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Abstract. Dispersive wave propagation in solids with microstructure is discussed in
the small-strain approximation and in the one-dimensional setting. It is shown that
the generalizations of wave equation based on continualizations of discrete systems
as well as on homogenization methods can be recovered in the framework of the
internal variable theory in the case of non-dissipative processes.

1 Introduction

It is well known that the propagation of linear elastic waves in a homogeneous
medium is governed by the wave equation, which in the one-dimensional case reads

utt = c2uxx, (1)

where u is the displacement, c is the elastic wave speed.
If the medium is non-homogeneous, i.e. there is a certain microstructure, the

wave propagation is accompanied by wave dispersion. Historically, the dispersion
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effects were also investigated in the non-linear framework (cf. [3, 9], where many
possible generalizations are outlined).

In the linear case, the simplest generalization of the wave equation was obtained
by the homogenization of a periodically inhomogeneous medium [6, 17]

utt = c2uxx + c2l2A22uxxxx, (2)

where l is an internal length parameter and A22 is a dimensionless coefficient.
Later on the same model was derived by a standard continualization procedure

of the equations of motion for a system of discrete particles [16, 1].
Another modification of the wave equation was pointed out in [9] again on the

basis of the continualization

utt = c2uxx + l2A21uxxtt , (3)

and it was repeated later by means of homogenization methods [19, 5].
The combination of the two dispersion models gives (see also derivation in [4])

utt = c2uxx + l2A21uxxtt + c2l2A22uxxxx. (4)

This model was also derived from a discrete model by means a non-standard con-
tinualization procedure [13].

Recently, a ”causal” model for dispersive wave propagation is proposed [14]

utt = c2uxx + l2A21uxxtt + c2l2A22uxxxx−
l2

c2 A23utttt , (5)

in order to avoid an infinite speed of propagation in the absence of higher-order time
derivatives. The most general one-dimensional model based on the Mindlin theory
of microstructure [15]

utt =
(
c2− c2

A

)
uxx− p2 (utt − c2 uxx

)
tt + p2 c2

1

(
utt − c2 uxx

)
xx , (6)

was discussed in [2]. Here cA,c1 and p are coefficients discussed in Section 4. It is
clear that the last model includes all the previous ones.

Another approach to the description of microstructural effects is provided by the
internal variable theory [12]. In this paper, we explain how the internal variable
approach is generalized to the description of non-dissipative processes of linear dis-
persive wave propagation.

The paper is organized as follows. In the next Section we remind the reader of
the canonical formulation of thermomechanics, which is applied even when no ther-
mal effects are included. Then we present the internal variable theory specified to
the non-dissipative processes. First we consider the case of one weakly non-local
internal variable in the Section 3. In Section 4 we introduce an additional internal
variable, which is necessary to obtain higher-order time derivatives.
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2 Canonical Thermomechanics

The existence of the microstructure generally means that the medium is inhomoge-
neous. Therefore, we apply the canonical form of balance equations [8], where the
inhomogeneities are treated in the most consistent way.

In the case of the thermoelastic conductors of heat, one-dimensional motion is
governed by local balance laws for linear momentum and energy (no body forces)

∂
∂ t

(ρ0v)− ∂σ
∂x

= 0, (7)

∂
∂ t

(ρ0v2/2 + E)− ∂
∂x

(σv−Q) = 0, (8)

and by the second law of thermodynamics

∂S
∂ t

+
∂
∂x

(Q/θ + K)≥ 0. (9)

Here t is time, ρ0 is the matter density, v = ut is the physical velocity, σ is the
Cauchy stress, E is the internal energy per unit volume, S is the entropy per unit
volume, θ is temperature, Q is the material heat flux, and the ”extra entropy flux” K
vanishes in most cases, but this is not a basic requirement.

Canonical form of the energy conservation. The canonical energy equation is
obtained by introducing the free energy per unit volume W := E − Sθ and taking
into account the balance of linear momentum (7)

∂ (Sθ )
∂ t

+
∂Q
∂x

= hint , hint := σε̇− ∂W
∂ t

, (10)

where the right-hand side of eqn. (10)1 is formally an internal heat source [11].
In the case of non-zero extra entropy flux, the second law of thermodynamics

gives

−
(
∂W
∂ t

+ S
∂θ
∂ t

)
+σε̇+

∂
∂x

(θK)− (Q/θ + K)
∂θ
∂x
≥ 0, (11)

where ε = ux is the one-dimensional strain measure. The dissipation inequality (11)
can be also represented in the form

Sθ̇ +(Q/θ + K)
∂θ
∂x
≤ hint +

∂
∂x

(θK). (12)

Canonical (material) momentum conservation. Multiplying eqn. (7) by ux we
then check that eqn. (7) yields the following material balance of momentum (cf.
[8]) ∂P

∂ t
− ∂b
∂x

= f int + f inh, (13)
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where the material momentum P, the material Eshelby stress b, the material inho-
mogeneity force f inh, and the material internal force f int are defined by [8]

P :=−ρ0utux, b :=−
(
ρ0v2/2−W +σε

)
, (14)

f inh :=
(

1
2

v2
)
∂ρ0

∂x
− ∂W

∂x

∣
∣
∣∣
expl

, f int := σuxx−
∂W
∂x

∣
∣
∣∣
impl

. (15)

Here the subscript notations expl and impl mean, respectively, the derivative keeping
the fields fixed (and thus extracting the explicit dependence on x), and taking the
derivative only through the fields present in the function. The canonical equations
for energy and momentum (10) and (13) are the most general expressions we can
write down without a postulate of the full dependency of the free energy W [11].

