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Figure 6.1 : The game board of our first chaos game.

Figure 62 : The fisst six sieps of the game. Gaise poinis are
comnecied by fine segments.

Figure 6.3 : The chaos game after, 100:steps (a), S00-steps (®),
1000 steps-(c), and 10 000 steps (d). Only the-game points-are
drawn without:connecting fines. (Note that there are a few-spurious
do® that are clearly ot in tife Siespeiski gasket.)

The First Steps ...

... and the Next Game
Points



Figure 1.20  The Chaos Game (Three Corners, Two-thirds Version).
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DNA is composed of
four chemically different building blocks, called bases, which are
designated by the letters A, C, G, and T. All biological informa-
tion is thought to be encoded in “words” spelled from these
letters. If we look at the string of A’s, C’s, G’s, and T’s making up
a given gene (a piece of DNA encoding the rules for making a
protein), it’s very hard for the untrained eye to see much rhyme
or reason in it. Here’s an example, using the first 250 or so bases
in the DNA coding for the enzyme amylase:

GAATTCAAGTTTGGTGCAAAACTTGGCACAGTTATCCGCAAG
TGGAATGGAGAGAAGATGTCCTATTTAAAGTAAATATATACG
ATTTTGTCATTTGTTCTGTCATACATCTGTTGTCATTTTCTTAA
ATATTGTAACTTAAATTGTTGATTATTAGTTAGGCTTATTGTT
CATTTATCCTTAATTAATTATGTTTTTCATTTGATACATCAGT
CACCTGATAACAGCTGAAATCTAAAGTATCACTTAGTGAGTT
TTGTTGGGTTGTGTT

But if we make a square with corners labeled A, C, G, and T, take
a starting point in the middle of the square, and then play the
Chaos Game by going halfway to a previous point from the vertex
whose letter appears next in a given DNA string (many such
strings have been identified, in everything from primitive orga-
nisms to humans), some of the syntax of this code jumps out.

Figure 1.23  Four-cornered Chaos Game picture generated by the DNA encod-
ing the enzyme amylase.



Figure 2.27 Amylase DNA IFS square with empty regions marked.

1 | 2
Figure 2.26  Some holes in an otherwise filled-in square made by the random
IFS algorithm plus the condition that rule 1 cannot follow rule 3.
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Abstract

Fingerprints are one of the simplest and most reliable human biometric features for identifi-
cation. Geometry of the fingerprint is fractal and we can classify a fingerprint database with
fractal dimension, but one can’t identify a fingerprint with fractal dimension uniquely. In this
paper we present a new approach for identifying fingerprint uniquely; for this purpose a new
fractal is initially made from a fingerprint by using Fractal theory and Chaos Game theory.
While making the new fractal, five parameters that can be used in identification process can
be achieved. Finally a fractal is made for each fingerprint, and then by analyzing the new frac-
tal and parameters obtained by Chaos Game, fingerprint identification can be performed. We
called this method Fingerprint Fractal Identification System (FFIS). The presented method
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besides having features of fractals such as stability against turning, magnifying, deleting a part

of image, etc. also has a desirable speed.

Keywords: Biometric; Fingerprint Identification; Chaos Game Theory; Fractal Dimension.

1. INTRODUCTION

These days, identification is known as an issue
which is so interrelated with human biometric
features that signature, face, voice, iris, finger-
print, etc. in human are used for this purpose.}
Undoubtedly, one of the simplest and most reli-
able identification methods based on human bio-
metric features is the fingerprint, which has been
in use for more than a hundred years in human
identification, due to its stability and unity. Iden-
tification based on fingerprints is considered as one
of popular methods in identification of individuals
and the simplicity of the mechanism is the cause of
this popularity. Sir Francis Galton and Sir Edward
Henry were the first people who worked on identi-
fication based on fingerprint.>? Galton focused his
studies on fingerprint features and the results of his
study led to definition and identification of some
features in fingerprint and he called them Minu-
tiae. Some of these features are shown in Fig. 1.
Unlike him, Henry studied the general structure of
fingerprint and the results of his studies led to clas-
sification of fingerprints into five categories; Fig. 2
shows this classification for fingerprints. Studies of
these two were so much deep and clear that even
after a hundred years they are used in researches.
Issue of mechanical and automatic identification of
fingerprint after extensive studies was authorized

Termination

Bifurcation

Lake

Independent ridge

Point or island

Spur

b oYl

Crossover

Fig. 1 The most common minutiae types.

by FBI in 1969 and after that this task was given
to National Institute of Standards and Technology
(NIST). Some other works have been carried out
on this subject, for instance we can point to what
Maltoni has done for this purpose. He and his col-
leagues, relying on techniques based on Minutiae
which Galton had introduced, worked on basic fea-
tures of fingerprint and did the identification by
the aid of these features.* In another work which
was presented by Polikarpova, he analyzed finger-
print with fractal outlook. In this report fractal
method is used for identification.? Also in an article
which Karki presented with the assistance of his col-
leagues in 2007, like Maltoni, by analyzing Minutiae
and improvement of popular methods he worked on
identification based on fingerprint.®

2. FINGERPRINT

The ins and outs on tip of fingers are called finger-
prints. Based on studies of Galton, there are some
features in each fingerprint which are different in
various samples of fingerpiints. These features are
called Minutiae and on average there are about 50
to 80 features in each fingerprint.”® Core, delta,
bifurcation, ridge, crossover, and island are some of
these features.

2.1. Fingerprint Identification
Methods

Fingerprint identification methods are often divided
into two main groups'® 1%

(1) Minutiae Based Algorithm (MBA)
(2) Pattern Based Algorithm (PBA)

In the first type a fingerprint becomes ready for
processing in a pre-processing stage and then the
features of that fingerprint is compared to the fea-
tures of other fingerprints. However, in a pattern
based method, the pattern of fingerprint sample is
compared to other samples, level of conformity
is calculated and on the basis of that a decision
is made.
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Fig. 2 Henry fingerprint classification: (a) Right loop; (b) Left loop; (¢) Whorl; (d) Arch; and (e) Tented Arch.

3. FRACTAL DIMENSION

The term fractal was introduced by Mandelbrot for
the first time in 19751 and refers to geometry of
objects which have the following features:

(1) Self-similarity;
(2) iterative formation; and
(3) fractional dimension.

It means that components of a fractal object are
similar to whole of that object and are produced
with a repetitive procedure and more importantly,
if we calculate dimension of these objects, unlike
objects like a line which has just one dimension or
plate for which dimension is two, the dimension of
fractal objects is a decimal number. In Fig. 3 a sam-
ple fractal is shown; while Fig. 4 shows another frac-
tal which is known as Sierpinski Triangle and it has
a dimension of 1.58.

