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13.1 Numbrilised meetodid

Vaja lahendada:
» algebralised vorrandid / siisteemid;
» harilikud diferentsiaalvorrandid / stisteemid;
lineaarsed,
mittelineaarsed;
» osatuletistega diferentsiaalvorrandid / siisteemid;
» integralvorrandid;

jne.

Kasutusel matemaatikapaketid
Matlab, Maple, Mathematica, ...



13.1 Numbrilised meetodid

Harilikud diferentsiaalvorrandid
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dt dt
analuitiliselt lahendatav
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dt dt
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Runge — Kutta meetod

dy
= —f(y,t
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Faasiruum — muutujate ruum
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A sketch of trajectories in a three-dirherisional state space. Notice how two
Dearby trajectories, starting near the origin, can continue to behave quite

differently from each other yet remain bounded by weaving in and out and
over and under each other. ¥ ‘
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Stisteemi 3 + g(x,4) = f(t) Poincaré 16ike nummerdatud
punktid z, @-tasandil. Thompson, Stewart, 1986.

(a) iihedimensionaalne Poincaré 16ige; (b) kahedimensionaalne
Poincaré 16ige. Thompson, Stewart, 1986.
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G(x,y,2)=—cx +ay ,
G,(x,y,z)=—y+rx —xz, (12)

Gy(x,y,z)=—bz +xy ,

~

Lorenz 63 *
Tirmm setiEs, 8 000 points
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FIG. 1. -Chaotic time series x () produced by Lorenz (1963)
equations (11) with parameter values r=45.92, b=4.0,
o=16.0.

FIG. 2. Lorenz attractor in three-dinensiondl phase space
(x(8),y(2),z(1)).

x(t+2°dT)

FIG. 7. Lorenz time series x () (Fig. 1) cmbedded in a three-
dimensional phase space (x (t),x (¢t +dT),x(t +2dT)),dT =0.2.



Loplike vahede meetod

Idee - asendada tuletised loplike vahedega
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Loplike vahede meetod — naide

IW + IF(W)
at ax
where W, F, C defined as

+C(W)=0, (1

p pu
H ul+
Wx,n=| P* |, F(W)=|P¥ 7P|,
peo puhy
pu 0 OF
a 2 148
cwy=| P4 |+ P©
purho |2 45 | =pg

~ The two-step Lax=Wendroff method calculates the vee-
tor W1 at time 1, &t the node i from the KROWR vectors
W F, Ctinthenodes i — 1,i,i + 1 (three-poim stencil)
at time 7,, by means of two succeeding sweps [Fig. 2(a)].
First, W*12 js computed at the intermediate nodes |
— 172,i + 1/2 attime t, .+, (forward in time of A#/2):

1 At
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Fig. 2 - Distance—time plane for the two-step Lax—Wendroff
method (a) and the MacCormack predictor—corrector
method (b).



Loplike elementide meetod

Idee: koik funktsioonid aproksimeeritakse diskreetsetena
teatud elementide punktides. Elementide valik soltub

probleemi geomeetriast.

Tiitipiline element:  kolmnurk

Funktsioon aproksimeeritakse solmedes 1, 2, 3

Tapsuse tostmiseks:

- vaiksem element

- tapsem interpolatsioon




Ruumilised elemendid

‘Figure 2 - Maillage wtilisé pour Iétude d'une structure en construction automobile (document communiqué par
Paugeot S.A.). '

VAVAVA R4y

Flgufa 3 - Centrale hydroélectrique de Long Tan (République populaire de Chine) : effet du ‘creusement. L'intensité
de la couleur visualise I'amplitude du déplacement. Etude effectuée par le Laboratoire central des ponts
ot chaussées pour E.D.F.). :
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Fig. 10. Boeing 747



(i)

(iv)

(iii)