3 Single Internal Variable

Up to now the microstructure was not specified. It can be prescribed by the specifi-
cation of location, shape, and properties of inclusions, as, for example, in the case of
periodic structures. If the microstructure is irregular, such a prescription is impos-
sible. In the framework of the phenomenological continuum theory it is assumed
that the influence of the microstructure on the overall macroscopic behavior can be
taken into account by the introduction of an internal variable ϕ which we associate
with the integral distributed effect of the microstructure. Then the free energy W is
specified as the general sufficiently regular function of the strain, temperature, the
internal variable, and its space gradient [11]

W = W (ux,θ ,ϕ ,ϕx). (16)

The equations of state (in a sense, mere definition of the partial derivatives of the
free energy) are given by

σ =
∂W
∂ux

, S =−∂W
∂θ

, τ :=−∂W
∂ϕ

η :=− ∂W
∂ϕx

. (17)

Following the scheme originally developed in [7] for materials with diffusive
dissipative processes described by means of internal variables of state, we chose the
non-zero extra entropy flux K in the form

K =−θ−1ηϕ̇ . (18)

In this case, the ”internal” material force and heat source each split in two terms
according to

f int = f th + f̃ intr, hint = hth + h̃intr, (19)

where the thermal sources and the ”intrinsic” sources are given by [11]

f th := S
∂
∂x

θ , hth := Sθ̇ , f̃ intr := τ̃
∂ϕ
∂x

, h̃intr := τ̃ ϕ̇ , (20)
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so that we have the following consistent canonical equations of momentum and
energy:

∂P
∂ t
− ∂ b̃
∂x

= f th + f̃ intr,
∂ (Sθ )
∂ t

+
∂ Q̃
∂x

= hth + h̃intr, (21)

with dissipation

Φ = h̃intr−
(

Q−ηϕ̇
θ

)
∂θ
∂x
≥ 0, (22)

where we have introduced the new definitions [11]:

τ̃ ≡− δW
δϕ

:=−
(
∂W
∂ϕ

− ∂
∂x

(
∂W
∂ϕx

))
= τ−ηx,

b̃ =− (ρ0v2/2−W +σux−ηϕx).
(23)

In this formulation the Eshelby stress b̃ complies with its role of grasping all effects
presenting gradients since the gradient of ϕ plays a role parallel to that of the defor-
mation gradient ux. The dissipation inequality (22) is automatically satisfied in the
isothermal case if τ̃ = kϕ̇ with k ≥ 0 since

Φ = kϕ̇2 ≥ 0. (24)

The fully non-dissipative case corresponds to k = 0.
The simplest free energy dependence is a quadratic function [2]

W =
ρ0c2

2
u2

x + Aϕux +
1
2

Bϕ2 +
1
2

Cϕ2
x . (25)

Accordingly, the stress components (17)3,4 are determined as follows:

σ =
∂W
∂ux

= ρ0c2ux + Aϕ , η =− ∂W
∂ϕx

=−Cϕx, (26)

and τ coincides with the interactive internal force

τ =−∂W
∂ϕ

=−Aux−Bϕ . (27)

Consequently, the balance of linear momentum is rewritten as

utt = c2uxx +
A
ρ0
ϕx, (28)

and the evolution equation for the internal variable in the fully non-dissipative case
(with k = 0) reduces to

Cϕxx−Aux−Bϕ = 0. (29)

Evaluating the first space derivative of the internal variable from the last equation

ϕx =
C
B
ϕxxx−

A
B

uxx, (30)

and its third space derivative from eqn. (28)
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A
ρ0
ϕxxx =

(
utt − c2uxx

)
xx , (31)

we will have, inserting the results into the balance of linear momentum

utt = c2uxx +
C
B

(
utt − c2uxx

)
xx−

A2

ρ0B
uxx. (32)

It is clear that the obtained equation covers the first three models of the dispersive
wave propagation mentioned in the Introduction. Equation (32) is the most general
model for the dispersive wave motion provided by the standard internal variable
theory. To go further, we need to introduce one more internal variable following
[18].

