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Nonlinear Acoustic Nondestructive Evaluation (NDE):
Qualitative and Quantitative Effects

Jüri Engelbrecht, Arvi Ravasoo, and Jaan Janno

Center for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Tallinn, Estonia

The recent results in constructing the mathematical basis of nonlinear acoustic techniques for nondestructive evaluation (NDE) of inhomogeneous
materials are discussed. These include microstructural materials and materials with weakly or strongly changing properties of specimens (structural
elements) under inhomogeneous prestress. The idea is to extract additional information from nonlinear and dispersive effects of wave propagation.
Novel concepts are introduced: (i) the analysis of dispersive effects; (ii) the analysis of two counter-propagating nonlinear waves.

Keywords Dispersion; Inhomogeneity; Microstructure; NDE; Nonlinearity.

1. Introduction

Contemporary materials are usually characterized by their
complex structure at various scales. For short, such materials
are referred to as “microstructured materials.” These are
polycrystalline solids, ceramic composites, functionally
graded materials, granular materials, etc. In order to derive
mathematical models describing wave propagation in such
materials, several theories are proposed by Eringen [1],
Mindlin [2], and others, based on continuum theories.
The overview of functionally graded materials is given
by Suresh and Mortensen [3]. The microstructure brings
along dispersive effects in the wave propagation. If we
separate macro- and microcontinua in continua [1, 2] then
the mathematical models explicitly show the influence of
the dispersion due to microstructure. In case the dispersion
is balanced by nonlinear effects, solitary waves may
emerge. This phenomenon has been analyzed theoretically
[4, 5] and also shown in experiments [6]. The analysis
shows how phase velocities are dependent on properties
of microstructure and how the solitary waves change
their shapes in microstructured materials. On the other
hand, inhomogeneities of material properties may be
described by models with smooth functions describing the
averaged changes of density or elastic modulus [7]. Again,
if nonlinearities are taken into account, then the wave
interaction may change considerably by characteristics of
wave fields. In what follows, we give a short overview how
dispersive and nonlinear effects can be used for solving the
inverse problems, i.e., for nondestructive evaluation (NDE).

2. Parameters of microstructured materials

2.1. Model Description
There are several models of microstructure, but always

the scale-dependence is taken into account [1]. In this
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article, we use the Mindlin model [2], where the material is
interpreted as an elastic continuum including microstructure
that could be “as a molecule of a polymer, a crystallite
of a polycrystal, or a grain of a granular material”. This
microelement is taken as a deformable cell.
Formalizing one-dimensional deformation processes both

in macro- and microscale, one obtains a coupled system of
equations of motion that in dimensionless variables reads
[8]

vtt = a0vxx +
�

2

(
v2
)
xx
+ ��xx�

(2.1)
��tt = �a1�xx + �3/2��x�xx − �v − ��	

Here, v is the macrodeformation, � is the microdeformation,
� is a geometric parameter related to the scale of the
microstructure, and the coefficients a0� a1� �� �� �� �� � are
related to the physical properties of the material.
This system can be simplified by approximation. For

instance, using slaving principle, the microdeformation �
is eliminated. The result is a Boussinesq-type equation of
motion [5, 8]

vtt = bvxx +
�

2

(
v2
)
xx
+ � 
�1vtt − �1vxx�xx

− �3/2�1

2

(
v2x
)
xxx

� (2.2)

where b = a0 − ��

�
, �1 = ��

�2
, �1 = ��a1

�2
, �1 = ���2

�2
.

2.2. Using Linear Waves in NDE
We start by NDE of physical parameters a0� a1� �� �, and

� of the microstructured material in the linear case when
� = � = 0	 Then the Fourier transform of the general
solution of the basic system (2.1) has the form [9]

v̂ 
x� �� = A+ 
�� eik
��x + A− 
�� e−ik
��x�
(2.3)

�̂ 
x� �� = Am
+ 
�� eik
��x + Am

− 
�� e−ik
��x�
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NONLINEAR ACOUSTIC NDE 213

where Am
± 
�� = A± 
��

[
�2 − a0 
k 
���

2
]
�−1 
k 
���−2,

and the addends with A+ and A− represent the wave packets
propagating to the right and left, respectively. The involved
dispersion function

k 
�� = �√√√√√ 1
2a0a1


a0 + a1 −

a0�−��

��2
+
√(

a0 − a1 −
a0�−��

��2

)2

+ 4a1��
��2




is the real solution of the dispersion equation �4 + 1�
2k2 +

2k
4 + 3�

2 + 4k
2 = 0, where

1 = − 
a0 + a1� � 2 = a0a1�
(2.4)