Fig. 7. Utah teapot



Spektraalanaliitis

Lineaarsed vorrandid
Py TV P =0
Py — 0P, =P Py

¢ =] F(k)cos(kx — ot)dk

Kk — lainearv
® — sagedus
F(b)  —dispersioonifunktsioon

F(K) alg — ja déretingimuste rahuldamine

Lahend: iuksikute harmooniliste lainete summa
igal erinev lainearv

Faasikiirus
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Spektraalmeetodil arvutatud solitonide
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teraktsioonipi
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Bold lines indicate the profiles corresponding to certain #'s or 's

Time-slice plot
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13.2 Spetsiifilised meetodid

Petri vorgud

Graafmudel, mis sobib tiheaegselt (paralleelselt) toimuvate
protsesside kirjeldamiseks

arvutite tarkvara;

infosiisteemid;

protsesside juhtimine (tehnoloogia);
juriidilised siisteemid;

Suunaga graaf, millel on koht ja lilekanne

Niide protsessi algus
“’Z ‘b
P1 o 1.0
Ry=2 \ [ :O
2 Oz '
G ©

uzcﬁ Lo
=
"0

«. protsessi 10pp
sisend iilekanne valjund

Tahistus: koht p on K viirtust (vt punktid!)
Reeglid:

1) Ulekanne t on vdimalik kui iga sisendi koht p on
tahistatud sama paljude vairtusega kui palju on
tthendusi P tlekandeni t.

2)  Ulekande sooritus tihendab, et iiks viirtus K iihe

tihenduse kohta kaob sisendist ja iiks viirtus K iihe
tthenduse kohta tekib valjundis.



Probleem: Hiina filosoofid
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Narvivorgud

Hiipotees: narvivork toimib elektriliste signaalide abil.
Stitmul — retseptor — siisteem — efektor — reaktsioon
Ajus:

neuronite arv 10!

siinaptiliste ithenduste arv 10 — 10%°

tihel neuronil 5 — 10 ° siinaptilist tihendust

néarvirakud 5 — 100 pm

iseloomulik pikkuseskaala 10*mm
ajaskaala 1 ms

aksoni pikkus 0,1 mm-1m

+1+




cigure 4:5.1. The comptex ramited structure of typica: asrve cells in the cercbral cor-

i~ jz depicted.



Mc Cullochi ~ Pittsi neuron (1943)

1.  Koik voi mitte midagi (all-or—none)
muutuja o,

G, —+1 aktiivne, o, =—1 mitteosalev

2. Stiimul neuronilt 1 neuronile |
c=+1 —»> V. %0
Vo2 o1 5 V=0

[

3. Lawvi VOi

4.  Narvivorgu olek
V= {Gl(t)’ GZ (t) prre GN (t)}

5. Viiteaeg 1
J aktiivne ajal t
I tunneb stiimulit ajal t + ¢

6. Evolutsioon

c,(t) =sgn[F, (1))

sgn (x) = -1, X <0
sgn (X) =+1, X>0

Ft)=X Vo, (t-1)+1]/2-V, +]v,]

V. valisarritus

Hopfieldi neuron (1982)



13.3 Fraktalid

Fraktal erinevatel mastaapidel enesesarnane kujund,

mille dimensioon erineb taisarvust

Mandelbroti hulk — fraktaalne kujund

Looduslikud objektid:

pilved
puud
maapind

veresoonkond

Fraktalite konstrueerimise reeglid:
mitmekordne redutseeriv kopeerimine

(multiple reduction copy machine — MRCM)

itereeritud funktsioonid

(iterated function systems — IFS)

Vt. U. Lepik, J. Engelbrecht, Kaoseraamat.
TA Kirjastus, Tallinn, 1999



FIG. 3. North-south asymmetry in the Jovian cloud deck. This cylindrical map projection shows high latitude votices, the White Oval BC below the Great
Red Spot and three of the small whitc ovals at 40°. Combined with information from Tables I and 11 it can yield esti of ; pheric p
(NASA/IPL).