The fractal dimension is a statistical quantity
that gives an indication of how completely a fractal
appears to fill space, as one zooms down to finer and
finer scales. As a mathematical definition it should
be said that the base of most definitions of dimen-
sion is the idea of measurement in the scale of 4.
For each 4, by ignoring irregularities smaller than
§, we measure a collection and we see how these
collections behave when § — 0. For instance, if F

Fig. 3 Farid’s fractal. (From Dr. John Daab, http://www.
fineartregistry.com/articles/art-technology /fine-art-authen-
ticator-technology.php.)

is a surface curve, then our measurement M (6(F))
can be the number of necessary steps for measure-
ment or covering of F' by making use of distance or
length of 4.

3.1. Fractal Dimension Calculation
Methods

In 1977, for the first time Mandelbrot gave a defi-
nition of fractal dimension.!® Fractals explain some
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Fig. 4 Triangle, that its dimension is 1.58.

of irregular geometric features of shapes and solids
which seem similar in all scales. Many of the objects
around us have such complicated features that mea-
surement of length, area, or volume with com-
mon methods are impossible. However, there is a
method for measuring their geometric properties
so that while measuring with higher accuracy by
estimating increase of length (area, volume) this
method can be obtained. The main thesis of this
method is that two basic quantities — length (area,
volume) — on the one hand and level of accu-
racy in measurement on the other hand do not
change by their own will; rather they change in
a way which provides the possibility of measure-
ment of fractal dimension. This outlook is in fact
the same hidden basic idea in calculation of fractal
dimension.

The followings are some of the most important
methods of fractal dimension calculation®:

(1) box-counting dimension;
(2) Hausdorff dimension;
(3) packing dimension;

(4) Renyi dimension; and
(5) correlation dimension.

For example, in the Box-Counting method the
proposed fractal is divided into similar boxes and
then logarithm of boxes, which includes the cho-
sen collection, is calculated in relation with loga-
rithm of reversed ratio of size of box. This should
be repeated again for other sizes of boxes and after
defining the ratio shown in relation (1) in a two-
dimensional graph some points would be obtained

Fractal Dimension
7 T T T T T

Fractal Dimension = 1.15

L L L L
uﬂ 1 2 3 4 5 ]

Log 1/s

Fig. 5 Calculate fractal dimension with box-counting
method.

and the slope of the line which passes these points is
considered as the dimension of the proposed object.
Figure 5 shows the procedure of fractal dimension
calculation with Box-Counting method.
D= log(Ns) . 1)
log(1/s)

3.2. Fingerprint Identification with
Fractal Dimension

Fractal dimension is a statistical quantity and a part
of fractal properties, and can be considered as a
suitable parameter for comparing fractals so that
analyzing the calculated dimension for several fin-
gerprint samples shows their difference. However,
most of the time calculating fractal dimension for
more than four decimal digits is not possible; there-
fore it can identify at most 10,000 fingerprints and
it is not sufficient for identifying fingerprints. Con-
sequently, this fractal dimension cannot be used
for fingerprint identification, but after some experi-
ments we concluded that we can use fractal dimen-
sion for fingerprint classification, based on Henry’s
classification.

3.3. Chaos Game Theory

Chaos Game theory was presented by Barnsley in
1988.16:17 This theory on the strength of Shannon
Theorem is presented in a way that by using Ran-
dom Walk mechanism and by the aid of a poly-
gonal a fractal can be produced. This theory has
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Fig. 6 Chaos Game mechanism on triangle that generate
Sierpinski triangle.

two important points: first, by performing Chaos
Game mechanism on a fractal a new fractal can
be produced. Second and more important, while
performing Chaos Game mechanism for producing
the new fractal, besides properties of fractal some
parameters can be achieve which would be useful in
identification process. If we perform Chaos Game
mechanism on a triangle, the procedure will be as
the following: first, an accidental point is chosen.
This point is the start point and it is not impor-
tant in what situation it is. Then, in the second
step an accidental number in the scope of [1, 2 or
3] is chosen. If 1 is chosen it means summit A, if 2
is chosen it means summit B, and eventually if 3 is
chosen it means summit C in triangle. Then, from
the present point we step forward half way toward
chosen summit and draw a new point. Again, we
make an accidental choice and repeat the same pro-
cess for several times (for example 50,000 times).
This way a shape which is the Sierpinski Triangle is
drawn. In Fig. 6 four steps of Chaos Game mecha-
nism are shown.

4. MAKING NEW FRACTAL
BASED ON FINGERPRINT

A fingerprint is a fractal and from fractal outlook it
has fractal diménsion parameter which is not suffi-
cient for identification. As mentioned in Sec. 3.2, by
the aid of Chaos Game a new fractal can be made
and while making the new fractal more parameters
can be obtained. As a result, based on a fingerprint
and a pattern which will be pointed at afterwards
the new fractal is made. The mechanism is such
that a pixel of fingerprint is selected by chance. A
point has 2 states: first, the pixel can be an in or
zero or it might be an out or 1. Both of these states

Fig. 7 Position of four assistant point’s base on Random
Point.

cannot be sufficient for identification, so an acciden-
tal point is chosen and based on a new parameter,
which is called Scale, we find four points around the
aforementioned accidental point. If accidental point
is A[t, j], four points will be:

Pointl = Az — Scale, j — Scale];
Point2 = A[i + Scale, j — Scale];
Point3 = A[i + Scale, j + Scale];
Point4 = A[i — Scale, j + Scale].

These four points are shown in Fig. 7. Having
these four points, 16 states are made which we
divide into five distinct groups. First group is the
state where pixels of all these four points are white,
second group is the state where just one pixel from
the mentioned points is black and all others are
white. Third group is the state where the number of
points with black pixels is two, fourth group is the
state where the number of points with black pix-
els is three, and finally fifth group is a group where
all four points have black pixels. Considering binary
structure, these four points and creation of sixteen
possible states, all of them and their assortment
based on the mentioned classification are shown in
Table 1. Sixteen created states in Table 1 make five
groups and for making a new fractal in Chaos Game
process we use a square which is shown with five tips
in Fig. 8. These five tips are named with alphabets
to make the new fractal image which is obtained
from the fingerprint. The result of fractal which is
made by the above procedure for several samples of
fingerprints is shown in Fig. 9.

