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Abstract

The formalism of internal state variables is proposed for describing the processes of
deformation in muscles. Due to the complicated hierarchical microstructure of soft
tissues where macroscopic stress states depend upon the sliding of molecules and ion
concentrations, the internal variables are switched in successively forming a certain
hierarchy. This hierarchy is a general property for complicated materials with different
microscopic processes influencing the macroscopic behaviour. Based on that property a
novel concept of hierarchical internal variables is defined (up to the knowledge of
authors first time) and embedded into the framework of the existing formalism. The
discussion based on an example of cardiac muscle contraction illustrates the advantages
of this approach.

1. Introduction

The concept of internal varables has its origin in thermodynamics with first ideas in
the description of reacting chemical systems [1]. Contemporary understanding has
recently been reviewed by Maugin and Muschik [2] in the general context of non-
equilibrium thermodynamics. It rests upon the assumption that the thermodynamic
state is determined not only by observable variables  like strain or stress but also by
internal variables o hidden to the external observers. Such internal variables can be
(2, 3): a vector field d called direction in the case of liquid crystals; the damage
parameter D(0 < D < 1) in modelling the localization of damage; cumulated plastic
strain in plasticity with hardening, etc. The formalism advocated in [2, 3] is based on
continuum mechanics and includes a dissipation potential 2 from which the
governing equations for internal variables are deductible. Given the Helmholtz free
energy 9 and the dissipation potential 9, the constitutive equations can easily be
derived. This concept shows also clearly the difference between the observable and
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the internal variables. Observable variables are inertial governed by a balance law
with a kinetic energy (i.e. an inertia), internal variables, however, do not possess
inertia and are governed by the kinetic equations. The choice of an internal variable
depends upon the level of observation, or as stated by Maugin [3] “is a matter of
decision at outset from the part of the scientist”. For example, temperature is usually
considered as an observable variable, although the classical thermoelasticity is based
on the Fourier law, the modified theories [4, 5] include thermal relaxation. However it
has been shown [6] that treating temperature as in internal variable, a model evolution
can be derived describing also the temperature shocks more accurately than the
widely known Taylor shocks modelled by Burgers-type equations.

To the knowledge of the authors, all studies dealing with internal variables take them
as opposed to observable (controllable) variables reciprocally. In other words, if a
constitutive equation, say for stress ¢ is written like

0'=0(X,Of), (11)
then the evolution law for « is written like
&= f(x, ). (1.2)

The internal variable may be a scalar only or a vector with several components.

There are microstructured materials where such an approach does not hold. The
reason is a hierarchical structure of a microstructure where processes differ between
themselves due to different space and time scales. The best example of this kind is a
living tissue — a muscle. Muscle contraction depends strongly on sliding filaments
that in turn depend on oxygen and “food” supply, i.e. on cell energetics and muscle
activation. Treating stresses in a muscle as observable variables, the internal variables
form a hierarchy related to various structural hierarchies of the muscle. The main aim
of this paper is to analyse such an example and to formulate for the first time the basic
concepts of hierarchical internal variables. In Section 2 we represent the conventional
formalism of internal variables following Maugin [3]. This is a preliminary basis for
the following discussion. Section 3 describes first the hierarchical microstructure of
muscles and the physiological background. Second, the extended model of the
cardiac muscle contraction is given within the framework of internal variables. For
this purpose, Huxley equations are used in the mechanochemical theory of the
contraction [7]. Another variant is based on the distribution — moment approximation
[8, 9]. The discussion in Section 4 leads to the formulation of the novel concept of
hierarchical internal variables that bridges the formalism of continuum mechanics
with the physiological modelling. The most important point of this concept is the
clear thermodynamical basis applied to the various scales that gives the estimates of
relaxation times and entropy fluxes for the various hierarchies.

2. Formalism of Internal Variables in Continuum Mechanics

In what follows, the general ideas of Maugin and Muschik [2] and Maugin [3] are
used to represent the formalism of internal variables for later comparison. The
notations are conventional [2].
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We intend to define the thermodynamic state of a system that involves the observable
state variables x (e.g. elastic strain and temperature) and a certain number of internal
variables o. The dependent variables (e.g., the stress) must be simultaneously a
function of both

o=o(x,a), (2.1)
which must be complemented by an evolution law

a=f(x; ) +g(x, a)x (2.2)
describing the temporal evolution of the variable .
The Clausius-Duhem inequality governing a mechanical process in a continuum is [2]

~(+ST)+6: &+ V(TK) - (S- V)T > 0, (2.3)

where ¢ is the Helmholtz free energy, ¢ is the Cauchy stress, ¢ the strain tensor, S the
local entropy and T the temperature while

1
S T‘l"‘ ) (24)

where k is an extra entropy flux (later we see that it will be related to the internal
variable) and q is the heat flux.