5 - 5
FIG. 14. Two phatographs of time-dependent m=S$ flows in an i tly heated i 1us subject to strong internal heating (pawer input =10° W) and

rapid rotation (2=4.45 rad sh (Rc;. 27). Flows are illuminated at the upper level (z/D=0.7) and visualized using a susp of powder in
watcr. : .
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Fig. C.1: The first six stages in the geheration of the von Koch snowflake curve. The OL-system
is given by the axiom "F", the angle § = % and the production rule F — F—F++F—F.



Cauliflower

Self-Similarity
Figure 2.1 :  The self-similarity of an ordinary caulifiower is deron-
strated by dissection and two successive enlargements (bocom
The small pieces-lock similar to the whole cauliflower head.
- ] ¢
step 1 “step2
step 3 step 9

Figure 2.63 : Basic idea of a Pythagorean tree.

e

Figure 2.67 :  Construction with Isosceles triangles which hav

annla araatar than an°



Figure 265 : The wo constructions carried out some 50 times.
Note that the size of the triangles is the same in both.



Rectangle in MRCM

Figure 113 :  Starting with & rectangie the leration leads 1o the
Sierpinski gaskat. Qmmmhﬂwmmmeresunafter

$OMe More Neratons (lower right).

. NCTM ~ e 'NCTM" and Other
| NCTMNCTM TN S i,
o
- -~ ' ﬁl ‘ ‘i_
e A
‘;'Figure‘ 1.14 :  We can start with an arbitrary image — this it;a}ator
will always lead to the Sierpinski gasket.
MRCM for the @ oo
Sierpinski Gasket (a) 0 YT
. ’ ..0 000
o0 0% 000000
iﬁgi‘aﬁgle 2nd copy 3rd copy

G '
NEQR % %99 wgp Ry
% % -v. 'b-

& G o S .'-.-.90'-
image 1st copy 2nd copy’ 3id copy

Ad  AD
AAHA |

llrgglgale 1st copy 2nd copy 3rd copy

;Fi'gf.ure 5.1: Three iterations of an MRCM with three different initial
Images.
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Figure 2.4 Symmetrics of the plane. (a) Translation. (b) Rotation. (c) Réflection.
(d) Glide reflection .
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Figure 5.22: Biueprint of Bamsiey's fem.

Translations | Rotations Scalings

e I () ¥ r ]
1100 1.6 25 -25[085 085
2100 16 |49 4903 034}
3100 044 | 120 -50 40.3 0.37
4100 00 0 0 0.0 0.16

Table 5.23: Transformations for the Barnsley fern. The angles are ‘

given in degrees.

Barnsley’s Fern

Blueprint of Barnsley’s
Fern

Bamsley Fern
Transformations

Figure 5.25 :

four lens systems.

Barnsley's fern generated by an MRCM with only




=) A Dragon With
Threefold Symmetry
=]
=
Figura 5.11 : The white ine is inseried only 1 show that he figurs
6an be made up from three pars simitar 1o e whole.
L The Cantor Maze
d b
Figure 512 : IFS with three transformations, one of which Is a
similarity. The attrcator is related to the Cantor set. ‘
an Crystal with Five
Transformations
L !
19 L
b -
‘Figure 5.15 :  IFS with five similarity transformations. Can you see
Koch curves in the attractor?
A Tree

Figure 5.16 :  The attractor of an MRCM with five transformations
.can even resemble the image of a tree (the attractor is shown twice
‘as large as the blue-print indicates).
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0.500  0.000
0500 0,000
0.500  0.000