5. PARAMETERS EXTRACTION

As mentioned before, while making new frac-
tal Chaos Game mechanism, new parameters are
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Table 1 Category of Different State of Points.
Points 1-4 Category Points 1-4 Category
0000 1 1000 2
0001 2 1001 3
0010 2 1010 3
0011 3 1011 4
0100 2 1100 3
0101 3 1101 4
0110 3 1110 4
0111 4 1111 5

[ o
=

'C

D E

Fig. 8 Five points that are mapped on five categories in
Table 1.

Fig. 9 Four fractals that generated from four fingerprints.

obtained which can be useful in identification. In
part four it was cited that regarding four defined
points for pixels of those points, five states can
be created which are classified into categoryl to

Fig. 10 Spectrums of a fingerprint.

categoryd. Then, we repeat Chaos Game mecha-
nism 100,000 times and in each repetition by identi-
fying four pixels of the points one of possible states
is chosen and one unit is added to the counter of
that category. This way, at the end of Chaos Game
mechanism total of all five categories is equal to the
number of repetitions, i.e. 100,000. By dividing each
of categories by 100,000 they are standardized and
we state them in the zero to one span. Therefore,
for each fixed quantity for Scale parameter, which
is the distance of points to the accidental point,
five parameters are calculated. As five parameters
with accuracy of (0.02) are not enough for identifi-
cation, the above mentioned procedure is calculated
for quantities of 10 and 15 for Scale.

As a result, we will have ten parameters and con-
sidering the accuracy of 0.02 in the span of zero to
one we will have 50 varieties. By having ten param-
eters we will reach 500 = 9.76 x 10'6 varieties for
fingerprints, which guarantees unity of fingerprints.
On the other hand, if we calculate Scale with dif-
ferent quantities for a fingerprint, we will have five
independent spectrums and with the accuracy of
0.02 these spectrums are able to identify fingerprint
based on the given mechanism. Figure 10 illustrates
spectrums of parameters which are obtained from a
sample fingerprint.

6. IMPLEMENTATION

The presented technique in this report (FFIS) has
been carried out by MATT AB and has been exper-
imented on 600 samples of fingerprints,'® of which
there are four samples of each. A sample of images
used is shown in Fig. 11. Results obtained show
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(2) (b)

Before

Fig. 11 (I) after

preprocessing.

preprocessing, and (II)

Table 2 Result of Search and Feature Extraction.

Fingerprint Name FEST (ms)* ST (ms)**
Figl001B1 1839 32
Figl152B1 1906 32
Figl 263B1 1870 31
Figl484B1 1898 34
Figl545B1 1901 31
Figl001B2 1885 32
Figl001B5 1863 33

*FEST: Feature Extraction and Save Time (millisecond).
**ST: Search Time in 600 Samples (millisecond).

100% success for this technique. In another exper-
iment 50 samples of fingerprints for which 20%
of image was accidentally deleted were analyzed
with the remaining parts, and again 100% success
was obtained and this shows stability of the pre-
sented method encountering deletion of some parts
of image. Table 2 illustrates data related to time of
searching in a database, which includes 600 samples,
and also information related to time of decipher-
ing and saving features of fingerprint in a database
for some fingerprint samples. It must be noted that
the experimenting system had a CPU Intel Celeron
2.60, 512 MB RAM and Windows XP as its oper-
ating system.

7. CONCLUSION

Identification process by fingerprint based on popu-
lar methods such as Minutiae Based Algorithm and
Pattern Based Algorithm is a time consuming pro-
cess; thus, it encourages researchers to study new
methods with more efficiency. As the fingerprint is
a fractal, properties of fractals can be used in analy-
sis of fingerprints. One of these properties is fractal

dimension calculation, which because of low level
of accuracy cannot be efficient in identification, but
it can be used in classification. From other proper-
ties of fractals deciphering features through Chaos
Game mechanism can be relied on. In this mech-
anism, as many as required features of fingerprint
are achieved. We have extracted five features with
various scales and with accuracies of 0.02. This led
to a great variety and in this way we can guarantee
keeping the unity of fingerprint in presented tech-
nique. Using the presented process in this study has
led to expansion of efficiency of automatic systems
in identifying human by fingerprints and the speed
which is presented in this system is our basic pro-
posed expansion.

8. FURTHER RESEARCH

The outlook presented in this study has provided a
new viewpoint for analyzing fractals and by using
Chaos Game mechanism new features have been
extracting for each fractal. Therefore, it can be use-
ful in cases such as classification of histopathology
slides in medicine, generation of new music, genera-
tion of various art forms, signal and image compres-
sion, fractal antennas, technical analysis of price
series, etc,19:20
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Bacterium-Phage Interactions

Multi-Species Model of Bacterium-Phage Interaction

dl; 3 '
dt3 - (L2 — Lis) — plis, (6.17)
dP:,. 3 3
’ =&; — F; gaing + o+ ‘kzzl ciilig | + 3,3:,‘}‘3:3/73;, (6.18)
ds >, 47:5B; :

Here, ¢; is a small external supply of phages, and § is the burst size.
While all other variables in the model are treated as deterministically deter-
mined mean values, ¢; is a Poisson distributed stochastic variable with an
average value of ¢ = 0.1/ ml - min for all phage variants. Clearly, ¢ is only
significant as a source of infection.

Altogether, this leads to the following set of differential equations

dB;  v;JB; i
L i Y B,: -+ aé'wé'P' 3 (614)
3
E{{E =B; E aijwii P; — plin — 3L/, (614,
dt e
. IO (In — Ii2) — pliz, (6.16)

@



Multi-Species Model of Bacterium-Phage Interaction
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FIGURE 6.8 Results of a simulation in which the rate of dilution is gradually reduced from
0.011/min to 0.007/min over a period of 20,000 min. The vertical axis shows the con-
centrations of bacteria and viruses on a logarithmic scale. As the viral populations reach
macroscopically significant levels, the system becomes unstable and starts to produce self-
sustained oscillations. Full curves for the three bacterial variants; dotted curves for the
corresponding viruses.

Multi-Species Model of Bacterium-Phage Interaction

FIGURE 6.9 Three-dimensional phase plots of the symmetric periodic solutions which exist
for a dilution rate of p = 0.0065/ min. As axes we have used the three bacterial populations
on a logarithmic scale. The existence of two symmetric attractors is characteristic of systems
where rotation in one or the other direction are equally possible.



Ecological and Microbiological Population Dynamics

FIGURE 6.10 Three-dimensional phase plots of the two symmetric quaai?periodic so!utio_ns
which exist for p = 0.0055/min. Interestingly enough, the periodic solutions shown in Fig.
6.10 still exist as stable attractors.

