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Abstract. We analyse certain geometrical features of interaction of long-crested 
waves in the framework of two-soliton solution of the Kadomtsev-Petviashvili 
equation. Such interactions may be responsible for the existence of high-
amplitude wave humps. Shown is that the area of extreme elevations is very 
narrow whereas the extreme slope of the front of the resulting structure may be 
eight times as high as the maximum slope of the interacting solitons. Analytical 
expressions for extreme slopes of interacting solitons of arbitrary amplitude are 
derived. Interactions of solitons of greatly different heights do not cause 
extreme elevations but may result in extensive bending of the crests of the 
counterparts. 

Introduction 

Many authors have suggested that an appropriate nonlinear mechanism could be 
responsible for extreme waves [1]. We concentrate on a specific source for 
considerable changes in the wave amplitudes, namely, nonlinear superposition of 
solitary waves in shallow water. A suitable mathematical model for the description of 
the interaction of soliton-like shallow water waves travelling under slightly different 
directions is the Kadomtsev-Petviashvili (KP) equation [2]. It is actually weakly 
dependent on the transverse coordinate and has been frequently stated to apply to one 
and one-half dimensions. This equation admits explicit formulae for multi-soliton 
solutions and offers a possibility to study interaction and resonance of several 
solitons. A well-known feature of such interactions is that they may lead to spatially 
localised extreme surface elevations [3–5]. 

Although known for a long time, this mechanism has been only recently proposed 
for a possible mechanism of long-living rogue wave formation in shallow water [1,6]. 
The reason is that it is suitable (i) provided long-crested shallow water waves can be 
associated with solitons and (ii) provided the KP equation is a valid model for such 
waves. These conditions may be uncommon for storm waves; however, they may be 
satisfied when two or more systems of swell approach a certain shelf sea area from 
different directions. Since a moving pressure disturbance can generate solitary waves 
also in open sea areas [7,8], unexpected wave humps may occur in areas hosting 
intense fast ferry traffic [9,10] owing to interaction of wake wash from different ships. 



Geometry of interacting waves 

The spatial extension of the high hump in the framework of soliton interactions is 
frequently associated with the area where the interacting waves have a common crest 
[6]. For equal amplitude incoming solitons the area where elevation exceeds the sum 
of amplitudes of the counterparts may considerably exceed the estimates based on the 
geometry of the wave crests [11]. The limits of the amplitude, the spatial occupancy 
of the high elevation and the slope of the front of the interaction pattern were analysed 
in some detail for interactions of solitons of equal amplitude [6,7] that are equivalent 
to the Mach reflection [12,13] of a single soliton and have specific symmetry 
properties. A pronounced feature of freak waves is that they are particularly steep. 
Nonlinear interaction in the framework of the KP equation substantially modifies the 
profile of the two-soliton solution [11]. The slope of the high wave hump may be 8 
times as large as the slope of the incoming waves. Thus in this case the nonlinear 
interaction leads to an extraordinarily high and narrow structure. Such wave hump 
might easily break before it reaches its theoretically maximum height. The possibility 
of breaking of the high and nonlinear wave hump makes a hit by a near-resonant 
structure exceptionally dangerous. 
However, nonlinear interactions of solitons of unequal amplitudes are important in 
many applications [4,14,15]. A part of the analysis of the geometry of high elevations 
is extended to the case of interacting solitons with unequal amplitudes in [16]. The 
location and the height of the global maximum of the two-soliton solution as well as 
its symmetry properties are established in [16] for the case when the maximum 
amplitude exceeds the sum of amplitudes of the interacting solitons. The relative 
increase of the amplitude (compared to the sum of amplitudes of the incoming 
solitons) is largest when the counterparts are equal whereas elevations greatly 
exceeding the sum of amplitudes of the counterparts only occur when the amplitudes 
of the intersecting solitons are comparable. 
In this paper, we extend a part of the analysis of extremely large slopes of the 
nonlinear interaction pattern to incoming solitons with unequal amplitudes. The 
maximum slope of the two-soliton solution in the principal propagation direction is 
established for the case when its amplitude exceeds the sum of amplitudes of the 
incoming solitons. The maximum increase of the slope of the interaction pattern 
occurs in the case of equal amplitude solitons and decreases if the amplitudes of the 
counterparts become different. 