0.00
0.00
0.00

0.500
6500
0300

0.0000
0.3000
0.0000

0.0000
0.0000
0.5000

[Figure 5.10

0.000 -0.500
0.000 0.500
0.500  0.000

0.500
-0.500
0.000

-0.000
0.000

'0.500

0.5000

'0.5000

0.2500

0.0000
0.5000
0.5000

Figure 5.11

0.000 0577
| 0.000 0577
0.000 0.577

-0.577
-0.577
-0.577

0.000

0.000 -

0.000

0.0951
0.4413
0.0952

0.5893
0.7893
0.9893

Figure 5,12

0.336 0.000.
0.000 0.333.
0.000  -0.333

0.000
1.000
1.000

0.335
0.000
0.000

0.0662
0.1333
0.0666

0.1333
0.0000
0.0000

Figure 5.13

0.387 0.430
0.441 -0.091
-0.468  0.020

0.430
-0.009
-0.113

-0.387
-0.322
0.015

0.2560
0.4219
0.4000

0.5220
0.5059

= 0.4000°

Figure 5.14

0.255 0.000
0.255 0.000
0.255 0.000
0.370  -0.642

0.000
0.000
0.000
0.642

0.255
0.255

0.255.

0.370

0.3726
0.1146
0.6306
0.6356

0.6714
0.2232
0.2232
-0.0061

Figure 5,15

0.382  0.000
0.382  0.000
0.382  0.000
0.382  0.000

0.382  0.000.

0.000
0.000
0.000
0.000

* 0.000

-0.382

0.382
0.382
0.382

0.382

0.3072
0.6033
0.0139
0.1253
0.4920

0.6190
0.4044
0.4044
0.0595
0.0595

Figure 5.16
0.195 -0.488
0462 0414
-0.058 -0.070
+0.035 0.070
-0.637  0.000

0.344
-0.252
0.453
-0.469-
0.000

0.443

0.361.

-0.111
-0.022

0.501-

b oo
0.4431

02511,

0.5976
0.4884
0.8562

0.2452
0.5692
0.0969
0.5069
0.2513

Figure 5.25
0.849 0.037
0.197 -0.226
-0.150 0.283
0.00  0.000

-0.037
0.226
0.260
0.000

0.849

0.197
0.237
0.160

0.075
0.400
0.575
0.500

0.1830
0.0490
-0.0840
0.0000

Table 5.48 : Parameter table for the figures In this chapter."
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Figure 6.15. 1t only requires a small leap of the imagination to recognize Sicrpinski carpets as
being the mathematical model for filter systems,

(a) Surface photograph of a silver membrane filter used to filter quartz dust in a working
environment [4, 5]. (Illustration provided by and used with the permission of The Poretics
‘Corporation, 151 1. Lindbergh Avenue, Livermore, CA.)

(b) Plastic membrane filters manufactured by Gelman Science [6]. (Reproduced by
permission of Gelman Science Inc.)

(c) Glass-fibre filter manufactured by Gelman Science Inc., [6]. (Reproduced by permission
of Gelman Science Inc.)

Figure 6.19. The structure of
randomly assembled fibrous mats
from short fibres, using a model
similar to that first discussed by
Clarenburg, can be simulated on
the computer as illustrated above
Select length L [10].

(a) Ilustration of the
construction algorithm followed in
simulating short fibre felts.

(b) The appearance of 30-unit
fibre length felts at'various levels
of population density.

(c) The appearance of felts at
various population densities
constructed from fibres of varying
lengths.

Select x,y of starting point

Select angle O ¢8¢2w

Calculate end point

Join start and end points



Kortsutatud paber

1. Katse

2. Teooria:
B G. Gomper, Patterns of stress in crumpled paper.
Nature, 1997, 386, 439-440
E M. Ben Amar and Pomean, Crumpled paper, Proc.
Royal Soc. London, 1997, 453, 729-755

3. Lahendusideed
I leida pingefunktsioon, mis minimiseerib energia;

I maiirata kortsutatud pinna fraktaalsus.