3 = −�

�
� 4 =

a0� − ��

�
	

Let the NDE data consist of measurements of the
macrodeformation v in a fixed point of the medium x = x1
over the time t. Then we can use the spectrum of v 
x1� t�
and the reconstruction of the unknown parameters is reduced
to the following algebraic procedures:

1) Extracting the function k 
�� from v̂
x1� �� and
computing pairs(
�j� kj

)
� j = 1� 	 	 	 �M�

2) Constructing the linear system

1 · �2
j k

2
j + 2 · k4j + 3 · �2

j + 4 · k2j = −�4
j �

j = 1� 	 	 	 �M (2.5)

on the basis of dispersion equation and solving it for
1� 	 	 	 � 4;

3) Solving (2.4) for a0� a1� �, and ��.

In case of normal dispersion (formally, it occurs when
the parameters satisfy the inequality a0� − a1� − �� > 0
(details see [9]) the solution of (2.4) has the form

a0 =
−1 +

√
2
1 − 42

2
� a1 =

−1 −
√
2
1 − 42

2
�

(2.6)
� = −�3� �� = a0� − �4	

We remark that it is not possible to separate the parameters
� and � from measurements in macrolevel, because they
appear in the product form in all formulas.
The steps 2 and 3 of the presented algorithm are

rather straightforward. Step 1 requires more explanation.
The functions A+ and A− in the formula of v̂ 
x1� ��
can be determined by boundary conditions or additional
measurements. We consider the simplest physical model
when the macrodeformation is specified on the plane x = 0,

i.e., v 
0� t� = g
t�, the packet contains only the waves
propagating to the right and the measurement point x1 > 0.
Then

v̂ 
x1� �� = ĝ 
�� eik
��x1 	 (2.7)

We have to solve (2.7) for k 
��. This is a bit complicated
due to the periodicity of the outer component eiz of eik
��x1 .
Fortunately, the function k to be determined is strictly
increasing. This enables to solve (2.7) by means of the
following ideas. The real part of eik
��x1 oscillates. Namely,
it decreases for � ∈ 
0� �1�, increases for � ∈ 
�1� �2�, and
so on, where 0 < �1 < �2 < · · · are some numbers. Thus, it
is possible to locate the intervals 
�n� �n+1� using the known
function Re v̂
x1���

ĝ
��
. Thereupon, k
�� can be computed by

the formula

k 
�� = 1
x1

[

−1�n arccos Re

v̂ 
x1� ��

ĝ 
��
+ � 
n+ �n�

]
for � ∈ 
�n� �n+1� 	 (2.8)

Here �n = 0 for odd n, and �n = 1 for even n.
In practice, we have in hand a finite number of measured

deformations v�l ≈ v 
x1� tl�, l = 1� 	 	 	 � N in a time interval
�T � T1�, where tl = T + lh, h = T1−T

N
, and � is the noise

level. We apply the Discrete Fourier Transform (DFT) to
compute the discrete spectra

ĝ 
�m� ≈ ĝm = eiT�m

N

N−1∑
l=0

e
2�iblm

N gl+1�

v̂ 
x1�m� ≈ v̂�m = eiT�m

N

N−1∑
l=0

e
2�iblm

N v�l+1

for �m = 
m− 1�� , m = 1� 	 	 	 � N , where � > 0 is the step
size in the frequency domain, gl = g 

l − 1� h� and b = h�

2� .
By means of the discrete spectra, we compute the sequence
z�m = Re v̂�m

ĝm
. This sequence oscillates. Namely, it decreases

for m = s0� 	 	 	 � s1, increases for m = s1� 	 	 	 � s2, and so on,
where 1 = s0 < s1 < s2 < · · · are some integers. By (2.8),
the following formula is valid for wavenumbers:

km = k 
�m� =
1
x1

�
−1�n arccos zm + � 
n+ �n��

for sn−1 < m < sn	 (2.9)

Using the latter formula, we compute the pairs
(
�j� kj

)
,

j = 1� 	 	 	 �M and complete the first step of the algorithm.

