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ABSTRACT from above, the sawari surface deforms, and, as a resultethe

We investigate the vibrations of the ideal flexible strindpieh pelling net force acts on a string.

one end is rigidly clamped, and another one is terminated on
the curved contact surface. The vibrating string touchpsae
edly this termination, and this, in turn, causes the modiatf
fundamental frequency of the string, and the train of high fr
qguency oscillations is generated. The problem is studi¢d bo

string displacement y(x,t)

N,
analytically, and numerically. The effect of the contachiio x,
earity and of the shape of the contact surface on of the spectr sawari surface y=f(x) :
structure of the string vibration is considered. The infeesnf | resonator
the impact amplitude on the vibration spectra of struckgtis
discussed. Figure 1. Scheme of sawari model.
1. INTRODUCTION The effect of sawari mechanism was studied also experimen-

tally and numerically in [3, 4] . It was shown that the sawari
Investigation of the boundary condition of vibrating sgiis a excites a local disturbance of the string motion, which gets
very important problem in musical acoustics. Itis well kmow  spectral components up to very large numbers of the fundamen
that the fundamental frequency of piano string is stricdjet-  ta| frequency of the corresponding monochord (without sgwa
mined by the type of the string termination. The types of the |t js evident, that similar mechanism of the contact noraiity
string support in the piano are different for the bass arllldre  can also generate the high frequency oscillations of theapia
notes. All the far ends of the piano strings are terminated on strings. In the following section will be presented anotaps

the bass and treble bridges, which are the rather compdicate proach to the problem of vibration of the piano string with a
resonant systems. The nearest ends of the bass and lorgy treblnon|inear support.

strings begin from the agraffe that can be considered as-an ab
solutely rigid clamp termination. But the most part of thebie
strings starts from the edge of the cast iron frame. Thesgstr
turn the rigid edge, and its vibration tone depends on theacur
ture of this termination. The similar type of the string sapp

we can see on the guitar and some other musical string instru-
ments.

Usually the changing of tone caused by the curvature of the
string support is negligible, but there is a family of Japmne Ed
plucked stringed instruments (biwa and shamisen), whighdo .
ing is strictly determined by the string termination [1, Zhese Sting L I§
lutes are equipped with a mechanism called "sawari” (touch) of 3 L{\ N
The sawari is a contact surface of very limited size, locatied Force Bridge Frame
the nut-side end of the string, to which the string touchpsaé
edly, producing a unigue timbre of the instrumental tonéedal Soundboard

the sawari tone.

This paper studies the influence of the geometrical nonlityea Figure 2: Scheme of piano string model.
of the string termination on the spectrum of its vibration.

3. PIANO STRING MODEL

The scheme of position of the treble piano string is shown in
Figure 2. The left-hand end of the string wire is fastenedhéo t

=f(x)
ge

cast iron frame. Then the string bends around the rigid edge
2. SAWAR| MODEL of the frame, thereafter it runs over the piano bridge, and te
minates again on the frame. The string is assumed to be ideal
The nonlinear model of sawari mechanism is considered in [3, (flexible). The piano hammer strikes the string at the cdntac
4] and the scheme of this model is shown in Figure 1. pointxz = [, and this generates two simple nondispersive travel-
Itis assumed that the displacemelit, t) of the ideal (flexible) ing wavesy(t+ z/c) andy(¢ — z/c) moving in both directions.
string of lengthL obeys the second-order wave equation. The At the first moment the amplitude of these waves is always pos-
right-hand end of the string is supported by the bridge, tvisc itive.
considered as a resonator. The left-hand eng (0) terminates Let’s consider the wave_ = y(¢ + x/c) moving to the edge
at sawari surface, which is assumed to be rigid enough, atd th termination, which form is defined by the functigiiz). This
is defined byy = f(z). When the string pushes this surface wave reflects back from the edge, and the reflection occurs in
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such a manner that on the rigid surface at any momemé
havey_ + y+ = 0. Thus, the amplitude of the reflected wave
y4+ = —y—_. But it doesn’'t mean that the reflected wave sim-
ply turns over. During reflection the form of the wave is es-
sentially deformed. It occurs due to the fact that each ordi-
natey, = y(t») reflects back at the different moments of time
t = t;,, and only wheny,, = f(z). It means, that each ampli-
tudey,, reflects not from the point = 0, but from the point

x = dn, and thus the length of the string "looks” shorter, and
this "truncation” depends on the amplitude of the incideave:
Now we can derive the formulae for description of both travel
ing wavesy; andy_ moving in both directions.

In musical acoustics each function of timé&) may be consid-

ered as a baseband signal, whose range of frequencies is mea-

sured from close to @7z to a highest signal frequency, which
is equal to 100k H =, approximately. Therefore, such function
is completely determined by giving its ordinates as a safes
discrete points [5]

= SiN Winaz (E — tn
0= 3 o) T Ao

Heret, = nm/wmaz, aNdwmaz iS @ maximum bandwidth of
the signal.