4. Fullereenimolekul, jalgpall



Eh? BAE
(1 - 03{
~(-o g*[cos(ﬂ {gﬁé-—%%}-i-(sm (8) — cos (9))%]
+[coS( )@K_ (9)3 @}gé-l-[sm(@)——-'-—cos Bway]% | (2.4a)

0% B¢

86+(1-0) [pos(e)s (8~ 0~ o0t =0 e

with

iy = Py - (2.4¢)
8 means the angle between the £ axes and the normal to the boundary, 8/8! (resp.
8/8n) is the derivative with respect to the arclength (resp. the normal coordinate)
along the boundary. These boundary conditions have to be verified for the freely
hanging part of the plate where £ and its derivatives can be arbitrary. For clamped
sides of the plates, only (2.4¢) remains valid, while for simply supported part, one
can forget (2.4a). Let us also notice that one can get rid of the Young modulus &

in (2.3b) and (2.4a), (2.4)) by redefining a scaled Airy potential x' = x/E, so that
the ﬁmctional to be minimized becomes

Pigt=h | ot s (P - 20 -0 )
AP -raid) s



VHI. CUBES & OTHER Por:n—:zbm

The Buckyball Molecule

Today, the trumcated icosahedron
is an exceptionally important
polyhedron due to the recently
discovered Cg molecule called
buckminsterfullerene, or in shors,
buckyball. Many names were
proposed for this newly discoversd
substance. One of them in Europe
was “footballene.” However, what

call soccer, so in the United States
this would have to be translated as
"soccerens.” :

‘The molecule was named afcer

R. Buckminster (Bucky) Fuller, the
invenror and designer who used
icosahedral geometry as the basis
for his geodesic domes.

e
)

==

The structure of the superstable Cp,
molecule in which the tetravalency
of all carbon ntorns is neatly
maintained

Ivary Coast stamp honoring the .
Football werld championship,
: Argenting, 1978

Asove: R, Buckminster Fuller's
geadesic dome at the Montreal
Expoin 1967

LerT: R. Buckminster Fuller
(1893=1983) at Pacific High
School. Sararoga, Caiifornia, 1970

Asove: Truncated icosahedron
modzl made with Steve Baer's
Zometoe! model kiz
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Naide: Crumpled paper

has given us a good picture of the structure
and thermodynamics of the explosion debris
(C. Fransson, Stockholm Obs.). After the
explosion, the debris was mixed on large
| scales by instabilities, but it has remained
chemically inhomogeneous. The observed
degree of mixing requires that the supernova
progenitor was asymmetric, possibly owing
to strong convection driven by thermo-
nuclear burning (D. Arnett, Univ. Arizona).

The debris is now very cold throughout.
Less than two years after the explosion, the
ron-rich and oxygen-rich components
| cooled by radiation to a few hundred K (the
thermal catastrophe), and now even the heli-
um- and hydrogen-rich components have
cooled, by adiabatic expansion'. Today, the
! optical emission from the supernova debris
i is dominated by recombination of residual
hydrogen ions and atomic excitation result-
ing, from the radioactive decay of about 10™
solarmasses of “Ti.

Why was the progenitor of SN1987A a
blue supergiant star rather than a red super-
giant, as is thought to be the case for most
type-Il supernovae? Perhaps, as the binding
energy of a massive star is insensitive to the
radius of its outer envelope, subtle changes
| in the opacity or mean molecular weight of
| the envelope allowed it to shrink, heating

it and changing its colour from red to blue
(S. Woosley, Univ. Calif. Santa Cruz).
| Another model thatleads toa blue super-
giant is one in which the progenitor formed
from the merger of two stars in a binary
| system’. Evidence in favour of the merged
! binary hypothesis comes from Hubble Space
| Telescope images of SN1987A. They show a
| 5A ing around the star** (Fig. 1), which
i <an be explained asa real physical ring, eject-
| €d & an equatorial outflow of several solar
| massesofgasduringa merger of the two stars
| some20,000 years before the explosion, Such
| a merger would probably yield a progenitor
that is highly fattened by rotation. [f so, the
explosion would naturally blow out prefer-
entially along the polar axis, as indicated by
recent images showing that the glowing
debris of the supernova itself is elongated