Example problem. Let us illustrate the described
algorithm by means of a numerical example that was solved
by means of Mathematica 5.1. We used synthetic data
corresponding to the parameters a0 = 10, a1 = � = � =
� = � = 1 and considered a virtual physical problem
with local excitation g
t� = e−

t2
4 at x = 0. Then ĝ 
�� =

2
√
�e−�2

.
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214 J. ENGELBRECHT ET AL.

Figure 1.—Sequence z�m for m = 1� 	 	 	 � 50.

The synthetic data were constructed as follows. We
evaluated v 
x1� t� for x1 = 10 taking inverse Fourier
transform of (2.7) numerically by means of Simpson’s rule
to guarantee higher accuracy than in DFT. Thereupon, we
chose uniform mesh with N = 200 nodes in the time
interval �−5� 50� with the step size h = 55

200 . We disturbed
the computed deformation values at the nodes by the
formula v�l = v 
−5+ 
l − 1� h� + �R, l = 1� 	 	 	 � N , to
obtain the synthetic data. Here, � is a given noise level, and
R is the uniformly distributed random number in �−1� 1�.
Firstly, we solved the problem in case � = 10−3. To get

the first sight on the situation in frequency domain, we
took a larger step size � = �

55 and computed z�m = Re v̂�m
ĝm
.

(Figure 1; for comparison, exact cos �k 
�� x1� is given in
Fig. 2.) Clearly, z�m is oscillating with critical numbers
s0 = 0, s1 = 16, s2 = 20, s3 = 24� 	 	 	 . Higher disturbance
occurs from the fourth period because of the very small
denominator ĝm 
ĝ 
�� is rapidly decreasing�. To guarantee
maximal accuracy, we truncated the subrange � > 2 and
computed new values of the spectra with the smaller step
size � = 1

200 in order to remain inside the interval � ∈

0� 2�. By means of (2.9), we constructed data for the
system (2.5), solved it by least squares, and computed the
parameters using (2.6). The result was a�

0 = 9	97, a�
1 =

1	002, �� = 0	995, 
���� = 0	975. Then we repeated

Figure 2.—Function cos�k
��x1� in case x1 = 10.

the solution procedure 50 times taking different random
numbers R with the same noise level � = 10−3. The biggest
relative errors in a0, a1, �, and �� were 0.6%, 0,4%, 1.0%,
and 5.2%, respectively. Moreover, we solved the problem
for the noise level � = 10−2 for 50 cases of random R, too.
Then the biggest relative errors were 3.6%, 2.2%, 1.7%,
and 35%, respectively. The numerical results show that the
product �� is much more sensitive with respect to the noise
than other physical parameters.

2.3. Using Solitary Waves in NDE
Now we return to the approximate nonlinear Eq. (2.2).

It contains two hierarchical wave operators vtt −
bvxx + �

2

(
v2
)
xx

and �1vttxx − �1vxxxx − �1/2 �1
2

(
v2x
)
xxx

�
corresponding to marco- and microscale, respectively [8, 9].
We are interested in the reconstruction of the pair P =

b� �� and the triplet T = 
�1� �1� �1� of parameters
corresponding to these scales. As we will see later on, the
methods to determine P and T are quite different.
Usage of general nonlinear waves in NDE is a

rather complicated task. Therefore, we will be limited to
simpler waveforms, namely, solitary waves. Equation (2.2)
possesses bell-shaped asymmetric solitary wave solutions
v 
x� t� = w 
x − ct� for velocities c satisfying the

inequality
(

�1c
2−�1

c2−b

)3
>

4�21
�2 [5], and the wave shape

w=w 
�� solves the following ordinary differential
equation (ODE):


w′�2 −� 
w′�3 = 2w2
(
1− w

A

)
� (2.10)

where

 =
√

c2 − b

� 
�1c
2 − �1�

�

A = 3
(
c2 − b

)
�

� (2.11)

� = 2�1/2�1

3 
�1c
2 − �1�

	

