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Abstract The canonical thermomechanics on the material manifold is enriched by

the introduction of dual weakly non-local internal variables and extra entropy fluxes.

In addition to the dissipative reaction-diffusion equation for a single internal vari-

able of state, a hyperbolic evolution equation for the internal degree of freedom can

be also recovered in the non-dissipative case. It is demonstrated that the Mindlin mi-

cromorphic theory can be represented in terms of dual internal variables in a natural

way in the framework of the canonical thermomechanics.

1 Motivation

The description of any phenomenon depends on how many details we take into ac-

count. Any description can be improved, e.g., by the transition to finer space and

time scales. Though such a transition may be desirable for the understanding of a

process at microscopic or quantum level, it is hardly acceptable from the practical

point of view. Fortunately, there exists a possibility to include the influence of mi-

crostructural effects into the description of a phenomenon without changing of space

and time scales. This is the introduction of internal variables.

The use of internal variables in the description of the behavior of materials with

microstructure has a long tradition [1–11], and nowadays it is practically commonly

accepted. However, there are two clearly distinctive types of internal variables: in-

ternal degrees of freedom and internal variables of state [5, 12]. By definition, in-

ternal variables of state must have no inertia, and they produce no external work.
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The internal variables of state are not governed by a field equation, i.e., by their own

balance law; the power expended by internal variables will be only of the dissipated

type. From another side, internal degrees of freedom are endowed with both inertia

and flux, where the latter is not necessarily purely dissipative (on the contrary, it

could be purely non-dissipative) [5, 12].

Starting the modeling of dynamics of a microstructured material, we do not know

definitely a priori what kind of internal variables is more suitable in the particular

case. It is useful therefore to have a procedure which formalizes the choice. The

main idea of such a formalization can be illustrated on the simple example of linear

elasticity in one dimension.

One-dimensional elastodynamics is described by a Lagrangian density L that

depends on displacement u(x, t) and its first derivatives, which we denote by ut

for the time derivative and by ux for the spatial derivative. This leads to the Euler–

Lagrange equation of motion,

∂

∂t

(
∂L

∂ut

)
+

∂

∂x

(
∂L

∂ux

)
−

∂L

∂u
= 0. (1)

In the linear case, the Lagrangian density has the form

L(u, ux , ut ) =
1

2

(
ρ0ut

2 − Eu2
x

)
, (2)

and we obtain the second-order wave equation for the single field variable u

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, (3)

where c =
√

E/ρ0, E is the Young’s modulus, and ρ0 is the density.

Introducing velocity and strain by

v = ut , ε = ux, (4)

we can represent the wave equation as the system of two first-order equations for

the two field variables
∂ε

∂t
=

∂v

∂x
, (5)

ρ0
∂v

∂t
= E

∂ε

∂x
. (6)

The two variables, v and ε, are dual ones in the sense that the evolution of one of

them is governed by another and vice versa. Just the same underlying idea is used

for the introduction of dual internal variables, thermodynamics of which is given

in [13].

In what follows, we will introduce two internal variables (which may have dis-

tinct tensorial nature) in the material formulation of thermomechanics and analyze

the conditions that are necessary to classify the internal variables as internal degrees
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of freedom or internal variables of state. As an example, the micromorphic elasticity

theory is presented as a particular case of the obtained formalization.

2 Canonical Thermomechanics on the Material Manifold

First, we need to recall certain basic definitions. A motion of a body is considered as

a time-parametrized sequence of mappings χ between the reference configuration

and the actual configuration: x = χ(X, t), where t is time, X represents the position

of a material point in the reference configuration, and x is its position in the actual

configuration. The deformation gradient is defined by

F =
∂χ

∂X

∣∣∣∣
t

= ∇Rχ. (7)

If the constitutive relation for free energy has the form W = W(F, . . . , X, t), then

the first Piola–Kirchhoff stress tensor T is defined by

T =
∂W

∂F
. (8)

The local balance laws for sufficiently smooth fields at any regular material point

X in the body read (cf. [14]):

∂ρ0

∂t

∣∣∣∣
X

= 0, (9)

∂(ρ0v)

∂t

∣∣∣∣
X

− DivRT = f0, (10)

∂(K + E)

∂t

∣∣∣∣
X

− ∇R · (T · v − Q) = f0 · v, (11)

where ρ0 is the mass density in the reference configuration, v = ∂χ/∂t|X is the

physical velocity, f0 is a body force per unit reference volume, K = ρ0v2/2 is

the kinetic energy, E is the internal energy per unit reference volume, Q is the

material heat flux, d/dt = ∂/∂t|X or a superimposed dot denotes the material time

derivative.