Figure | Radio and
optical images of
SN1987A and its inner
ring’. The bright radio
lobes seen 2t 9 GHz
(contour lines) are
synchrotron radiation
from relativistic

perpendicular to the ring plane (J. Pun,
NASA/Goddard). But although such a
model may be plausible, it is not well devel-
oped, and certainly not universally accepted.
Moreover, it does not provide a simple ex-
planation for the origin of the outer circum-
stellar loops. The inner ring and the outer
loops are more probably thin, flash-ionized
layers at the inner surfaces of a much greater
mass of circumstellar matter, as yet unseen.
When SN1987A aficdonados converge
again to celebrate its 20th anniversary, we
should have a good chance to unravel some
of its mysteries. The blast wave from the
supernova will strike the inner ring some six
to ten years from now™”. When it does, the
resulting shock wave will cause the ring to
brighten by a factor ~ 10’ in all bands of the
electromagnetic spectrum (except vy-rays).

news and views

The ionizing radiation from the interaction
will illuminate hitherto unseen circumstellar
matter. Moreover, the impact will give us an
unprecedented experiment in the physics
of interstellar shocks, induding a chance

to observe the acceleration of relativistic |

-~ clectrons in real time.

Infzcl.wc:rcahudyso;:ingpmcnmonof
this impact, in non-thermal radio emission

seen by the Australia Telescope Compact |

Array and X-ray emission seen by ROSAT".
Evidently, the supernova blast has already
encountered a region of relatively dense

jonized hydrogen inside the inner ring’. |

Although we don’t yet have 2 clear picture of

this shock, a model for the X-ray emission” '
suggests that the shocked gas should be |

brightenough in ultraviolet emission lines to

see with the Space Telescope Imaging Spec.

trometer that was installed during the fast

Hubble Space Telescope servicing mission. [f

0, we should soon have images and spectra

of sufficient quality to locate the blast wave

and tell us when it will strike the ring. C

Richard McCray is in the Department of

Astrophysical and Planetary Sciences, University of

Colorado, Bowlder, Colorado 30309-0440, USA.
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Patterns of stress in crumpled

sheets

Gerhard Gompper

¢ forced crumpling of thin elastic
| sheets is experienced frequently in
everyday life. Typical examples are the
crumpling of paper — which is particularly
familiar to scientists — the crumpling of
soda cans after use, and the crumpling of
metal sheets in car accidents, Despite the
enormous importance of this phenomenon,
our understanding of the behaviour of
strongly deformed elastic sheetsislimited. In
a paper published on 17 February in Physical
Review Letters, Kramer and Witten' demon-
strate for the first time that a large part of the
total elastic energy of a crumpled sheet is
contained in a network of narrow, stretching
ridges. This result could open the door, for
example, to the rational design of energy-
absorbing materials,
It all began with the attempt by Witten
and Li* to understand the shape of very large
fullerene balls. In the limit of large size,

deformation can be described by continuum
elastic theory. There are two contributions to
the elastic energy: the stretching energy,
which is the cost of changing the bond length
of neighbouring carbon atoms from mini-
mum-energy values; and the bending ener-

gy, which describes the energy cost of (Lku\qg .

adjacent carbon rings with respect to one
another. If there were no energy cost w bend
the surface, the stable shape of the molecule
would be a regular, flat-sided icosahedron
(with acarbon pentagon at each of the tweive
corners) — a shape that requires no bond
stretching. When the bending nigidity 15

. Bnite, however, the sharp edges of the icosa-

hedron are expected to soften so that the
minimum-energy surface is smooth except
near the corners.

One of the appealing features of this

kind of research is that many effects can be !

seen qualitatively in simple ‘paper exper



ments"™*~. [ would therefore like to encourage
readers to study the geometry shown in the
panel (below) with a sheet of paper. Itcan be
casily seen in such an experiment that the
curvature islocalized near the ridge that con-
NECTS tWo Opposing corners.