Here A is the amplitude,  is the exponential decay rate,
i.e., w ∼ e−��� as ��� → �, and � is related to the
asymmetry. The direction of asymmetry depends on the sign
of � (Figs. 3 and 4).
We remark that a single solitary wave does not

contain enough information to recover all five unknowns
b��� �1� �1� �1. The reason is that it has only three degrees
of freedom: A, , and �. Therefore, let us have two waves,
w�c1� and w�c2�, with the velocities c1 and c2, satisfying
c21 	= c22, and the amplitudes A1 and A2, respectively. From
the formula of A in (2.14) we deduce the simple linear
system 3b +Aj� = 3c2j , j = 1� 2, for the pair of unknowns
P = 
b� ��.
However, amplitudes do not contain any information

about the triplet T = 
�1� �1� �1�. To determine T , we use
half lengths of waves measured at some given levels.
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Figure 3.—Solitary wave in case A =  = 1, � = 0	9.

More precisely, let us fix a number w1 which lies between
0 and A1, and a number w2 which lies between 0 and A2.
Concerning the first wave, we register the time when it
attains the level w1, the extremum w = A1, and the time
when it drops below the level w1. Using the velocity c1, we
can then compute the relative coordinates � = �11 > 0 and
� = �12 < 0, such that w �c1� 
�1l� = w1, l = 1� 2 (i.e., front
and rear half lengths). Similarly, for the second wave w�c2�,
we register the time when it attains the level w2. Then, using
the arrival time of the extremum w = A2 and the velocity c2,
we can compute �2 > 0 such that w�c2�
�2� = w2 (front
half length).
It was shown in [10] that the data �11� �12� �2 uniquely

recover the triplet T . The problem for T is the 3 × 3

Figure 4.—Solitary wave in case A =  = 1, � = −0	9.

nonlinear system of equations

w �T � c1� 
�11�− w1 = 0�

w �T � c1� 
�12�− w1 = 0� (2.12)

w �T � c2� 
�2�− w2 = 0	

Here, T in the square brackets points the dependence of w
on T out. The system (2.12) can be solved by gradient- or
Newton-type methods. Then in every step of the method one
has to solve twice the ODE (2.10) to determine w�T � c1�,
w�T � c2�, and additional 9 ODE-s to determine components
of the Jacobian matrix of (2.12).
We will present a simpler reconstruction algorithm

that avoids solution of ODE-s in the iteration. Let us
denote by �+�T � c�
w� and �−�T � c�
w� the inverses of
the function w�T � c�
�� in the subintervals � > 0 and
� < 0, respectively. These inverses have the following
formula [10]:

�±�T � c�
w� = 1

f±���
w�� (2.13)

where � = � = 2�1
3
�1c

2−�1�

√
c2−b

�1c
2−�1

, the functions f ��� =
f±��� admit the following representations:

f ���
w� = �0I0
w�+ �
�∑
i=1

�i�
i−1Ii
w� (2.14)

with

Ii
w� =



−2 ln

[√
A

w

(
1+

√
1− w

A

)]
if i = 0

2Ai
i−1∑
j=0

(
i − 1
j

)

−1�j+1

(
1− w

A

) i+1
2 +j

i + 2j + 1
if i ≥ 1

�

and coefficients �i in (2.17) are computed by the recursive
formulas

�0 = ±1� �1 =
(
1− 3�20

)−1
�

�i =
(
1− 3�20

)−1 ∑
0≤i1�i2�i3<i
i1+i2+i3=i

�i1�i2�i3 i ≥ 2	

Here the sequences starting with �0 = −1 and �0 = 1 lead
to the functions f+��� and f−���, respectively. To compute
f±��j� practically, one can truncate the series in (2.14).
Thus, the nonlinear system (2.12) can be rewritten in the

following form:

f+��1�
w1�− �111 = 0�
(2.15)

f− ��1� 
w1�− �121 = 0�

f+��2�
w2�− �22 = 0� (2.16)
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where �j , j are related to the triplet T = 
�1� �1� �1� by
the expressions

�j =
2�1

3
(
�1c

2
j − �1

)
√

c2j − b

�1c
2
j − �1

�

(2.17)

j =
2�1

3
(
�1c

2
j − �1

)
√

c2j − b

�
(
�1c

2
j − �1

) � j = 1� 2	

Summing up, the algorithm to reconstruct T consists of the
following steps:

1) Solving the 2 × 2 nonlinear subsystem (2.15) for the
unknowns �1 and 1;

2) Computing the parameter �1, and expressing 2 in terms

of �2 by means of the formulas �1 = 3
c21−b��1
2�3/231

and 2 =[ 3
c22−b�
2�3/2�1

�2

]1/3
deduced from (2.17);

3) Substituting the obtained formula of 2 into (2.16), and
solving the resulting equation

f+ ��2� 
w2�− �2

[
3
(
c22 − b

)
2�3/2�1

]1/3

�
1/3
2 = 0 (2.18)

for �2;
4) Computing �1 and �1 by means of solution of the linear

system

�1c
2
1 − �1 =

c21 − b

�2
1

�

(2.19)

�1c
2
2 − �1 =

[
4�2

1

(
c22 − b

)
9�2

2

]1/3

deduced from (2.17).

We emphasize that (2.15) contains sums of functions of
single variables �1 and 1. This enables to apply the method
of secants to solve the system (2.15), hence one has no need
to compute derivatives in the iteration process.

Numerical example. We solved a problem with synthetic
data corresponding to parameters � = 1, � = 6, b = 2, T =

�1� �1� �1� = 
2� 6� 2	5� and virtual waves with velocities
c1 = 2, c2 = 2	2. Then A1 = 1, A2 = 1	42,  = 1, �1 =
0	83333, 2 = 1	04933, �2 = 0	39787. In both waves, we
chose the measurement level A/2 for the half lengths. Then,
w1 = 0	5 and w2 = 0	71, and the related half lengths (i.e.,
synthetic data) are �11 = 3	47336, �12 = 3	27119, and �3 =
3	45582.
To solve the system (2.18), we applied the method of

secants with the initial guesses �0
1 = 0, �1

1 = 0	1, 0
1 = 1

1 =
5 and truncated the series (2.14) at i = 10. The method gave
a solution with accuracy of 0	001 after 7 steps of iteration.
To solve (2.18), we chose the initial guesses �0

2 = 0	5, �1
2 =

0	6, and applied also the method of secants. We reached a
solution with the accuracy of 0.001 after 5 steps of iteration.
Summing up, 12 steps of iteration were needed to compute
the solution of the inverse problem with the accuracy of
0.001.

3. Smooth inhomogeneities and wave interaction

Inhomogeneities, evoked by averaged changes of material
properties (density, linear, and nonlinear elasticity) or by
external forces, may be described by models with smooth
functions [7] resorting to the nonlinear theory of elasticity
[1]. Similarly to the case with discrete microstructure
(see above), the determination of physical properties needs
enhanced algorithms. Therefore, the interest is directed
to elaboration of extended techniques for ultrasonic NDE
of material properties by exploiting the nonlinear effects
of wave propagation and the wave interaction in such
inhomogeneous materials. Proposed algorithms are based
on through transmission techniques for NDE of weakly
variable properties of physically inhomogeneous nonlinear
elastic material [10] and for inhomogeneously prestressed
materials (structural elements) [11]. The wave interaction
resonance technique is elaborated for NDE of the properties
of weakly inhomogeneous material [12, 13]. The recent
results in constructing the mathematical basis of nonlinear
wave interaction techniques for NDE of inhomogeneous
prestress in the material are described in more detail below.

3.1. Governing Equations
Plates, beams, thin-walled structures, etc. are widely used

in civil engineering. The material of these structures is
itself isotropic and homogeneous, but inhomogeneity is
introduced by prestress. In most applications, deformations
of structures are small but finite and, theoretically, they
are described by the five constant nonlinear theory of
elasticity [1] with geometrical nonlinearity also taken into
account. The important thing is that most of these structures
have two parallel boundaries. This leads to the idea of
using the interaction of waves, evoked simultaneously on
opposite boundaries for NDE of the state of the material
of structure. It is obvious that the counter-propagation and
the interaction of waves involve more information about
material properties than it may be obtained by the through
transmission technique.
The problem is investigated as follows. A specimen

(structural element) with two parallel boundaries is
considered. Three states of the material of the specimen
are distinguished. The initial state of it corresponds to the
undeformed natural state. At the instant t = 0, the specimen
is subjected to the external forces and, furthermore, it is
deformed. At the instant t = t0 > 0, the wave process in
the prestressed specimen is excited. The components of
the displacement vector at this present state U ∗

