particles and V is the total volume is varied. A Gaussian-type excitation
was generated at the left boundary of a 2D specimen between 40 and 160 space steps
(see Fig. 1)

σ0(0, t) = σ0 sin2(π(t− 2tr)/2tr), (28)

where σ0 = 125 MPa and tr = 10. The initial wave length corresponds to 20 space
steps. In Fig. 1 the wavefronts in pure ceramics (Fig. 1a) and in pure metal (Fig.
1b) are shown. The differences in wave speeds are obvious. In case of a metal-ceramic
composite, as shown in Fig. 2 for various volume fractions (left column in Fig. 2),
the wave speed clearly depends on the density distribution (cf right column in Fig.
2). This supports all those analytical models that foresee such changes (models (24),
(25), (27)).

Another example is a case of functionally graded materials [31, 32]. Again a 2D
problem is considered, the material is assumed graded along the vertical direction (see
Fig. 3) and the excitation (28) is generated at the upper surface. Four possible forms
of volume fraction are considered [32]: a) the specimen is composed as a single metal-
matrix composite with fixed volume fraction f ; b) a layered structure has different
volume fractions for each layer; c) the volume fraction varies following the power law

f(z) = f0(z/h)b, (29)

where z is the vertical coordinate, h is the thickness of the specimen, and b is the
parameter defining the variation of particle distribution and equals here 0.25 - high
f front; e) the same with b = 4 (low f front). The material properties are same as
above for the example shown in Figs. 1, 2. Figure 4 shows the normal stress along
the centerline of the specimen for the excitation (28) with tr = 0.75 µs. Again, the
differences in wave speeds are visible.

The numerical analysis of dispersive effects is in the progress to be compared with
solutions of model equations.

The nonlinear effects at macroscale and microscale (cf. [22, 24]) need clearly
attention only with dispersive effects taken into account simultaneously. This analysis
is also in progress.
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Figure Captions

Figure 1. Wave fronts at t = 180: a)pure ceramics; b)pure metal.

Figure 2. Density distribution (left column) and wavefronts at t = 180 (right col-
umn): a)volume fraction f = 0.75; b)f = 0.50; c)f = 0.25.

Figure 3. Density distribution in a metal-ceramic composite: a)uniform; b)layered;
c)graded (high volume fraction front); d)graded (low volume fraction front).

Figure 4. Normal stress distribution along the centerline of a metal-ceramic composite
at 3µs (see legend in Fig.3).
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