The Chaotic Hierarchy

FIGURE 6.11 Three-dimensional phase plots of the two symmetric chaotic solutions which
exist for p = 0.0045/min. The periodic solutions of Fig. 6.10 still exist and can be reached
from particular sets of initial conditions. In the next section we shall describe how the
chaotic solutions develop out of the quasiperiodic solutions in Fig. 6.10.
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FIGURE 6.12 Bifurcation diagram for a system with two bacterial populations. With initial
conditions (S)o = 0.0,(B1)o = 25000/ml and (Bz)p = 25118/ml, the simulation has been
started at p = 0.0050/min and the stationary solution followed adiabatically with a step
size of Ap = 2.0 - 10~%/min. For each value of p a transient of 105 min was omitted, and
subsequent steady state intersection points with the Poincaré plane B; = B; were plotted.
Vanishing initial populations of phages and infected bacteria were assumed.

The Chaotic Hierarchy
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FIGURE 6.16 Bifurcation diagram for the three-population model. Several branches obtained
with different initial conditions have been plotted on top of each other. For p < 0.0030/min,
only hyperchaos with two positive Lyapunov exponents is found.
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Abstract

Fertilization of an egg cell is marked by one or several Ca* waves that travel across the intra-cellular space, called
fertilization Ca>* waves. Patterns of Cal* waves observed in mature or immature oocytes include traveling fronts and pulses
as well as concentric and spiral waves. These patterns have been studied in other excitable media in physical, chemical, and
biological systems. Here, we report the discovery of a new wave phenomenon in the numerical study of a bidomain model
of fertilization Ca’* waves. This wave is a front that propagates in a back-and-forth manner that resembles the movement
of tango dancers, thus is called a tango wave. When the medium is excitable, a forward-moving tango wave can generate

traveling pulses that propagate down the space without reversal. The study shows that the occurrence of tango waves is related

to spatial inhomogeneity in the local dynamics. This is tested and confirmed by simulating similar waves in a medium with
stationary spatial inhomogeneity. Similar waves are also obtained ina FitzHugh-Nagumo system with a linear spatial ramp. In
both the bidomain model of Cal* waves and the FitzHugh-Nagumo system, the front is stable when the slope of a linear ramp
is large. As the slope decreases beyond a critical value, front oscillations occur. The study shows that tango waves facilitate
the dispersion of localized Ca’*. Key features of the bidomain model underlying the occurrence of tango waves are revealed.
These features are commenly found in egg cells of a variety of species. Thus, we predict that tango waves can occur inreal egg
cells provided that a slowly varying inhomogeneity does occur following the sperm entry. The observation of tango wave-like
waves in nemertean worm and ascidian eggs seems to support such a prediction.

© 2003 Elsevier B.V. All rights reserved.

2 a
Because Ca“™ levels in both domains are finite in
the bidomain model, we can introduce a new variable
o )
z, called the total Ca-* concentration at each space
point:

I=C+0Ce, 4)

where the volume ratio o plays the role of a volume
converting factor. Thus, oc. represents the Ca’* con-
centration in the ER measured by the cytosolic vol-
ume instead of the ER volume. Replacing c. by z in
(1)~(3), we obtain

dc ch 3 -
[+ P( ) (z—s¢) — E;;+szc.

é_t c+a + kl

(5)
az 5 B
gr' = (D — D.)V-¢c+ D.V~z, (6)
dh
5 = sl = (L+ohl, 7

where | = L/o, p = P/o, and s = | + o. Note that
Eq. (6) is actually a linear equation with a clear phys-
ical meaning. It says that a change in the value of :
can only be caused by Ca*™ diffusion but not by Ca’*
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c(x,t) Simple front

Tango wave

1 c(x,t)

Time,
(b) 5 0

Fig. 3. (a) A simple front generated by a super-threshold stimulus in a bistable medium. (b) A tango wave generated by introducing a
large amount of Cal* into a medium that is neither bistable nor excitable, Parameter values used are the same as in Fig. 2a, except that

before the stimulus is applied, = 1.743 in (a) and z = 1.648 in (b).
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Abstract

Duffing—Van der Pol equation with the fifth nonlinear-restoring force is investigated.

The bifurcation structure and chaotic motion under the periodic perturbation are obtained
by numerical simulations. Numerical simulations, including bifurcation diagrams,
Lyapunov exponents, phase portraits and Poincaré maps, exhibit some new complex
dynamical behaviors of the system. Different routes to chaos, such as period doubling
and quasi-periodic routes, and various kinds of strange attractors are also demonstrated.

Here, we consider the extended DVP oscillator by
introducing a quintic term described by the equation

F—pu(l=—x))x +w§x +Bx3 +8x° = fcos wt, (2)

where & is a constant parameter. The potential is of ¢° type,
given by

w? )
Vix)= ?uxl et xS, (3)

6

+ E 4
4
Depending on the set of parameters, at least three physically
interesting configurations can be considered, wherein the
potential is (i) single-well, (ii) double-well and (iii)
triple-well. Each one of the above three cases has become a
central model to describe inherently nonlinear phenomena,
exhibiting a rich and baffling variety of regular and chaotic
motions. Throughout this paper, our analysis is of the
triple-well case.

This ¢°-potential system has attracted much
attention [21-23], because it is a universal nonlinear
differential equation, and many nonlinear oscillators in
physical, engineering and biological problems can really be
described by the model or analogous ones.



(b)

-0.05 1 ‘ lf

b : ] w b

=014 . - . v . 11 112 114 11 11 1 ;
06 08 10 12 14 16 18 20 22 as 18 12 122

[+
Figure 2. Local amplifications of figure 1(a):
Figure 1. (a) Bifurcation diagram of (4) in the (& — Y) plane for (a) € (0.610, 0.860); (b) & € (1.085, 1.230).
f=10,u=03p=-18,=06andw=0.6.(b) The largest
Lyapnouv exponents corresponding to (a).

) 0.2

A1

0.2 |
|

1.2 14 16 1.8
[0}

(]
n
()

Figure 4. (a) Bifurcation diagram of (4) in the (& — X) plane for
f=100,p0=038,a=02558= —0.58 and § = 0.16. (b) The
largest Lyapnouv exponents corresponding to (a).



ﬁ Newfinear Dvnamics 21: 101=133, 200K,
y

© 2000 Klwwer Academic Publishers. Primted in the Netherlunds.

The Nonlinear Dynamics of Filaments
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Fieure 7. A helical rod characterized by an applied twist y. a radius R. and a loop-to-loop distance 27 P.