K 
XJ � t� are
expressed by the formula

U ∗
K 
XJ � t� = U 0

K 
XJ � t�+ UK 
XJ � t� � (3.20)

where displacements U 0
K
XJ � t� and UK
XJ � t� are caused

by prestress and wave motion, correspondingly.
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The equation of motion of the specimen at the present
state has the form

[
T ∗
KL 
XJ � t�

(
�KL + U ∗

k�L 
XJ � t�
)]

�K
− �0U

∗
k�tt 
XJ � t� = 0�

(3.21)

where �KL denotes the Kroneker delta, TKL the Kirchhoff
pseudostress tensor, �0 the density of the material, xK the
Eulerian rectangular coordinate, and t the time.
The case of plane strain is studied, and the components

of displacement vector U ∗
3 
XJ � t� and U 0

3 
XJ � t� are taken
equal to zero. After the instant t = 0, the specimen is
undergoing the static prestress, and the equilibrium of it is
described by a system of two elliptic second-order partial
differential equations

[
1+ k1U

0
I�I 
X1� X2�+ k2U

0
J�J 
X1� X2�

]
U 0

I�I 
X1� X2�

+ [
2+ k3U

0
I�J 
X1� X2�+ 2k4U

0
J�I 
X1� X2�

]
U 0

I�IJ 
X1� X2�

+ [
k7 + k3U

0
I�I 
X1� X2�+ k3U

0
J�J 
X1� X2�

]
U 0

I�JJ 
X1� X2�

+ [
k4U

0
I�J 
X1� X2�+ k3U

0
J�I 
X1� X2�

]
U 0

J�II 
X1� X2�

+ [
k3U

0
I�J 
X1� X2�+ k4U

0
J�I 
X1� X2�

]
U 0

J�JJ 
X1� X2�

+ [
k6 + k5U

0
I�I 
X1� X2�+ k5U

0
J�J 
X1� X2�

]
×U 0

J�JI 
X1� X2� = 0	 (3.22)

Here, indices I = 1, J = 2 specify the first equation, and
I = 2, J = 1 the second equation. The coefficients kl,
l = 1� 2� 	 	 	 � 7 characterize the properties of the nonlinear
elastic material [7].
Introducing Eq. (3.20) into Eq. (3.21), and taking

into account the equations of equilibrium (3.22), the
equation that governs the quasi-one-dimensional problem of
longitudinal wave propagation in two-dimensional specimen
yields

�1+ f1 
X1� X2��+ U1�11 
X1� X2� t�

+ f2 
X1� X2� U1�1 
X1� X2� t�

+ f3U1�1 
X1� X2� t� U1�11 
X1� X2� t�

− c−2U1�tt 
X1� X2� t� = 0	 (3.23)

The coordinate X2 may be regarded here as a parameter.
Coefficients of the equation

f1 
X1� X2� = k1U
0
1�1 
X1� X2�+ k2U

0
2�2 
X1� X2� �

f2 
X1� X2� = k1U
0
1�11 
X1� X2�

(3.24)+ k3U
0
1�22 
X1� X2� 
k2 + k4� U

0
2�21 
X1� X2� �

f3 = k1� c−2 = �0k

are dependent on the prestress and the properties of the
material.

3.2. Solution Procedure
The wave process in the prestressed material is governed

by Eq. (3.23). To solve this equation, it is necessary
to determine the coefficients (3.24), i.e., to have some
preliminary information about the prestressed state of the
specimen. This information may be obtained from the
observation data of the loading scheme of the specimen
(structural element). Here the problem is solved by
assumption that the type of prestressed state and the physical
properties of the material are known, and the coefficients
of the equation of motion (3.23) are known functions
that involve unknown parameters of the prestressed state.
Theoretically, these coefficients are determined by the
solution to Eqs. (3.22). The perturbative analytical solution
in the form of series

U 0
K 
X1� X2� =

�∑
m=1

�mU
0
m�
K 
X1� X2� (3.25)

with the small parameter ��� ≤ 1 is derived for the special
case of prestress that corresponds to the pure bending with
compression or tension. Introducing series (3.25) into Eqs.
(3.22), the system of equations for determination of terms
in series (3.25) follows. Up to now, there is an analytical
solution to Eqs. (3.22) in our possession. This means that
now it is possible to solve Eq. (3.23) with known space
dependent variable coefficients.
The perturbation technique is used, and the solution to