It is assumed that ¢ is split up in an elastic part ¢ and an anelastic part &
e=¢"+¢’. (2.5)
The free energy function is assumed to be
Y=, T;a,Va) (2.6)
that is characteristic for plasticity, for example.

Calculating 1/) from (2.6) and substituting it into (2.3), we obtain

¢p=06:8 +6—(S-V)T > 0. (2.7

Here the following derivatives are defined:
o= s=-2, (28)
%:A—V-B:—%, (2.9)
=_Z_Z, B=—;T'/;, (2.10)
k= %Bd, (2.11)
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where

6 0 0
'5—a—'6_a_v'a_va. (2.12)

Stronger conditions compared with (2.7) are

Ginr =018 +a >0, (2.13)

¢n=—(S-VT) 20, (2.14)
where i, and v, denote intrinsic and thermal dissipations, respectively.
Thermodynamical equilibrium is governed by (2.13) with

P =0, =0, (2.15)

assuming the temperature to be spatially uniform. We postulate now a dissipation
potential

2 =9(6,0,¢,T,0,Va) > 0, (2.16)
which is convex in ¢ and ¢ so that

02 02
ef = = —
&= oL 5% (2.17)

On the basis of (2.9) and (2.16) we obtain

oy 0D
5+£—0, (2.18)

that can be treated as an evolution equation (2.2) complementing the state law for the
stress. Indeed, if 9 is quadratic in & and % is first highly nonquadratic in a and
second, quadratic and convex in Va. Then (2.17) yields

a =f(a,6,8,T) + Via (2.19)

It has been shown [3] that depending on time scales (relaxation effects versus inertial
ones), equation (2.18) can describe either dissipative or solitonic structures.

3. Internal Variables in Modelling Cardiac Muscle Contraction

3.1. Physiological background

We refer here to the fundamental treatises on cardiac performance [10, 11] focussing
our attention to the mechanical behaviour of the heart. By contraction of heart
muscles, the blood is pumped into circulation: the right ventricle is responsible for
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Fig. 1. A sarcomere of length /.

the pulmonary circulation, the left ventricle for the systemic circulation. In terms of
continuum mechanics, the ventricles are thick-walked shells with complex geometry
made of muscle-fibres with essential variation of their orientation, i.e. the muscle is a
highly anisotropic material. Anisotropy of fibres is not the only important property —
the fibres have a complicated microstructure. When activated by electrical signals
originating from the sine-node, the stretching of fibres is caused by a complicated
mechanism. In order to determine stresses in the walls of ventricles (myocardium)
one has clearly to understand the leading factor of this mechanism.

For further discussion we need a more detailed description of muscle fibres [10-12].
The muscle fibre is made up by the bunches of myofibrils with a surrounding
sarcotubular system. The myofibrils convert metabolic energy into mechanical energy
and the sarcotubular system governs the behaviour of Ca%* ions needed for activation.
The structure of myofibrils is shown in Figure 1. A myofibril is composed of
repeating units of myosin and actin filaments, called sarcomeres. The actin filament is
made of a double helix of actin molecules with troponin molecules localized at every
half-turn of the helix, the myosin filament consits of myosin proteins with certain
spatially localized meromyosin molecules with heads resembling “‘golf-clubs”.
These molecules are shown in Figure 1 schematically as the “combs” called cross-
bridges. The actin filaments are linked to each other at the Z-line, while a connecting
molecule (connection) protects the sarcomere against overstretching linking also
myosin filaments to this line.

The excitation of a muscle is triggered by an action potential from the conducting
system. This potential releases Ca®* ions that activate the troponin molecules at the
actin filament so that they will be able to attach the heads of myosin molecules (see
Fig. 2). The myosin molecules swivel and cause the sliding of filaments against each
other, i.e. the contraction. The cycle is the following: attaching (influence of Ca’*
ions), swivelling (resulting in the sliding of filaments, i.e. powerstroke), detaching
and resetting.

3.2. Microstructural models

It is clear that for modelling the mechanical stresses in such a complicated material as
myocardium, its microstructure must be taken into account. The early phenomen-

J. Non-Equilib. Thermodyn. - 2000 - Vol 25 - No. 2



124 J. Engelbrecht et al.

binding sites '
(@) Actin —e—0—@ (b) ,
cross-%.
Myosin .

i w
Gy —o— oo (© ;

Lo

\

Fig. 2. A cycle of sliding the filaments (read clockwise): (a) to (b) — attaching; (b) to (c) —
swivelling; (c) to (d) — detaching; (d) to (a) — resetting.

ological models have tried to describe the relationships between observed
macroscopic data [13]. Contemporary microstructural models, however, try to take
the physiological background and the structural peculiarities into account. Starting
with Hill [13] and Huxley models [14, 15], contemporary modelling has put much
emphasis on various modifications [8, 9, 12]. Continnum mechanics theory of the
heart muscle has clearly reflected the physical meaning of microstructure (see, for
example [12, 16, 17]) together with numerical solutions. Here we represent the basis
models within the framework of the concept of internal variables, that will enable us
later to generalize the basic ideas.