Counterparts of the two-soliton solution 

The standard KP equation in normalised variables � �tyx ,,,�  reads 

� � 036 ���� yyxxxxxt ����� , (1) 

 where � �tyx ,,��  describes a certain disturbance, e.g., the elevation of the water 

surface. A two-soliton solution of Eq. (1) is � � 2
12
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where tylxk iiii �� ���  are phase variables, � �iii lk ,�� , 2,1�i  are the wave 
vectors, the frequencies i�  satisfy the dispersion relation 
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loss of generality. Doing so is equivalent to introducing of a proper coordinate frame 
moving in a certain direction. This solution can be decomposed into a sum 
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The solution � �yx,�  is symmetric with respect to rotations by 180º around the point 
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called the interaction centre. The maximum heights (amplitudes) 2
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1
2,1 ka �  of the 

counterparts 2,1s  occur infinitely far from the interaction centre. The phase shift 

1212 ln A	��  of the counterparts may be either positive or negative. In what follows 

we consider the negative phase shift case 012 �� , 112 �A  when 21max aa ��� . 
In the case of equal amplitude solitons 21 kk �  with lll �	� 21  the interaction soliton 

12s  has two axes of symmetry: the x-axis and the line 21
12ln Axk 	�� . The incoming 

solitons 1s , 2s  are the mirror images of each other with respect to these axes. The 

solution � �yx,�  is symmetric with respect to these axes. This symmetry is lost in 
interactions of solitons of unequal amplitudes; however, the interaction soliton is 
symmetric with respect to both the coordinate axes in the � ��	 �� , -plane, where 
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and expressions for 1s , 2s  and �  have the particularly simple form [16]: 
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Equations (3) define a regular linear affine transformation (unless the wave vectors 
1� , 2�  are collinear) that maps lines of the � �yx, -plane to lines of the 
� �	� �� , -plane. In particular, the lines 0ln 12 ��� �� Aylxk  and 0�� 		 ylxk  
correspond to the �� - and the 	� -axes, respectively. These lines are rectangular on 
the � �yx, -plane and serve as the pair of axes of symmetry of the interaction soliton 

only provided 21 �� �  [16]. 



Crests and lines of steepest descent of the two-soliton solution 

The two-soliton solution is stationary in the coordinate system moving in the direction 
bisecting the angle between 1�  and 2� , that is, in the �� -direction on the � �	� �� , -
plane. Usually, wave crests are defined as sets of points corresponding to the 
maximum of the wave profile in the direction of its propagation. Since the 
counterparts of the two-soliton solution of the KP equation propagate at only slightly 
different directions, it is natural to consider the crest(s) of the whole structure in the 
principal propagation direction [11,16]. For two-dimensional structures this definition 
is sometimes ambiguous, because its counterparts may propagate in different 
directions. If this direction is not known (e.g. there exist only a snapshot of the water 
surface), crests of a smooth surface � �yx,�  could be defined as lines of curvature 
corresponding to the minimum normal curvature of the surface and going through a 
maximum (minimum) of the surface [19].  
A complementary problem to determining of wave crests is to estimate of the slope of 
the (water) surface. The lines of minimum normal curvature of a single soliton are 
always parallel with its crest. This feature suggests that the steepest descent of an 
interaction pattern may be (at least, roughly) perpendicular to the direction of wave 
crests. Therefore, the problem of the maximum slope has something in common with 
the problem of finding the lines of curvature corresponding to the maximum normal 
curvature. In the process of soliton interaction, the formal crests of the incoming 
solitons form quite a complex pattern [11,12]; however, to a large extent, the crests of 
the whole pattern are nearly perpendicular to the principal direction of propagation. 
Therefore, the steepest descent apparently exists roughly along the �� -direction. This 
property has been used heuristically by [11]. The largest slope found based on this 
assumption for the interaction pattern of equal amplitude solitons is eight times as 
large as the slope of single solitons. 
We use the same heuristic argument, and look for the maximum slope of the solution 
containing unequal amplitude solitons (interpreted as, e.g., the water surface) along 
the �� -axis. The slopes of the counterparts in the �� -direction are 
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where the upper sign corresponds to 1s  and the lower sign to 2s . The slope of the 
surface is 
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Since the global maximum of the interaction pattern for the negative phase shift case 
is at the interaction centre [12] and since the whole structure is most shrinked in the 
vicinity of this centre, the largest slope apparently exists near this point. For that 