Eq. (3.23) is sought in the form

U1 
X1� X2� t� =
�∑
n=1

�nU

n�
1 
X1� X2� t� 	 (3.26)

Introducing series (3.25) and (3.26) with small parameter
� into Eq. (3.23), and following the perturbation procedure,
a set of equations to determine the terms in series (3.26)
yields. Equation (3.23) is solved under the initial and
boundary conditions

U1 
X1� X2� 0� = U1�t 
X1� X2� 0� = 0�

U1�t 
0� X2� t� = �a0�
t�H
t�� (3.27)

U1�t 
h� X2� t� = �ah�
t�H
t�	

Here H
t� denotes Heaviside’s unit step function, a0
and ah are constants, and h denotes the thickness of the
specimen. The smooth arbitrary initial wave profiles are
determined by functions �
t� and �
t� with max ��
t�� = 1
and max ��
t�� = 1.
The obtained analytical solution, which is too

cumbersome to be presented here, describes the initial
stage of counter-propagation of waves with arbitrary smooth
initial profiles.

3.3. Using Wave Interaction in NDE
The intention is to solve the problem of NDE of

material inhomogeneity (prestress) on the basis of data
about counter-propagation and interaction of waves in the
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specimen. Therefore, harmonic waves (�
t� = �
t� =
sin�t, where � denotes the frequency) with the same
amplitude and frequency, are excited on the opposite
boundaries of the specimen in terms of particle velocity. The
distorted wave profiles are recorded on the same boundaries
in term of stress. The recorded data are analyzed resorting
to the perturbative solution (3.26) that makes it possible
to separate the linear and nonlinear effects of counter-
propagation of harmonic waves.
The dimensionless second term U


2�
1�1 
X1� X2� t� describes

the main domain of nonlinear effects including the evolution
of the second harmonic, influence of the prestress to
the evolution of the first harmonic, nonlinear interaction
between two first harmonics, and influence of the nonlinear
physical properties of the material on the wave propagation
(Fig. 5).
For an example, the material of the specimen is chosen

to be duralumin with density �0 = 2800kg/m3, constants of
elasticity

� = 50GPa� � = 27	6GPa�

�1 = −136GPa� �2 = −197GPa� �3 = −38GPa�

and thickness h = 0	1m. The strain is characterized by the
dimensionless constant � that is proposed to be equal to � =
1 ∗ 10−4. The prestressed state of the medium corresponds
to the plane strain characterized by the component T 0

22 =
1+ bX1 of the Kirchhoff pseudostress tensor.
Two longitudinal sine waves with the frequency � =

1	9256 ∗ 106 rad/s are excited simultaneously in the material
according to the boundary conditions (3.27). The recorded
data contain maximum information about the prestressed
state provided the strain intensities caused by the prestress
and the wave motions are of the same order [7]. To assure
this the amplitude of the excited particle velocity at the
boundaries X1 = 0 and X1 = h has the opposite sign
a0 = −ah = −cm/s and the equal absolute value ��a0� =
0	6130m/s.
Analysis of numerous numerical experiments leads to the

conclusion that the amplitude of boundary oscillations is

Figure 5.—Nonlinear effects of wave interaction.

dependent on the physical properties of the material and on
the parameters and nature of the prestress (inhomogeneity).

3.3.1. Qualitative NDE. Further, the possibility of NDE
of the two-parametric prestressed state of the specimen on
the basis of nonlinear distortion of the wave profile of the
initially harmonic wave is discussed. It is assumed that
there is an access to two parallel traction free boundaries
of the specimen. The problem is studied theoretically. In
our possession is the analytical expression for the function
U1�1 
X1� X2� t� on the whole X1/h� t/� plane. Therefore, it
is possible to describe and analyze the wave propagation,
interaction, and evolution of nonlinear effects of wave
propagation in any section of the specimen. Due to the
complexity of the analytical solution, oscillations on the
boundaries are studied numerically.
The nonlinear theory of elasticity [1] describes the stress

as a function of the derivatives of the particle displacement
with respect to the spatial coordinates. This is the reason
why, henceforth, the influence of the prestress on the wave
profile is discussed on the basis of function U1�1 
X1� X2� t�
derived from the solution (3.26):