The second law of thermodynamics is written as

∂S

∂t

∣∣∣∣
X

+ ∇R · S ≥ 0, S = (Q/θ) + K, (12)

where S is the entropy density per unit reference volume, θ is the absolute temper-

ature, S is the entropy flux, and the “extra entropy flux” K vanishes in most cases,

but this is not a basic requirement.

The canonical form of the energy conservation has the form [12, 15]
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∂(Sθ)

∂t

∣∣∣∣
X

+ ∇R · Q = hint, hint := T : Ḟ −
∂W

∂t

∣∣∣∣∣
X

, (13)

where the right-hand side of Eq. (13)1 is formally an internal heat source.

Then the second law can be represented in the form

Sθ̇ + S · ∇Rθ ≤ hint + ∇R · (θK). (14)

Correspondingly, the canonical (material) momentum conservation equation is ob-

tained as [12, 15]
∂P

∂t

∣∣∣∣
X

− DivRb = fint + fext + finh, (15)

where the material momentum P, the material Eshelby stress b, the material inhomo-

geneity force finh, the material external (or body) force fext, and the material internal

force fint are defined by

P := −ρ0v · F, b = − (LIR + T · F) , L = K − W, (16)

finh :=
∂L

∂X

∣∣∣∣
expl

≡
∂L

∂X

∣∣∣∣
fixed fields

=
(

1

2
v2

)
∇Rρ0 −

∂W

∂X

∣∣∣∣∣
expl

, (17)

fext := −f0 · F, fint = T : (∇RF)T − ∇RW
∣∣
impl

. (18)

Here the subscript notations expl and impl mean, respectively, the material gradient

keeping the fields fixed (and thus extracting the explicit dependence on X), and

taking the material gradient only through the fields present in the function.

3 Dual Internal Variables

Our goal is to show how the dual internal variables can be introduced in canonical

thermomechanics. The corresponding theory with a single internal variable was re-

cently presented in [12,15]. The generalization of the internal variable theory to the

case of two internal variables is straightforward. Let us consider the free energy W

as a function of two internal variables, α and β, each of which is a second-order

tensor

W = W(F, θ,α,∇Rα,β,∇Rβ). (19)

In this case, the equations of state are given by

T =
∂W

∂F
, S = −

∂W

∂θ
, A := −

∂W

∂α
, A := −

∂W

∂∇Rα
, (20)

B := −
∂W

∂β
, B := −

∂W

∂∇Rβ
. (21)
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We include into consideration the non-zero extra entropy flux according to the case

of the single internal variable [12, 15]

K = −θ−1
A : α − θ−1

B : β. (22)

The canonical equations of momentum and energy keep their form

∂P

∂t
− DivRb̃ = fth + f̃intr,

∂(Sθ)

∂t
+ ∇R · Q̃ = hth + h̃intr, (23)

with the modified Eshelby stress tensor

b̃ = −(L1R + T · F − A : (∇Rα)T − B : (∇Rβ)T ), (24)

and intrinsic source terms

f̃intr := Ã : ∇Rα + B̃ : ∇Rβ, h̃intr := Ã : α̇ + B̃ : β̇. (25)

In the above equations the following definitions are used

Ã ≡ −
δW

δα
:= −

(
∂W

∂α
− DivR

∂W

∂(∇Rα)

)
= A − DivRA, (26)

B̃ ≡ −
δW

δβ
:= −

(
∂W

∂β
− DivR

∂W

∂(∇Rβ)

)
= B − DivRB, (27)

S̃ = θ−1Q̃, Q̃ = Q − A : α̇ − B : β̇, (28)

fth = S∇Rθ, hth = Sθ̇, (29)

which are similar to those in the case of the single internal variable [12, 15].