Spiral perversion

Figure I4. Sketch of a helix hand reversal.
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Figure 9. The time evolution of an unstable (naturally straight) helix. The linear mode n = 2 creates two loops
g =1/8. 1 =1/8. ¥ =5and K/1000 =0, 2. 4. 6. 8. 10. 12). This linear mode might not represent the true
evolution of the nonlinear equations and is a priori only valid for small values of K (see Section 3).
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Figure 12.5 An individual-based three-species ecosystem
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Figure 12.6 Flow of resources in the three-species individual-based ecosystem

e For every time step:
e For every empty cell, e:

e If ¢ has three or more neighbors that are plants, then e will become a
plant at the next time step (assuming it isn’t trampled by a herbivore or
carnivore).

e For every herbivore, h (in random order):

o Decrease energy reserves of h by a fixed amount.

e If h has no more energy, then h dies and becomes an empty space.

o Else, if there is a plant next to h, then i moves on top of the plant, eats

it, and gains the plant’s energy.
e If h has sufficient energy reserves, then it will spawn a baby
herbivore on the space that it just exited.
Else, h will move into a randomly selected empty space, if one exists, that
is next to h’s current location.

e For every carnivore, ¢ (in random order):

e Decrease energy reserves of ¢ by a fixed amount.

o If ¢ has no more energy, then ¢ dies and becomes an empty space.

e Else, if there is a herbivore next to ¢, then ¢ moves on top of the
herbivore, eats it, and gains the herbivore’s energy.

e If ¢ has sufficient energy reserves, then it will spawn a baby carnivore
on the space that it just exited.

« Else, ¢ will move into a randomly selected empty space that is next to c’s
current location. If there are no empty spaces, then ¢ will move through
plants.

Table 12.1 Update algorithm for individual-based ecological model
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differential equations for an n-species predator-prey system as

dx; L
d_t‘ =z; Y Aii(1 - zj),
=1

where z; represents the ith species and A;; represents the effect that species j has
on species i and plays the same role that the parameters in the last section did.
Representing the A;; terms as a matrix, we can list all of the parameters as

Ain A Ags 0.5 0.5 0.1
A=| Ay Ay Agz | =] =05 —-01 0.1
Az1 Az Ass « 0.1 0.1

The values listed in the matrix above were found by Arneodo, Coullet, and Tresser
to have chaotic dynamics. Notice that the whole system is now parameterized by
a single variable, o, which we can set to make the system behave in any number
of ways. Setting a to 1.5 forces the system into chaotic behavior. The attractor at
this value is shown in Figure 12.2. The time evolution of the three species is shown
in Figure 12.3.
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Figure 12,3 Population levels for the three-species Lotka-Volterra system
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Figure 12.4 Period doublings in a three-species Lotka-Volterra system: phase space is
on the left and z; is plotted on the right. (a) spiral fixed point, (b) simple periodic orbit,
(c) period-2 orbit, (d) period-4 orbit, (e) chaos '
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Figure 12.9 A dual-image stereogram of the attractor of the individual-based predator-
prey system: To view, stare at the center of the two images and cross your eyes until the
two images merge. Allow your eyes to relax so that they can refocus.
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Figure 12.10 Population phase portraits for the individual-based predator-prey system
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Figure 3-14 Poincaré map of chaotic analog computer simulation of a forced Van der Pol
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the domains of attraction, since it divides the whole (x, y) plane into its two
catchment regions. Any initial point in one of the domains steps, under the
repeated iterations of the mapping 7, to the particular stable fixed point (2 or
3) that is located in the interior of that domain. The heavy invariant curve
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Figure 5.11 Domains of attraction for three harmonic and two coexisting subharmonics

of order n = 3 for Duffing’s equation, as determined by Hayashi. Reproduced by permis-

sion of McGraw-Hill Book Company from Hayashi, Nonlinear Oscillations in Physical
Svstems (1964)




Bistability, higher harmonics,
and chaos in AFM

A dynamic atomic force microscope sensitively probes surface properties
with subnanometre lateral resolution. In the amplitude modulation mode,
the force-sensing tip oscillates a few nanometres. The force sensor is a

harmonic oscillator that interacts with a barrier, which can be described
as a non-inear potential consisting of an attractive well and a repulsive

wall. Further non-linearities may be introduced by adhesion, electrostatic
or magnetic forces. Thus, the character of the non-linearity is intimately

related to the material properties. This review highlights the non-linear
dynamics in the amplitude modulation mode and how they enable and
affect nanoscale material characterisation.

Robert W. Starkab

a Center of Smart Interfaces, TU Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany
b FB Material- und Geowissenschaften, TU Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany

E-mail: stark@csi.tu-darmstadt.de

The atomic force microscope (AFM) is an instrument that has
been optimised to measure and exert forces of less than a
nanonewton with sub-nanometre spatial resolution. A well-
defined experimental design together with mathematically
understood operating modes are essential for high-resolution
imaging and force sensing. Dynamic modes where the AFM tip only
briefly interacts with the sample once per oscillation cycle are
widely used for nanoscale surface characterisation?2. In what is
called the tapping mode or amplitude modulation mode3, the AFM
tip oscillates near its resonant frequency, and the variations of
the amplitude are recorded (Fig. 1). The free oscillation amplitude
Ag, i.e., the amplitude measured far away from the influence

of the specimen, is typically on the order of ten nanometres.
Close to the specimen, the oscillation of the tip is influenced by
the surface. This measurement mode has proven to be highly

24 nma'ialsloday SEPTEMBER 2010 | VOLUME 13 | NUMBER 9

valuable for material characterisation in an atmospheric or fluid
environment#5, Thus, on one hand, non-linearity is the key to the
high sensitivity of the AFM because the non-linear interaction
strongly depends on the material. On the other hand, the non-
linearities can disturb the harmonic oscillation of the AFM tip and
lead to a rich dynamic response that affects the measurement. A
thorough understanding of the non-linear dynamics thus helps to
optimize sensitivity and resolution.

Single-mode approximation

To understand the origin of the non-linear dynamics, it is helpful to
approximate the force sensor as a one-dimensional harmonic oscillator.
In this approximation, we neglect higher eigenmodes of the cantilever
beam such as higher flexural modes, torsional modes, or bending
modes. This approximation allows us to predict basic features of the

[S5N: 1369 7021 © Elsevier Ltd 2010
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Fig. 1 The non-linear interaction between tip and sample together with the structural dynamics of the cantilever determine the system dynamics. In an amplitude-

modulation AFM, the steady state oscillation amplitude A(t) of the cantilever is measured with a lock-in techni

que and serves as the feedback signal3. The set-point

ratio A; = A(t)/Aqg serves as the guidance signal to maintain the gap between the cantilever and the surface x; and thus to track the surface profile. Typical set-point
ratios for imaging range from 50 % to 95 %. Usually, a proportional integral controller is used for feedback control, minimising the tracking error e(t) = A s—A(t)/Ay
by readjusting the gap between tip and sample. The error signal image thus encodes variations of the amplitude A(t) and is referred to as the 'amplitude’ image. The
‘topography’ image is the output of the controller encoding perturbations caused by the surface morphology, noise, or the non-linear dynamics.