U1�1 
X1� X2� t� =
�∑
n=1

�nU

n�
1�1 
X1� X2� t� 	 (3.28)

The point of discussion is the following: Is it possible
qualitatively to distinguish the special cases of the
prestressed states of elastic material on the basis
of longitudinal wave profile distortion data recorded
simultaneously on parallel surfaces of the specimen?
The considered two-parametric prestressed state of the

specimen enables to study the wave profile distortion in:

(i) Homogeneous prestress-free nonlinear elastic material
(T 0

22 
X1� = 0�;
(ii) Homogeneously prestressed nonlinear elastic material

(T 0
22 
X1� = a�;

(iii) Nonlinear elastic material undergoing pure bending
(T 0

22 
0� = −T 0
22 
h��;

(iv) Nonlinear elastic material undergoing pure bending
with tension or compression (T 0

22
X1� = a+ bX1�.

Prevalent part of the influence of prestress, the physical
and geometrical nonlinearity on wave process is described
by the second term U


2�
1�1 
X1� t� in series (3.28). The

evolution of the prevalent part of nonlinear effects is
characterized on the boundaries X1 = 0 and X1 = h of
the prestress-free nonlinear material by the oscillations with
the double frequency 2� and by the constant amplitudes in
the interval of propagation and in the interval of interaction.
The presence of homogeneous prestress in the material

is characterized by the modulation of boundary oscillation
amplitudes. The amplitude and the depth of modulation
are dependent on the value and the sign (compression or
tension) of prestress. The homogeneity of the prestress is
specified by the coincidence of oscillation profiles on the
boundaries X1 = 0 and X1 = h.
The inhomogeneous prestress (bending of the sample, for

example) involves disparity in oscillation profiles on the
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boundaries X1 = 0 and X1 = h. Exception is the case of
pure bending (T 0

22
0� = −T 0
22
h��, when oscillations on both

boundaries coincide with phase shift. Consequently, the
qualitative effects of boundary oscillation profile distortion
enable easily to determine qualitatively the presence and
the nature of prestress and to distinguish (i) prestress
free material, (ii) homogeneously prestressed material,
(iii) material undergoing pure bending, and (iv) material
undergoing pure bending with tension or compression.

3.3.2. Quantitative NDE. The problem of quantitative
nondestructive characterization of two-parametric prestress
field is solved by the assumption that the geometry and
the physical properties of the material (structural element)
are known. The derived analytical solution (3.28) is used,
and the plots nonlinear oscillations on the boundaries of
the prestress free material are composed. Two first local
maxima of the boundary oscillations are determined and
characterized by the values of dimensionless instants �1 and
�2 (Fig. 6).
The next step is to compose plots boundary oscillation

amplitudes vs. prestress parameters a and b for both instants
�1 (Fig. 7) and �2. In order to evaluate the unknown values
of prestress parameters a and b in a physical experiment,
the counterpropagating harmonic waves are excited in
the specimen undergoing pure bending with tension or
compression and the oscillation profiles are recorded on
both boundaries. The difference of the values of oscillation
amplitudes on opposite boundaries is determined for both
instants �1 and �2. Resorting to the corresponding plots,
two possible values of the parameter b are determined
making use of the calculated differences. The value of
the parameter a and the final value of the parameter b
are determined making use of the value of the recorded
oscillation amplitude on one of the boundaries at the instant
�1 or �2.

4. Summary

In order to enhance the accuracy of NDE, mathematical
modeling must have a proper and sound basis. Here

Figure 6.—Oscillations on parallel boundaries (line — X1 = 0, dashed line
-.-.- X1 = h).

Figure 7.—Boundary oscillation amplitudes versus prestress parameters at
the instant �1 (line — X1 = 0, dashed line -.-.-. X1 = h).

our models are based on nonlinear continuum theories.
The examples shown are one-dimensional or quasi-one-
dimensional. In practical realization, however, ultrasonic
transducers generate wave beams for which the diffractional
expansion in the transverse direction is rather weak. On the
axis of the wave beam, the one-dimensional approximation
is possible [14].
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