The corresponding dissipation inequality

� = h̃intr − S̃∇Rθ ≥ 0, (30)

is reduced in the isothermal case to

h̃intr := Ã : α̇ + B̃ : β̇ ≥ 0. (31)

The introduction of the second internal variable results in a more general form of

evolution equations for the internal variables α and β than in the case of a single in-

ternal variable [12,15]. In accordance with (31) these evolution equations are chosen

as (
α̇

β̇

)
= L

(
Ã

B̃

)
, or

(
α̇

β̇

)
=

(
L11 L12

L21 L22

) (
Ã

B̃

)
, (32)

where components L11, . . . , L22 of the linear operator L are dependent on state

variables. Representing the linear operator L as the sum of symmetric and skew-
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symmetric components L = (L + LT )/2 + (L − LT )/2, i.e.

(
α̇

β̇

)
=

(
L11 (L12 + L21)/2

(L21 + L12)/2 L22

) (
Ã

B̃

)
+ (33)

+
(

0 (L12 − L21)/2

(L21 − L12)/2 0

) (
Ã

B̃

)
,

we can see that the symmetry of the linear operator L, which is equivalent to the

Onsagerian reciprocity relations L12 = L21, leads to the elimination of the antisym-

metric part of the linear operator L. However, we have no reasons to assume the

symmetry of the linear operator L in the case of arbitrary internal variables.

To provide the satisfaction of the dissipation inequality

h̃intr := Ã : α̇+B̃ : β̇ = Ã : (L11 ·Ã+L12 ·B̃)+B̃ : (L21 ·Ã+L22 ·B̃) ≥ 0, (34)

we may require that

Ã : (L12 · B̃) = −B̃ : (L21 · Ã). (35)

If Ã · B̃
T is symmetric, the latter relation is reduced to the Casimir reciprocity

relations

L12 = −L21. (36)

On account of the relation (35), we arrive at the decomposition of evolution equa-

tions into dissipative and non-dissipative parts

(
α̇

β̇

)
=

(
L11 0

0 L22

) (
Ã

B̃

)
+

(
0 L12

−L12 0

) (
Ã

B̃

)
, (37)

and the dissipation inequality is reduced to

h̃intr = Ã : (L11 ·Ã)+B̃ : (L22 ·B̃) = (Ã ·ÃT ) : L11 +(B̃ ·B̃T ) : L22 ≥ 0. (38)

As it is seen, the form of evolution equations is determined by components of the

linear operator L. To analyze the possible forms of the evolution equations, we con-

sider two limiting cases, corresponding to pure symmetric and pure skew-symmetric

linear operator L.

The most remarkable feature of the considered approach is its applicability to

nondissipative processes. It is clear that in the skew-symmetric case (L11 = L22 =
0) the dissipation h̃intr vanishes, while evolution equations for the two internal vari-

ables are fully coupled

α̇ = L12 · B̃, β̇ = −L12 · Ã. (39)

In this case, the evolution of one internal variable is driven by another one that

means the duality between the internal variables.
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To be more specific, let us consider a simple case with B = 0. In this case, the

free energy function W is independent of ∇Rβ, and the kinetic relations (39) are

reduced to

α̇ = L12 · B, β̇ = −L12 · Ã. (40)

Assuming further a quadratic dependence of the free energy function with respect

to the internal variable β

B := −
∂W

∂β
= −β, (41)

we reduce Eq. (40)1 to

α̇ = −L12 · β, (42)

while Eq. (40)2 is not changed

β̇ = −L12 · Ã. (43)

Substituting Eq. (42) into Eq. (43), we obtain a hyperbolic evolution equation for

the internal variable α:

α̈ = (L12 · L12) · Ã. (44)

This means that the introduced internal variable α now is practically an internal

degree of freedom, and the structure of Eqs. (42), (43) and (44) is similar to that in

the case of elasticity.

If, vice versa, L11 �= 0, L22 �= 0, while L12 = 0, we return to the classical

situation, where internal variables are fully independent:

α̇ = L11 · Ã, β̇ = L22 · B̃. (45)

Therefore, the classical internal variable theory implicitly includes the Onsagerian

reciprocity relations. In the fully dissipative case we are dealing with true internal

variables of state.