AFM dynamics such as the phase lag between driving force and system
response, the pressure in the contact area’, or the presence of more
than one stable oscillatory state85. Mathematically, the cantilever

is characterised by its fundamental angular resonant frequency wy,
spring constant k, and quality factor Q. The quality factor Q = 21t AE/E
accounts for the energy loss AF per cycle in the cantilever and in

the surrounding medium and is related to the damping ratio y by

Q = 1/(2y). Typical quality factors are 50 to 500 in air and 1 to 10 in
liquids. External forces due to driving or to the tip-sample interaction
are summarised in the term F(x.t). The state variables 'tip displacement’
x and 'velocity’ x fully deseribe the dynamic system as follows:

5E(t)+%i(t)+(v02x(r) = F(x,1)/ k (1)

Eq. (1) can be rewritten in the state-space form

1 0 2
- |2 P @
-0, -@/0| 1] k
—_— O s
A b

Here, we have introduced the state vector x = [x, %]T. The system
matrix A accounts for the dynamics of the fundamental mode,

and the input vector b describes the coupling of external forces to
the oscillator. This approximation is good below and around the
resonance’©, It fails, however, to predict the high-frequency response,
including transients or higher harmonics.

Surface forces, such as van der Waals or Pauli repulsion forces,
determine the interaction between the tip and the sample. The distance
between the two is D = x, + x, where x is the deflection of the tip from
the rest position and x; is the distance between the undeflected tip and
the surface. Interaction models usually combine the equations for the
van der Waals forces (D 2 ag) and for the repulsive regime (D > a).
Mathematically, this leads to a piecewise smooth model because
the force is only continuous for F(x) but may show non-removable
discontinuities for the higher order derivatives a7/ax" F (x). This non-
smoothness of the combined attractive and repulsive interaction model
poses particular challenges for the mathematical analysis of the non-
linear dynamics'™-15. As we will discuss later, it can affect the image
quality because the transition between repulsive and attractive regime
is very important for the dynamics of gentle repulsive imaging.

The Derjaguin-Muller-Toporov (DMT) model is a simple contact
mechanics model for the interaction between a hard but compressible
sphere and surface neglecting hysteretic adhesion forces'6, The model
describes, for example, the interaction between a silicon tip with a hard
specimen, e.g., a metal, ceramics, or a semiconductor. The parameter
aq, which corresponds to an interatomic distance, is used to achieve a
continuous model for F(x)S. We thus obtain
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Fig. 2 Schematic illustration of bistability and hysteresis in a one dimensional non-linear system. (a) Purely attractive interaction. For small oscillations the tip does
not ‘see’ the no-linearity and the resonance is very well approximated by the harmonic oscillator. For a stronger driving the resonance line in the amplitude vs.

frequency plot is bent to the left side due to the attractive non-linear interaction. The resonance folds (red),

i . there is more than one possible amplitude for a

given frequency as for example in points A and B. This leads to bistability, where the system can oscillate either with a large or a small amplitude. Between the two
stable solutions there is an unstable periodic solution (dotted line). The bistability is responsible for the hysteresis during a frequency sweep as indicated with the
arrows. The black dashed line is the backbone line of the non-linear resonance. (b) The same plot for a purely repulsive interaction. (c) Non-linear resonance fora

combined attractive-repulsive potential.
~HR/[6(x, + %] D2a,

F(x)= 3 (3)

_HRI6a§+§E'JE(a0—x,4x)M D<a,

The strength of the van der Waals interaction depends on the tip radius
R and the Hamaker constant H, which depends on the materials of tip
and sample and the medium between both. Both parameters determine
the dynamics in the attractive domain. This implies that the quality of
the tip is of paramount importance because the tip radius determines
not only the lateral resolution but also the strength of the non-linear
interaction. The mechanical interaction is summarised by an effective
contact stiffness E'= [(‘l-vf)uffr + (1-vf)f£,]'1, where E, and E; are the

@ 12 . B
|
10} | P10 _
|/-K .
oo Y
g 0.8 :
S 06
% [ !
E 0.4 . 4
@ / | 0
0.2 | 0.2
’ | ]
I
00 il |
0.98 0.99 1.00 1.01 1.02
frequency (w/w,)

Fig. 3 (a) Non-linear ampli

X, was varied between 1.0 and 0.2. The dashed lines indicate typical driving frequ
different gaps xs. The driving frequencies o/w, = 0.995, w/wg = 1.000, and w/oy

elastic moduli, and n, and n, are the Poisson ratios of tip and sample,
respectively. A viscoelastic term

Fyis(x) = —TPyR (80— % —%o (4)
may be introduced to account for energy loss during mechanical
contact. More advanced models may also account for capillary forces,
soft samples, or electrostatic or magnetic forces.

Bistability

One of the most prominent non-linear effects in amplitude-modulation
AFM is the coexistence of several oscillatory states. The dynamic
system may produce more than one stable solution under the given
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tude response calculated for a typical silicon tip interacting with a glass sample (Ag=20nm, Q= 100). The gap between tip and sample
encies. (b) Average interaction forces as a function of the driving frequency for

= 1.005 are indicated by the vertical lines. For example, decreasing x; for ©/wg=

0.995 leads to increased forces. Reprinted with permission from101, © 2003, American Institute of Physics (modified).
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Fig. 6 Evolution from a periodic tip oscillation to chaos. (a) Spectrogram

and oscillation amplitude and (b) bifurcation diagram obtained during an
approach. The amplitude plot shows a monatonous decrease of the amplitude
but does not capture the dynamics. The spectrogram above reveals that the
driving frequency initially prevails in the spectrogram. At x; = 60 nm, there is a
sharp peak that accompanies the transition to the repulsive state. Approaching
further at x, = 65, subharmonics of the driving frequency occur that indicate
period doubling. The bifurcation diagram also shows a period-4 regime, which
is followed by an irregular system response. Reprinted with permission from*1.
© 20086, IOP Publishing Ltd (modified).

appropriate spring constant for a given material also the control
circuitry of the AFM can be improved to suppress chaotic dynamics.