Witten and Li* give a very simple argu-
ment for the shape of the edge connecting
two corners, and the dependence of edge
energy on scale (see panel), The simplicity of
their argument means that it has had to be
checked carefully to test its validity and its

range of applicability. This has been done by

computer simulations of simple models of
trisngulated surfaces, which were intro-
duced some time ago by Kantor and Nelson®.
The numerical studies, carried out by Witten
and co-workers* and by Kroll and co-work-
ers’, show that the scaling laws do indeed
describe the asymptotic behaviour of large
fullerene balls. However, quite large system
$izes are necessary in order to observe this

Scalingidges

Figure | Carvature energy distribution
in a hexagonal sheet of dismeter [,
which has been crushed into a sphere
of radius R, = L/6, Darker regions
::hishﬂmﬂsydndty.mvn

1)

behaviour, with edge lengths 1,000 times the
effective thickness of the sheet or more. For
smaller systems, such as C,, the bending
energy of the cone-shaped regions near the
corners dominates*’.

Kramer and Witten' have now gone
beyond the study of isolated stretching
ridges. In their computer simulation, a near-
ly flat sheet is approximated by a triangular
network of springs with some bending elas-
ticity., They put the sheet into a-spherical
shell, and slowly decrease the shell radius R,
until it is much smaller than the diameter L
of the initial sheet. The resulting distribu-
tion of the curvature energy is shown in Fig.
L. It clearly demonstrates the formation of
mhingridga.About%oﬁheenqyis
localized in very small areas (vertices),
which correspond to the corners of the
fullerene balls; the next 40% is contained in

news and views

cndxus R, of the confininy P
their number must go as (L/R,)*,
wlhewuldnu:msgyakouldmlea
R soepancl)'muimuhdonrmﬂum

mofdxepmp«duofﬂmdmdpolymc
membranes™. For these microscopic sur-
faces, thermal fluctuations can be impor-
tant. It has been shown, for example, that
thermal fluctuations crumple non-self-

avoiding polymerized
small bending rigidities® without any exter-
nal compression. And fluid membranes,
which have no stretching energy, collapse
into crumpled, branched-polymer-lik:
shapes for sufficiently low bending rigidity
due to thermal fluctuations’, even with self-
avoidance.

But self-avoidance stabilizes the fat
phase™ in all real polymerized membranes,
such as graphite-oxide sheets'' or the spec-

trin network of red blood cells”, givingtham |

the elastic stiffness relevant to the new study. |

Furthcr. thermal fluctuations shouvid not !
scaling behaviour of stretching .

the

ridges”. So knowledge about ridges may

help us understand the passage of red
blood cells through narrow capillaries'’, for

It is the subtle interplay between stretch-

the narrow ridges that connect the vertices.
Smcethelengthofendx ndgeufoundlobe

Witten and L give a very
simple scaling argument
«for the shape of the
ecge connecting two
cerners of an elastic
icosahedron, depicted in
e figure here. Any
deformation thet involves

comprassed, at a
prohibitively large cost in
stratching energy), the
length of the midHine
must therefore increase
by a fraction of ordey y
'(R‘/m‘ The fraction yis

most of tha bonds on change of the

the surface costs an carbon-carbon bond
energy proportional 10 length along the ridge,
the area; therefore, $0 the bond stretching
swretching has to be energy is about KAy,
confined to namow where Kyis the bond’s
ndges along the edges. where xis the bending elastic modulus.

The surtace near the rigidity and A~FR, is the Minimization of the total
edge is now assumed to area of the curved energy then gives the
have a roughly region. The curvanure of result that the radius of
cylindrical shape, with & the edge implies that the the edge curvature
radius of curvature A, at mid-ine of the bend scales as A, = A, and
s midpoint, For a refracts inward, Because the total edge energy as
distance R between the tha distance A cannot ~R'?. So for large R, the

comers, the total
Curvature energy is
approximately x4, 3,
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change (this would
require the faces of the
icogahedron 10 be

curvatura is indeed
concantrated into namow
(small R,) ridges. GG

ing, bending and thermal fluctuations which
makes this field so exciting, and which gives
microscopic membranes their unigue prop-

erties. The work of Kramer and Wisten is 2 |

beautiful example of the contribution that

physics can make to materials research and

mechanical engineering, and it should have

important implications for the understand-

ingofbiological systems. a
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