reason, we only consider the slope along the �� -axis ( 0�	� ). Expression (6) can be 
simplified as follows: 
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For the negative phase shift case 112 �A  this condition cannot be satisfied. However, 
for the positive phase shift Eq. (9) may have real solutions. If this happens, there 
exists exactly one additional point of zero slope at each side of the axis of the 
interaction pattern. For example, for equal amplitude solitons 21 kk � , condition  (8) 

can be reduced to 12
21

12 21cosh AA 	���  and may have real solutions if 
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The location of the maximum slope in the �� -direction can be found from the 
condition 0��� ��S . From expressions (5) we have that 
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At the �� -axis, ������ �cosh1 21
120 A  and the condition 0��� ��S  at this axis 

can be written as 
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This is a cubic equation with respect to ��cosh  and serves as a generalisation of Eq. 
(29) in [11]. Certain differences between these equations are caused by different 
coordinate systems. The sum of all the coefficients of Eq. (10) is 
� �� � BBAkkAA 		�		 21

12
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2

2
112
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1231 . It is negative for the negative phase shift case 

112 �A , and may become positive only for very small 12A . Therefore, there exists 

always at least one solution 1cosh ���  corresponding to the maximum slope 
provided 112 �A . Physically, the existence of such a solution is obvious, because the 
slope of the surface is zero at the interaction centre, becomes negative in the positive 
direction of the x-axis, and approaches zero at infinity. 



In the particular case 112 �A , � �2
2

2
12 kkB ��  Eq. (10) has the form 

02cosh3cosh3 �		 �� ��  and has an obvious solution 2cosh1 ��� , 3sinh1 ���  
(cf. [11]). This case is similar to the linear superposition of waves, because neither 
phase shift nor changes in the resulting wave amplitude occur; however, this is 
possible only if one of the incoming waves is infinitesimally small [15]. The 
maximum slope in this case is 
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For near-resonant case � 12A  Eq. (10) has an asymptotic solution 

23cosh ���� , 21sinh ���� . In [11] the corresponding point at the x-axis is 

located at the distance 21
12ln~ A  from the origin. This location tends to infinity when 

� 12A  and the maximum slope calculated in [11] is, strictly speaking, correct only 
asymptotically. In the coordinate system used in the current paper the point of the 
maximum slope is located at a finite distance from the origin. The slope at this point 
at the resonance case � 12A  and the corresponding slope amplification factor are 
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respectively. The latter expression is the generalisation of an analogous result for 
equal amplitude solitons 11. This factor is exactly twice the analogous amplitude 
amplification factor [12]. In the case of equal amplitude solitons 4�sm , and it 
decreases to 1 for solitons of greatly different amplitudes. 