To this end, various chaos control strategies have been suggested for
implementation in future AFMs52-54,

Higher modes and higher harmonics

Thus far, we have discussed non-linear phenomena on the basis

of a single-degree-of-freedom model. The force sensor, however,

is an extended micro-structure that is capable of various types of
oscillation such as flexure, twisting or bending. Each oscillatory mode
can be modelled as a harmonic oscillator with the respective resonant

frequency. If one adds important modes to the model such as for
example, additional higher flexural modes, torsional or bending modes
the accuracy of the model can be improved. Such multiple-degrees-
of-freedom (MDOF) models are needed in particular, if the cantilever
is excited at more than one resonant frequency. Such an excitation
of a higher eigenmode can occur, for example, due to the generation
of higher frequencies by the non-linear dynamics or due to active
driving at multiple frequencies. Mathematically, MDOF models can be
derived with analytical methods®5, finite element modelling>6-0, or
finite difference analysis®1. Recently, Raman and co-workers published
a freely available numerical simulation environment that allows
microscopists to explore the consequences of the non-linear dynamics
in AFM with MDOF models'".

In the state-space model we extend Eq. (2) and treat N eigenmodes
of the model as independent harmonic oscillators2.63

x = Ax +b
0

The model implies that we assume that the AFM sensor is a linear
system that does not change with time. Each eigenmode included in
the model is treated as an individual harmonic oscillator with

xn=|:x.’n:ern={ 01 : }bn=|:0:|~ (6)
¥ -0, -0./g @n

The quantities x,, = [x,, %] and A, with w,, Q, and b, now account
for the respective quantity of the n-th mode. The parameters ¢, define
the coupling between the external force and the n-th eigenmode. The
entire system can be constructed with these subsystems

X1 A] 0 0 Xq b1
Xz 0 AZ Xz hz
=l . P R (7)
Xy 0 o IYRIE, b
N

The new state-vector x = (xq, X3, ...) = (X271, 0y X417, --.) contains the
displacements and velocities of the N eigenmodes. The system A is
now a 2Nx2N matrix, and b is now a 2N vector. The scalar u=F(x.t)
is still the force input that accounts for external forces and the
non-linear interaction. To calculate the tip position and velocity, the
contributions of the N eigenmodes have to be added5364, With such a
model the vibration of the cantilever can be modelled. The non-linear
interaction is treated as an output feedback, where the tip deflection
is calculated by the dynamic system (Eq. (5)). The output y is
transformed into a force by the nonlinearity. The resulting interaction
force is then fed back to the tip62:63.6586, |n the following we assume
only flexural oscillations of the first N flexural modes.

MDOF models are needed, for example, to correctly predict the
spectrum of higher harmonics of the cantilever response. In this
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Fig. 8 Spectra predicted for dual-frequency excitation for an amplitude
set-point of A/Aq, 1 = 80 %. For a small second-eigenmode oscillation, the
harmonics of the driving frequency (n) and intermodulation products are
well defined. Frequencies following the rule w =+ w; *n w; are marked by
‘#* and those according to ® = +2w, £ n ®; by '*". Because the harmonics
n are very prominent in the spectrum, intermodulation products of very high
order also occur. For large second-eigenmode contributions (Ay:A;=10), the
peaks broaden due to a quasi-periodic oscillation, where the instantaneous
partial frequencies are only nearly harmonic frequencies. At Ay:A; = 2, the
instantaneous frequencies of the harmonic peaks are severely detuned, and
the distinct harmonic and intermodulation peaks vanish, indicating that the
trajectory is no longer periodic. Reprinted with permission from12. © 2009,
American Institute of Physics.

calculations predict that at large second-mode amplitudes, even quasi-
periodic or chaotic dynamics may occur, where the tip repulsively hits
the specimen quasiperiodically or even aperiodically'?,

Thus far, we have discussed weakly damped systems as they occur
for an AFM operating in air. In a liquid environment, the damping
is much stronger. Typical quality factors of soft cantilevers are then
on the order of Q = 1 to 5, which means that the oscillator 'forgets’
its history within very few oscillations. The actual impact in each
oscillatory cycle is much more important for the dynamics than the
impacts that occurred before, and thus non-linear transients become
relevant to the dynamics. A highly important phenomenon is the
momentary excitation of a higher eigenmode®6-%8, As illustrated in
Fig. 9, the tip impacts on the sample surface at the lower turning
point of each oscillation of the fundamental mode. The impact forces
help to restore the motion of the fundamental mode but also excite
the second eigenmode. As the resonance of the higher eigenmode
is much larger than that of the fundamental, the higher-eigenmode
oscillation has nearly rung down when the next impact occurs. Thus,
the entire energy that was transferred into the second eigenmode
has been dissipated. The transient excitation and ringing out of the
second eigenmode contribute to the overall dynamics and represent

Energy balance

Yy

E et JV"\Q}\ l'

Tf El-Z i

Fig. 9 Momentary excitation of the second eigenmode in a liquid environment.
At the lower turning point of the oscillation (amplitude q;), the tip hits the
sample, which leads to the excitation of the second eigenmode with amplitude
g In air only small but sustained oscillations are induced. In liquids, however,
the coupling is stronger and the ringing of the second mode is dampened within
a few oscillations. This mechanism transfers energy E,_, from the first to the
second eigenmode and is an important channel for energy dissipation of the
first mode in addition to dissipation in the medium E,,.4and the sample E,.
Reprinted with permission from?S.
an important channel for energy transfer from the fundamental
mode to a higher eigenmode, which also determines the phase
image of the fundamental mode®®, Because the strength of the
repulsive force depends on the material properties of the specimen,
the momentary excitation of a higher eigenmode can readily be used
for compositional mapping in a fluid environment®”. To achieve an
accurate image of the specimen, the signal of the fundamental mode
can be isolated by adjusting the target of the detection laser to the
antinode of the second eigenmode at about one half of the cantilever
length00,

Outlook

Various methods are now available to probe the non-linearity of

the contact between the tip and the sample. This non-linearity is
determined by the details of the interaction and thus encodes the
material properties of tip and sample. A mathematical understanding
of the non-linear dynamics helps us to solve the inverse problem,

i.e. to estimate the material properties from the system response.
Compositional mapping can be achieved with very high resolution
and sensitivity, and even the characterisation of soft matter, such

as biomolecules, has become possible with very high resolution. The
quantitative measurement of material properties, however, still remains
a challenge. It is still very difficult to precisely calibrate the tip radius,
which is one important parameter determining the mechanical non-
linearity [Eq. (3)]. Here durable AFM tips with well-defined radii will
help to push the limits further.