3.2.1. Huxley models

The total stress in the tissue can be split up into two parts
6 =6, + 6, (3.1)

where 6, and 6, denote passive and active stresses, respectively. Here ¢ is the Cauchy
stress tensor. The passive stress 6, results from elastic deformation of the myocardial
tissue. For the sake of simplicity, the viscoelastic behaviour is neglected (for that see
[17]). This is justified by the fact that the typical loading cycle is much shorter than
the characteristic relaxation time of the myocardium [10]. The active stress is
generated by sarcomeres and is directed parallel to the fibre orientation. Therefore we
assume

6, = 0ze1€. (3.2)
The passive stresses are determined from the Helmholtz free energy 1 (c.f. (2.8))

01 0%

= B (3.3)
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It is generally understood (Fung [18]) that 9 should be an exponential function of ¢,
describing a hyperelastic material. For example,

C
= —E(eQ— 1), (34)
where C is a material constant and

Q="bi(en +ep+e33)* + byel, + by(et, + €25 + &

~€11€22 ~ E2€33 — €33€1]) (3.5)

where by, b,, by are positive material constants and €;j the components of g°.

The active stress 6, must depend on the microstructure and in terms of continuum
mechanics, is affected by internal variables. First, the force on actin molecules
depends on the distance z between attached cross-bridge and the nearest acting site.
Denoting by A and B the two “strong” binding states and by C the “weak” binding
state [19] we recognize that cross-bridges produce mechanical forces in states A and B.
The corresponding interaction scheme is shown in Figure 3 with kinetic constants fi
and g; between the states. The forces are calculated by

F4 = Kyz, (3.6)
FB = KBZ, (37)

where K4, Kp are elastic constants. Further we denote K, = K , Kg = K. The total
force developed by myofibrils depends on the distribution of the cross-bridges. Let
n4(z) and ng(z) be the relative amounts of cross-bridges between z and z + dz in
states A and B, respectively. Due to the independence of cross-bridge and actin sites
distributions, the cross-bridges are uniformly distributed in z over an interval d. The
active stress o, is then found from the expression

LK [ (4 d/2
04 =mz ¥ ( J o na(z)dz + J Zne(Z)dz ; (3.8)

_d/
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where m is the number of cross-bridges per unit volume and I is the sarcomere
length.

The variables n4 and ng are nothing else than internal variables. From that point, the
physiological model will be built along the ideas of continuum mechanics leading to
the novel concept. Internal variables are governed by the following (coupled) kinetic
equations [7]

0 Ony
% 7 = finc + g2ng — (81 + f2)na, (3.9)
5] Ong
% L 8 = fona — (g2 +f3)ns, (3.10)

where w is the velocity of lengthening and n¢ is the amount of cross-bridges in the
state C that does not produce force. The whole relative amount of activated cross-
bridges in A must satisfy the summation rule

A=nc+n4+np. (3.11)

This activation parameter A is again an internal variable but it affects not the
observable variable ¢, directly but within kinematics of internal variables n, and ng.
The activation parameter is in turn governed by the kinetic equation [15]

% = c1(l)[Ca**)(1 — A) — 2 (I5)A (3.12)

with
¢} = const., (3.13)
) —he (3.14)

C2=C2Mx+C2p(l _p .)).
s — bs(min

Rewriting (3.12) in a form used in the formalism of internal variables [2, 3]

% = —(c1(,)[Ca**] + c2(I))A + e1 (1) [Ca?t], (3.15)

it is easy to conclude that the relaxation time 74 and the equilibrium value of the
internal variable A depend on a new variable, namely upon the relative Ca?*
concentration {Ca>*]. This must be governed by its own kinetic equation

d[Ca ]

= f([Ca**)). (3.16)
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Instead of solving equation (3.15) with a known function f( ), the approximations of
experimental curves can be used, for example:

exp(5 k), i
fcat ={ o, HiSh (3.17)

1=15\2 1
exp(—(57)), >,

where #; is the duration of one cycle of calcium changes and 1, the time to the peak.
To sum up, the active stress in myocardium is influenced

— directly by internal variables ny,, ng;
— the internal variables n4 and ng are influenced by another internal variable A;
— the internal variable A is influenced by the internal variable [Ca*].

