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INTERNAL VARIABLES AND MICROSTRUCTURED MATERIALS
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Summary A unified framework for both dissipative and non-dissipative processes based on the canonical thermomechanics on the
material manifold including weakly non-local dual internal variables enriched by an extra entropy flux is proposed for the use of
internal variables in the description of the microstructure influence on the dynamic behavior of materials.

INTRODUCTION

Internal variables are used for the description of microstructure in continuous media for decades. However, their usage
is constrained by dissipative processes. The non-dissipative processes are associated with internal degrees of freedom.
Recent developments in the internal variable theory allow us to propose a unified framework for the description of both
dissipative and non-dissipative processes under one umbrella and to clarify the structure of generalized continuum theories
on the basis of the canonical thermomechanics on the material manifold including weakly non-local dual internal variables
enriched by an extra entropy flux. This formalism includes both dissipative reaction-diffusion equations and second grade
and second gradient theories.

CANONICAL THERMOMECHANICS WITH INTERNAL VARIABLES

Let α the internal variable of state whose tensorial nature is not specified. Then the free energy per unit volume W
is specified as the general sufficiently regular function of the direct-motion deformation gradient F, temperature θ, the
internal variable, and its space gradient W = W (F, θ, α,∇Rα). The equations of state determine the first Piola-Kirchhoff
stress tensor T, the entropy per unit volume S, and the quantities A and A corresponding to the internal variable

T =
∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
. (1)

For materials with diffusive dissipative processes described by means of internal variables of state it is proposed [1] that
there exists a non-zero extra entropy flux K = −θ−1Aα̇. It is shown that the canonical equations of momentum and
energy read (no body force) [2]

dP
dt

−∇R · b̃ = f th + f̃ intr,
∂(Sθ)

∂t
+∇R · Q̃ = hth + h̃intr, (2)

where we have set the material momentum P, the material Eshelby stress b̃,

P := −ρ0v · F, b̃ = −(L1R + T.F−A. (∇Rα)T ), L = K −W, (3)

the material thermal force f th, the material intrinsic force f intr, and the corresponding thermal sources

f th := S∇Rθ, hth := Sθ̇, h̃intr := Ãα̇, f̃ intr := Ã∇Rα. (4)

Here t is time, ρ0(X) is the matter density in the reference configuration, p = ρ0v is the linear momentum, v is the
physical velocity, K = 1

2ρ0v2 is the kinetic energy per unit volume in the reference configuration, Q is the material heat
flux, and the new definitions are introduced

Ã = A−∇R ·A, S̃ = θ−1Q̃, Q̃ = Q−Aα̇, (5)

In this formulation the Eshelby stress complies with its role of grasping all effects presenting gradients since the material
gradient of α plays a role parallel to that of the deformation gradient F. The canonical momentum and energy equations
(2) are projections of balance laws of linear momentum and energy onto the material manifold. The second law of
thermodynamics is exploited in the form of the dissipation inequality

Φ = h̃intr − S̃∇Rθ ≥ 0. (6)

Examples of evolution equations for internal variables
The simplest way to satisfy the dissipation inequality (6) in the absence of thermal effects is the choice of the evolution
equation for the internal variable α in the form Ã = kα̇ with k ≥ 0 since in this case Φ = kα̇2 ≥ 0. If the free energy
depends on the internal variable as

W = W (..., α,∇Rα) = f(..., α) +
1
2
D(∇α)2, (7)



we come to the Ginzburg-Landau (Allen-Cahn) equation or the Cahn-Hilliard equation

kα̇ = D∇2α− f ′(α), kα̇ = ∇2(D∇2α− f ′(α)). (8)

depending of the choice Ã = kα̇ or ∇2Ã = kα̇, respectively, for the same free energy dependence.

DUAL INTERNAL VARIABLES

The generalization of the internal variable theory to the case of two internal variables is straightforward. Let us consider
the free energy W as function of two internal variables, α and β, whose tensorial nature is still not specified

W = W (F, θ, α,∇Rα, β,∇Rβ). (9)

In this case the equations of state are given by

T =
∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
, B := −∂W

∂β
, B := − ∂W

∂∇Rβ
. (10)

We include into consideration the non-zero extra entropy flux according to the case of one internal variable K =
−θ−1Aα̇− θ−1Bβ̇. The canonical equations of momentum and energy keep their form and the dissipation inequality

h̃intr := (A−∇R ·A)α̇ + (B −∇R ·B)β̇ ≥ 0 (11)

can by satisfied in the non-dissipative case by the choice

α̇ = l(B −∇R ·B), β̇ = −l(A−∇R ·A). (12)

In this case, the evolution of one internal variable is driven by another one that means the duality between the internal
variables. Assuming a quadratic dependence of the free energy function with respect to the internal variable β, i. e.
B = −β and B = 0, we come to α̇ = −lβ, and then to an evolution equation for the internal variable α with its
second-order time derivative

α̈ = l2(A−∇R ·A). (13)

Example of evolution equations for dual internal variables
If we consider the microdeformation tensor ψij as an internal variable α, then the microdeformation gradient κijk plays
the role of the gradient of the internal variable α, and we can introduce a dual internal variable β as above. In the
non-dissipative case, the evolution equation for the internal variable α can be symbolically written as

α̈ = l2
(
−∂W

∂α
+∇ · ∂W

∂(∇α)

)
. (14)

In terms of components of the microdeformation tensor ψij the latter evolution equation obtains the form

(
l2

)−1

ji
ψ̈ik =

(
− ∂W

∂ψjk
+∇ · ∂W

∂(∇ψjk)

)
= ∂iµijk − τ ′jk, (15)

where µijk is the double stress and τ ′jk is a modified Cauchy stress. As one can see, the evolution equation for the
microdeformation (15) is similar to that in the linear Mindlin theory of microstructure [3].

CONCLUSIONS

As it is demonstrated, the Mindlin micromorphic theory can be represented in terms of dual internal variables in a natural
way in the framework of canonical thermomechanics [2]. The micromorphic theory is a very general one and encompass
both Cosserat and second gradient theories [4].
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