Galaktikate jaotus

Figure 2: tranche d'Univers, ol chaque point est une galaxie, dont la distance est connue par son décalage vers le rouge z. Notre galaxie est au sommet
des deux cones. (crédit Sloan Digital Sky Survey, http://www.sdss.org/).



Figure 1: simulations numériques de la formation des structures (crédit Projet Horizon, http://www.projet-horizon.fr/). Le projet Horizon rassemble depuis
2005 les principaux groupes de simulations extra-galactiques en France, soit une vingtaine de chercheurs, afin de progresser de fagon significative dans
le probléme de la formation des galaxies dans un contexte cosmologigue. Les plus grosses simulations au niveau international ont été effectuées dans ce
cadre, comprenant non seulement la matiére noire, mais I'hydrodynamique du gaz, la formation des grandes structures, des premiéres étoiles, etc. Les
plus ambitieuses recouvrent une région du ciel comprenant tout I'Univers observable aujourd’hui, jusqu'a I'norizon cosmique (ou remontée dans le temps/

espace de 13,7 milliards d'années-lumiére), d'ol le nom du projet.



C omphcat bllliard:tables and maps

afn=3/8eQ "~ a/n ¢Q

 Figure 2.22. Each circle concentric to C is a caustic for the circular billiard.
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Thuehavebemmmlpupiﬂummofnﬁouspnupsuplommdﬂmhﬁsicmmofm
game of roulette for profit. M ,thlwghhshism.d:ehhemdcminianmm:gmeof
roulette has attracted the attention of many luminaries of chaos theory, In this paper, we provide a
short review of that history and then set-out to determine to what extent that determinism can really
b:exploiwdfmpmﬁl.‘rodod:is,wepmvideavuyﬁmplcmodclfownmmu&mofumﬂem
wheel and ball and demonstrate that knowledge of initial position, velocity, and acceleration is
sufficient to predict the outcome with adequate certainty (o achieve a pusitive expected return. We
describe two physically realizable systems to obtain this knowledge both incognito and in sifu. The
first system relies only on & meehanical count of rotation of the ball and the wheel to measure the
relevant parameters. By applying these techniques to a standard casino-grade European roulette
whul.w:dunmmnmapactedmmofa:hastl&%,mdl:hweﬁx—l?%emmcdnfa
random bet. With a more sophisticated, albeit more intrusive, sy [i: ting a digital

above the wheel), we demonstrate @ range of systematic ‘and statistically significant biases which
cmbeexploimdmpmﬁdcmim;wvedgmmdzhooumm.ﬁnﬂly.ommﬂysisdemmmm
that even & wvery slight slant in the rouletic table leads o a ‘very pronounced bids which
could be further exploited to substantially enhance © 2012 American Institute of Physics.

[http//dx.doi.org/10.1063/1.4753920]

FIG. }. The European rouleite wheel. In the

ing rouleite wheel and surrounding Axed
track. The ball has come to st in the
‘{green) O pocket. Although the motion of
he wheel and the ball (in the ouler tmck)
are simple and linenr, ane can see the addi-
thon of several metal deflectons on the stuzor
(that i, the fixed frame on Which the sotat-
ing wheel sits). The shamp freer between
pockets et stceinie o
thie ball slows snd bounces between pockets.
The panel on the right depicts the arange-
meat of the punber 010 36 and the coloring
red (lighter) snd Black {darker).




FIG. 1 The dynamic model of ball and wheel. On tie
‘left; we shiow a fop view of tae Touletss whiel (shaded
region) and the stator (outer circles). The ball is mov-
ding on'the smiar with insmntaneous posiian (r, 6}
Mehdwhm&ngmw\dn-%yv
hit e

mmﬁy hwmmmmwme
‘conveition, clockudse positive, for batk ball aud
Wheel), The deflectars on the stator are modelled as 3
circle, concentric with the wheel, of Tadius res. On
ﬁnﬁshwm;mmmmm
mfawmﬁgmmﬂlhtbﬁmﬂmmﬁﬂw
\stator, The angle a ds thevincline of the stator, m 5
thie mass of the ball, @, is the radial acceleration of
‘the ball, and g is gravity.

1 =
I i
0 n
L}
mavaamwmmwhmmmmﬂwm
eriterion (6), while the ted solid e is the ( ) trajectory of the ball

“withi @iy ) -+ 2w = 8{:,) indicaticg two muudveuua‘cmuomulu
mmmammmmmmmwmum
-ﬁn«mdﬁnm&m aiterion and the trajectory. This will pecessarily
m to-the Jeft of the paint atwhich the ball's trajectory is tangent
w&.mmﬁﬁ:kmﬁmﬁ.hh@msammwy a
crocked table will only be slightly crovked and hence this region will be close
40 B a0 but biased toward the approaching ball. The width of that region
deperis tn B(t;} ~ B(ky), whiich in tam tan: be deteriniried from By, (6).
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FIG. 4. Hand-measurement of ball and wheel welosity for predictinn. From
two spizs of the wheel, and 20 sustessive spics of the ball we logged the
tiane (i seconds) T(f) for successive passes past a given point (TU) against.
T(+1)). Tie measurements T(i) and T+ 1) zre the timings of successive
revahitions—direct measirements of te aigular velocity chserved over one

poimts depict these times for the wheel, the blue {(lrwer) points are for the
ﬂ&ﬁduﬁlﬂh&-hﬂmﬂiuﬁmﬂyh@ﬂahﬂ'dh
laf: cormer. Botk the nioise-and the determiziam of this method wre evideni,
In particalay, the wheel velocity s relaively susy so calculaterand decays
slowly, in contrast the ball decays faster and is more difficull to measure.
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FIG. 8. Predicting soulente. Tre plot depicts the resuls of 700 trisls of ous
" S image niticn, softw 4 tn predict the outcome of inde-
pendent spiss of & rouletie wheel. What we plot here is 3 kistogram i polar
‘connfiiutes of the differonce between the predicted and the actual auicome

tepict the comesponting 99 9%, 9%, e 90% confidence intervals wsing
oy i) Mot forwaré: G

ball contiues to move in the same direction) is clockwise, mation back-
wards i anti-clockwise. From the 37 posaible results, there are 2 instances
orutside the 9% conifidenes: interval. There ase 7 instences outside the 90



FIG 6. Pammeter wncertainty. We explore the
Mﬁﬁwhhﬂﬁpmnmm
of

come by vanizg
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