4 Example: Micromorphic Linear Elasticity

In the framework of the Mindlin micromorphic theory [16], each material point is

endowed with three translational degrees of freedom ui and a full microdeformation

tensor ψij with nine independent components. Three strain tensors are deduced: the

classical strain tensor εij

εij ≡
1

2

(
∂iuj + ∂jui

)
, (46)

the relative deformation tensor γij

γij ≡ ∂iuj − ψij , (47)
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and the microdeformation gradient κijk defined by

κijk ≡ ∂iψjk. (48)

The free energy density W is supposed to be a homogeneous, quadratic function of

42 variables εij , γij , κijk [16]

W =
1

2
cijklεij εkl +

1

2
bijklγijγkl +

1

2
aijklmnκijkκlmn +

+dijklmγij κklm + fijklmκijkεlm + gijklγij εkl. (49)

As it was emphasized, only 903 of the 1764 coefficients in the former equation

are independent. In the case of centrosymmetric, isotropic materials the number of

independent coefficients is greatly reduced [16]

W =
1

2
λεiiεjj + µεij εij +

1

2
b1γiiγjj +

1

2
b2γijγij +

+
1

2
b3γijγji + g1γiiεjj + g2

(
γij + γji

)
εij +

+a1κiikκkjj + a2κiikκjkj +
1

2
a3κiikκjjk +

1

2
a4κijj κikk + (50)

+a5κijj κkik +
1

2
a8κij iκkjk +

1

2
a10κijkκijk + a11κijkκjki +

+
1

2
a13κijkκikj +

1

2
a14κijkκjik +

1

2
a15κijkκkij .

The corresponding stress tensors are the following ones [16]:

Cauchy stress

σij ≡
∂W

∂εij

= σji = λδij εkk + 2µεij + g1δijγkk + g2(γij + γji), (51)

relative stress

τij ≡
∂W

∂γij

= g1δij εkk + 2g2εij + b1δijγkk + b2γij + b3γji , (52)

and double stress

µijk ≡
∂W

∂κijk
. (53)

The equations of motion in terms of stresses have the form (no body force) [16]

ρüj = ∂i

(
σij + τij

)
, (54)

1

3
ρ′d2

jiψ̈ik = ∂iµijk + τjk + �jk, (55)
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where ρ′d2
ji is a microinertia tensor, �jk is a volume double force.

In order to apply the internal variable theory, we need to represent the constitutive

relations in the Mindlin theory in terms of distortion ∂jui and microdeformation

tensor ψji . Accordingly, the stresses are represented as

σ ′
ij ≡

∂W

∂(∂iuj )
= λδij ∂kuk + µ(∂iuj + ∂jui) +

+ g1δij (∂kuk − ψkk) + g2

(
∂iuj − ψij + ∂jui − ψji

)
+

+ b1δij (∂kuk − ψkk) + b2(∂iuj − ψij ) + b3(∂jui − ψji), (56)

τ ′
ij ≡

∂W

∂ψij
= −g1δij ∂kuk − g2(∂iuj + ∂jui) −

− b1δij (∂kuk − ψkk) − b2(∂iuj − ψij ) − b3(∂jui − ψji). (57)

The double stress remains unchanged. At last, equations of motion take on the form

ρüj = ∂iσ
′
ij , (58)

1

3
ρ′d2

ij ψ̈ik = ∂iµijk − τ ′
jk + �jk. (59)

Now we consider the microdeformation tensor ψij as an internal variable α and

apply the formalism developed in Section 3. The microdeformation gradient κij k

plays the role of the gradient of the internal variable α, and we introduce a dual

internal variable β in the same way as in Section 3.

In the non-dissipative case, the evolution equation for the internal variable α can

be symbolically written as

α̈ = (L12 · L12) · Ã = (L12 · L12) ·
(

−
∂W

∂α
+ Div

∂W

∂(∇α)

)
. (60)

In terms of components of the microdeformation tensor ψij the latter evolution

equation obtains the form

(
L12 · L12

)−1

j i
ψ̈ik =

(
−

∂W

∂ψj k

+ Div
∂W

∂(∇ψj k)

)
= ∂iµij k − τ ′

j k. (61)

As one can see, the evolution equation for the microdeformation is practically the

same as in the Mindlin theory. The volume double force �j k can appear if we

consider a more general case than the pure nondissipative one.
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5 Conclusions

The internal variables theory is extended to cover both internal variables of state

and internal degrees of freedom by the generalization of its formal structure ex-

ploiting the possible coupling between the dual internal variables. The canonical

thermomechanics provides the best framework for this generalization. It should be

emphasized, however, that any new balance laws has not been introduced; only the

Clausius–Duhem inequality was exploited for the derivation of evolution equations

for internal variables.
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