Extent of the area of nonlinear effects of the two-soliton solution 

The spatial extent of the extreme slopes apparently follows the extent of the extreme 
elevations and the area where extensive deformation of the crests of the incoming 
solitons occur and where the whole structure has a single crest. This extent for the 
special case of equal amplitude solitons is studied in [11]. To the first approximation, 
the area where the two-soliton solution exceeds the amplitude occurring in the process 
of linear superposition of 1s  and 2s  can be well described with the use of the 
(geometric) length of the idealised common part 12L  (Fig. 1) of the crests of the 
incoming soliton [6,11]. 
Since the interaction pattern of the two-soliton solution of the KP equation only 
depends on the amplitudes of the incoming solitons and the angle between their crests 
(that define the parameter ! ), the coordinate system for description of the 
instantaneous interaction pattern can be always chosen so that lll �	� 21 . The whole 
pattern is not necessarily steady in such coordinates. 



 
Fig. 1. Idealised patterns of crests of incoming solitons (blue and magenta lines), their position 
in the absence of interaction (dashed lines) and the interaction soliton (bold-dashed red line) 
corresponding to the negative phase shift case. 

However, in this particular case the geometric length 12
1

12 ln AlL 	�  [6] only depends 
on the l-component of the wave vectors and the phase shift parameter 12ln A , and 
shows no explicit dependence on the amplitudes of the incoming solitons. Therefore, 
the spatial extent of appearance of nonlinear effects for interactions of solitons with 
drastically different amplitudes in terms of the geometric length is as large as if the 
amplitudes were equal (Fig. 2). 
This feature of interaction of solitary waves of unequal height may be particularly 
important in applications where the function � �yx,�  has the meaning of surface 
elevation [1,6,12,20] and the extent and orientation of the near-resonant structure are 
equally important [15,18]. For example, in shallow sea areas near-resonant interaction 
of solitonic surface wave systems with radically different amplitudes apparently 
become evident in the form of bending of crests of the waves [15,16,20,21] rather 
than in the form of extreme elevations. This feature can be frequently observed in 
very shallow water (Fig. 3). In open sea conditions it apparently cannot be recognize 
in isolated form but its effect may drastically increase the probability of encountering 
a hit by a high wave possibly with a particularly large slope [7 ] and arriving from an 
unexpected direction. 
Apart from wind-generated rogue waves, the presented mechanism may have an 
intriguing application in the analysis of abnormally high waves in shallow coastal 
areas hosting intense high speed ship traffic. The sequences of long-crested soliton-
like waves are frequently excited by contemporary ships if they sail at speeds roughly 
equal with the maximum phase speed of gravity waves [8,10,22,23]. Groups of 
solitonic waves intersecting at a small angle may appear if wakes from two ships meet 
each other. Their interaction may be responsible for dangerous waves along 
shorelines. 

 



 
 

Fig. 2. Surface elevation in the vicinity of the interaction area, corresponding to incoming soli-
tons with unequal amplitudes: 3.02 �k  2.01 �	� ll , 32�resk  and reskk 9.01 �  (upper left 

panel), reskk 99.01 �  (upper right), reskk 999.01 �  (lower left), reskk 9999.01 �  (lower right) in 

normalised coordinates � �yx, . Area 60"x , 90"y  is shown at each panel. 

 
The fraction of sea surface occupied by extreme elevations or waves propagating in 
an unexpected direction apparently is small as compared with the area of a wave 
storm, because extensive areas of appearance of nonlinear effects may occur only if 
the heights of the incoming waves and their intersection angle are specifically 
balanced. An important difference should be underlined between specific waves 
possibly excited by the described mechanism and those arising owing to focusing of 
transient and directionally spread waves. In the latter case a number waves with 
different frequencies and propagation directions are focused at one point at a specific 
time instant to produce a time-varying transient wave group that normally does not 
propagate far from the focussing area. A wave hump from nonlinear interaction, 
theoretically, has unlimited life-time and may cross large sea areas in favourable 
conditions. Thus, one should account for the expected life-time of nonlinear wave 
humps (additionally to the sea area covered by extreme elevation at a certain time 
instant) when estimating the probability of occurrence of abnormally high waves. 

 
 



 
 

Fig. 3. Interaction patterns of soliton-like surface waves in very shallow water near Kauksi 
resort on Lake Peipsi, Estonia (Photo by Lauri Ilison, July 2003).  
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