4 Dual Internal Variables

Now we suppose that the free energy depends on the internal variablesϕ ,ψ and their
space derivatives W = W (ux,ϕ ,ϕx,ψ ,ψx). Then the constitutive equations follow

σ :=
∂W
∂ux

, τ :=−∂W
∂ϕ

, η :=− ∂W
∂ϕx

, ξ :=−∂W
∂ψ

, ζ :=− ∂W
∂ψx

. (33)

We include into consideration the non-zero extra entropy flux similarly to the case
of one internal variable

K =−θ−1ηϕ̇−θ−1ζ ξ̇ . (34)

The generalization of the internal variable theory to the case of two internal variables
is straightforward. The canonical equations of momentum and energy keep their
form with appropriate modifications. It can be checked that in the considered case
the intrinsic source terms are determined as follows

f̃ intr := (τ −ηx)ϕx +(ξ − ζx)ψx, h̃intr := (τ−ηx)ϕ̇ +(ξ − ζx)ψ̇ . (35)

The latter means that the dissipation inequality in the isothermal case reduces to

h̃intr = (τ−ηx)ϕ̇ +(ξ − ζx)ψ̇ ≥ 0. (36)

It is easy to see that in the non-dissipative case (h̃intr = 0) the dissipation inequality
(36) can by satisfied by the choice

ϕ̇ = L(ξ − ζx), ψ̇ =−L(τ−ηx), (37)

where L is a coefficient. The latter two evolution equations express the duality be-
tween them: one internal variable is driven by another one and vice versa.

Keeping a quadratic function as the free energy dependence

W =
ρ0c2

2
u2

x + Aϕux +
1
2

Bϕ2 +
1
2

Cϕ2
x +

1
2

Dψ2, (38)
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we include for simplicity only the contribution of the second internal variable itself.
In this case, the stress components are the same as previously

σ =
∂W
∂ux

= ρ0c2ux + Aϕ , η =− ∂W
∂ϕx

=−Cϕx, ζ =− ∂W
∂ψx

= 0, (39)

as well as the interactive internal force τ

τ =−∂W
∂ϕ

=−Aux−Bϕ . (40)

The only new term is

ξ =−∂W
∂ψ

=−Dψ . (41)

It follows from eqns. (37), (39)3, and (41) that

ϕ̇ =−LDψ , (42)

i.e., the dual internal variable ψ is proportional to the time derivative of the primary
internal variable ϕ̇ in this particular case. It follows immediately from eqn. (42) that
the evolution equation for the dual internal variable (37)2 can be rewritten in terms
of the primary one as the hyperbolic equation

ϕ̈ = L2D(τ−ηx). (43)

As a result, we can represent the equations of motion in the form, which includes
only primary internal variable,

utt = c2uxx +
A
ρ0
ϕx, Iϕtt = Cϕxx−Aux−Bϕ , (44)

where I = 1/(L2D) is an internal inertia measure.
In terms of stresses introduced by eqn. (33), the same system of equations is

represented as

ρ0
∂ 2u
∂ t2 =

∂σ
∂x

, I
∂ 2ϕ
∂ t2 =−∂η

∂x
+ τ. (45)

It is worth to note that the same equations are derived in [4] based on different
considerations.

Again, we can determine the first space derivative of the internal variable from
eqn. (44)2

ϕx =− I
B
ϕttx +

C
B
ϕxxx−

A
B

uxx, (46)

and its third derivatives from eqn. (44)1

A
ρ0
ϕxxx =

(
utt − c2uxx

)
xx ,

A
ρ0
ϕttx =

(
utt − c2uxx

)
tt . (47)

Inserting the results into the balance of linear momentum (44)1, we obtain a more
general equation
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utt = c2uxx +
C
B

(
utt − c2uxx

)
xx−

I
B

(
utt − c2uxx

)
tt −

A2

ρ0B
uxx. (48)

It is easy to see, identifying A2 = c2
ABρ0,C = Ic2

1,B = I/p2, that the obtained equa-
tion is nothing else but the general model of the dispersive wave propagation (6).

Acknowledgements. Support of the Estonian Science Foundation (A.B. and J.E.) is grate-
fully acknowledged.

References

1. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient
models – linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

2. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured ma-
terials and dispersion. Phil. Mag. 85, 4127–4141 (2005)

3. Engelbrecht, J., Braun, M.: Nonlinear waves in nonlocal media. Appl. Mech. Rev. 51,
475–488 (1998)

4. Engelbrecht, J., Cermelli, P., Pastrone, F.: Wave hierarchy in microstructured solids. In:
Maugin, G.A. (ed.) Geometry, Continua and Microstructure, pp. 99–111. Hermann Publ.,
Paris (1999)

5. Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in hetero-
geneous media: one-dimensional case. Int. J. Numer. Meth. Engng. 54, 331–346 (2002)

6. Kunin, I.A.: Theory of Microstructured Elastic Media, Nauka, Moscow (1975) (in Rus-
sian)

7. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermo-
dyn. 15, 173–192 (1990)

8. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London
(1993)

9. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford
(1999)

10. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechan-
ics. J. Elasticity 71, 81–103 (2003)

11. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak
nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)

12. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. J. Non-Equilib.
Thermodyn. 19, 217–249 (1994)

13. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity
models derived from a discrete microstructure–part 1: generic formulation. Eur. J. Mech.
A/Solids 21, 555–572 (2002)

14. Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vibr. 297, 727–
742 (2006)

15. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78
(1964)
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