This scheme shows a hierarchy of internal variables reflecting the hierarchy of the
processes in the tissue. A more detailed description of such a model with some
quantitative data is given in [20].

3.2.2. Distribution-moment approximation

Zahalak [8] and Ma and Zahalak [9] have put the Huxley model into a continuum
context using the so-called distribution moments. The active stress o, is described
directly by one distribution moment o

0 = Al (3.18)

where " is a constant, but this distribution moment is described by its kinetic
equation

2—? = B3(t)b1 — Gi(e, By, ) + vy, (3.19)

that depends on two other distribution moments B;, B, and on the relative amount
B3(t) = A(t) of active cross-bridges. The governing equations for those are

apg,

W = :83b0 - GO(a’ :81’182)’ (320)
dTﬂtz = P3by — Ga(e, B, ) + 2va, (3.21)
D2 = (1 - B2) - ca()6), (322)

where v = dL,/dt and y = [Ca*] is the intracellular Ca?* concentration (cf. eq.
(3.16)). Again, similarly to Section 3.2.1., there are three levels of internal variables.
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4. Dicussion

In Section 2, the formalism of internal variables used in continuum mechanics (solid
mechanics) has clearly demonstrated the need for determining elastic (free energy)
and dissipative potentials. The variables in this formalism are either observable or
internal. In Section 3, more complicated cases were described in order to model
cardiac muscle contraction. The internal variables in this case form a hierarchy
reflecting the hierarchy of microstructure. Based on that analysis we propose now the
concept of hierarchical internal variables that reflects the ordering in the physical
(physiological) structure of a material (tissue).

In general terms, the concept of hierarchical internal variables is the following:

1) A constitutive equation for a dependent variable, say o, which depends on the
observable variable y and internal the variable «

o= o(x, ). 4.1)
2) The evolution law for o is
a =f(X7 Q, ﬂ)7 (42)

where (3 is another (second-level) internal variable influencing o only through the
dynamics of the first level internal variable c.

3) This evolution law for G is

ﬂ'= g(X7 a’ﬂ77)’ (43)

where « is the next (third-level) internal variable, influencing o only through the
dynamics of the second-level internal variable, etc.

4) The evolution law for 7y is

’yzh(Xﬂl’ﬂ,’Y;"')’ (4'4)

etc.

Internal variables a, 3,7, . .. from a hierarchy reflecting the hierarchical structure of
the material (tissue in Section 3). In this hierarchy, the influence of a certain internal
variable is defined at its own level and one level higher.

The internal variables o, 8,7, ... have all their own relaxation times 74,73, T, - - ..
The process itself has a macroscopic time scale 7,. It is useful to express the relation
of 7, i = a, (3,7, ... over 7, through the dimensionless Deborah numbers [21]

De; = 7;[1,, i=0a,B,7.... (4.5)
that serve as measures of the degrees of nonequilibrium of a, 3,7, . . .. The condition

De; < 1 should be satisfied [2, 21] when the dynamics of the internal variables has
no influence on the process. The condition for hierarchical internal variables implies
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the same order of all the 7;’s. In Section 3, the muscle contraction is described over
one cycle of heart beat and therefore this condition is always satisfied. If, however,
one of 7;’s is large, i.e. the change of this internal variable is slow, then the corre-
sponding evolution law (kinetic equation) could be approximated by an algebraic
equation. The internal variable is then “frozen” [2). Such situations in cardiac
dynamics may happen due to pathological changes in cell energetics, in other cases
they could be influenced, for example, by nonmonotonous coupling effects or
physical effects that change the structural behaviour.

The physiological model discussed here describes the cardiac muscle contraction. It
is clear that a similar formalism can also be considered for skeletal muscle con-
traction as for example analysed by Piazzesi and Lombardi [22] using the original
equations [7]. The latters, however, explain the rates of transmission between the
several states only at one level of internal variables,

The cardiac output is related to the demands imposed on the heart during exercise. As
pointed out by Alpert et al. [23], the heart may use several strategies to meet these
demands (in our terms) at various levels of internal variables. Then the functional
behaviour of the whole heart could be optimized either for all or some level of internal
variables.

It is obvious that the extra entropy flux k depends also hierarchically on all the internal
variables (cf. expression (13) and evolution laws (44), (45), and (46)). Since the force
development by a cross-bridge in the force-producing state depends on the first
derivative of the Gibbs free energy G with respect to the displacement variable z [7], G
is related to the dissipative potential @ through ¢. There are several interesting
questions which need further analysis. For example, how to construct dissipative
potentials Z,, D, D, . .. corresponding to each level of internal variables, what kind
of models need the gradients Va, VB, V4, ... to be included into the evolution laws,
etc. Generally speaking, further analysis with clear distinction between the hierarchical
internal variables might cast light over the formation of dissipative structures.
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