Because each ordinatdt,) reflects back at momert = ¢,
wheny, = y(t,) = f(x), the reflected wave can be repre-
sented in the form

—+oo .
SIn Wmaz (t — tn + t5;)
t)=— tn .2
y+ (1) n;ooy( ) et — T + 62 @
wheret), = 1f7'(y,). Here f~'(y,) denotes the inverse

function of f(z).

4. PIANO STRING EXCITATION AND BASIC
FORMULAE

The presented model is used here for demonstration of the in-

fluence of the contact nonlinearity and the shape of the conta
surface on the spectral structure of the piano string vimat
Let's consider an ideal (flexible) string. The displacemgnt, ¢)

of such a string obeys the simple wave equation

0%y 28:!/
oz = S o ©)

In [6], the following system of equations describing the naan-
string interaction is employed

dz 2T

7 a— )+, (4)
dg ¢
%= ZF), ©)

whereg(t) is the outgoing wave created by the hammer strike
at the contact point = [, F(t) is the acting forcem, z(¢),

andV are the hammer mass, the hammer displacement, and the

hammer velocity, respectively. The hammer felt compresiso
determined by.(t) = z(t) — y(I, t). Functiony(l, ¢) describes
the string transverse displacement at the contact poiat [,
and is given by [7]

y(l,t) =

+22 (tf%)f

i H—a) )_ig(t_ (H;b) ) ©)

(-

Here it is assumed that the string of lengthextends from

x = 0onthe lefttoxr = L. Parameter = [/L is the fractional
length of the string to striking point, arid= 1 —a. Parametes
determines the actual distancef the striking point from near-
est string end. The initial conditions at the moment when the
hammer first contacts the string, are takey@y = z(0) = 0,
anddz(0)/dt =

The hammer is described here in according to tree-parameter
hereditary model that is presented in [8]. According to this
model, the nonlinear forc&'(¢) exerted by the hammer is re-
lated to the felt compressian(t) by the following expression
d(up)}

@)

F(u(t)) = Qo {up +ta—0p

Here the paramet&, is the static hammer stiffnessjs com-
pliance nonlinearity exponent, andis the retarded time pa-
rameter.

If the string has the rigid termination, the spectrum of tiimg
motion exited by the hammer may be calculated [6] directly
from the force historyF'(¢). The general expression for the
string mode energy level is

2Mw? |, 2
where
A; = M/ F(s) cos(w;s)ds, 9)
imep
_ sm iam / F(s) sin(wss)ds. (10)
wrcp

Herew; = micL™ iwo is the string mode angular fre-
qguency;to is the contact time. In our case the string at one
end has the nonlinear support, therefore we must incluge thi
edge influence on the string vibrations by other way.

At the first stage the outgoing wayét) generated by the ham-
mer strike may be considered as the initial local disturbavfc
the string motion, which creates a sequence of pulses=
g(tn) satisfying the conditions of relation (1). Each pulse is
reflected back according to relation (2). Thus this modehef t
nonlinear reflection gives possibility to obtain the distition of

the transverse displacemeyitz, t) of the string at any moment
by the following expressions

oo

y(,t)=> gt —Tu) =Y gt—"Ts), f 2 <I, (11)
=0 i=1

y(z,t) =Y g(t—Ts) Z (t—Tu), if x> 1. (12)
=0 =

Hereg(¢) =0if £ <0, and the functiong; are given by

T =c 'l —x+2i(L — 61)] (13)
Tsi = ¢ ‘o — 1+ 2i(L — 6s4)], (14)
T, :cfl[l+m72L+2i(L*52i)]y (15)
Ty = ¢ 204 —x — 1+ 2i(L — 64:)] . (16)

In our casey;; < L, and we can find;; = £~ (G;;), where

Gu=gt—c'(l—z+2L)), a7
Gai = g(t —c¢ (I + 2 — 2L + 2L)), (18)
Gai =gt —c¢ "z —1+2L)), (19)
Gai =gt — ¢ '(—z — 1+ 2L)). (20)
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Using such procedure, we can define functigix,to) as an
initial string displacement at the moment= ¢, just as the
string vibrates freely. The initial string velocityz, to) at this
moment we can find using the string displacemgt to — A),

whereA = t; — ti—1 = T/wmasz. Then, the initial string
velocity we can determine as

_
ot

_ y($7t0) _ y(m7t0 _ A)

to

v(z, o) (21)

Now using Fourier analysis we can find the spectrum of the
string vibrations. If

y(z,t) = Z(Az cosw;t + B; sinw;t) sin (?) ;o (22)

i

with normal-mode frequencies; = iwo, one finds

L .

A = %/o y(z,to) sin (?) dz, (23)
2 [t . [inx

B; = T /0 v(z,to) sin (T) dx, (24)

and the string mode energy levg); of the ith mode is also
defined by Eq. (8).

5. NUMERICAL RESULTS

For numerical simulation of the piano string with nonlineap-
port we chose here the note numher70 (noteF}, frequency
f=1480 Hz). The string parameters are the following: thegtri
lengthL=119 mm; the actual distance of the striking point from
nearest string entE7.2 mm; the string tensiofi=644.8 N.
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Figure 3: Transverse string displacement for strimg0. Vary-
ing the edge curvatur® with fixed hammer velocity’=3 m/s.

the string length just at the momefit, when the hammer has
lost the contact with the string. The results are shown fbr di
ferent values of the curvatur® of the edge of the frame, and
for the fixed initial hammer velocity i$=3 m/s. In this Figure
the influence of the edge on the form of the string displacemen
is visible well. In vicinity of the edge« = 0) the amplitude

of the string deflection becomes smaller with increasinghef t
radius of the edge.

To calculate the string vibration spectrum according tatieh-
ships (8), (22)—(24), we must obtain the distribution ofstréeng

The continuous variations in the hammer parameters vs. keyvelocity according to (21). For this purpose we calculat th

numbern were obtained experimentally by measuring a whole
hammer set of recently produced unvoiddaelhammers. The
result of those experiments are presented in [8, 9, 10]. A bes
match to the whole set of hammers was approximated using

Qo 183 exp(0.045n),
p = 3.7+0.015n,
a = 2595+ 0.58n+6.6-10"*n? —

1.25-107%0% +1.172-10"%n*,  (25)

for hammer numbet < n < 88. Here the dimension of pa-
rametera is [ms], and the dimension @ is [N/mm?].
The hammer masses of this set were approximated by

m =11.074 — 0.074n + 10 *n®, 1< n<88. (26)
The mass of hammaer=1 (Ay) is 11.0 g, and the mass of ham-
mern=88 (Cs) 5.3 g.

For the hammer number=70 we use such values of param-
eters: static stiffnes®,=4270 N/mn%; nonlinearity exponent

p=4.75; hereditary parameter=0.395 ms.

Because this note has three strings per note, the hammer mass
for numerical simulation was taken as 1/3 of the real hammer

mass, and is equal here=2.1 g.

The rigid edge of the frame has approximately a parabolimfor
and it is described here by the functign= (2R) 22, where

R is the radius of the curvature of the edgera0.

The first step of numerical simulation of the string vibratio
begins with calculation of the outgoing wayé )created by the
hammer strike using formulae (4—7). Then we can find the form
of the string using relationships (11) and (12).

In Figure 3 is presented the string transverse displaceatemd

string displacement just one step of tithebefore the moment,
when the hammer has lost the contact with the string. Here, fo
this note numben=70 (f=1480 Hz) we choos&=0.204.s.
Using the data about the string displacement presenteceabov
by means of numerical differentiation (21), we can find the
string velocity distribution, which is displayed in Figute

1
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Figure 4: Velocity distribution for string.=70. Varying the
edge curvature? with fixed hammer velocity’=3 m/s.

Here we can see that the influence of the edge curvature on the
string velocity and on the string displacement is similan |
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vicinity of the edge the string velocity is equal to zero @on
a distance, which becomes longer with increasing of theusadi
of curvature of the edge.

6. CONCLUSIONS

We have provided a careful model of piano string with nordine

In Figure 5 we demonstrate the influence of the edge curvaturesupport, and found that this theory may be of some use foopian
on the spectrum of the string vibrations excited by the hamme treble strings, which one end is terminated on the curvee edg

with initial velocity is V=3 m/s.
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Figure 5: Spectral envelopes for string70. Varying the edge
curvatureR with fixed hammer velocity/=3 m/s.

It is clear that with increasing of the edge curvature thelamp
tude of higher harmonics becomes greater. Moreover, time for
of the spectral envelopes fé=3 mm and 5 mm is essentially
irregular, and the rate of higher harmonics attenuatiomgés.
significantly. Obviously, the edge curvatufe>5 mm creates
the train of oscillations up to very high frequencies. Hinate

can see the strong influences of the edge curvature on the am-

plitude of the second harmonic, and this fact is very impurta
In Figure 6 is presented the influence of the velocity of tha-ha
mer strike on the spectrum of the string vibrations.

0 —
% .10 - & -V=3.0m/s
o ® -V=1.5m/s
o L
Q A -V=1.0m/s
& -20
@
c
5} -
o
8
S -30 -

-40 I

123456 7 8 9101112131415
Mode number

Figure 6: Spectral envelopes for string70. Varying hammer
velocity V' with fixed edge curvatur&=3 mm.

It is evident that the power spectrum of the string vibration
grows up significantly and reshapes essentially with irgirep
of the hammer velocity.

of the frame. One respect in which this model is still idezdiz

is its assumption about a very simple string boundary candit
at the piano bridge.

Itis found that the new trains of high frequency oscillatdhat

do not exist initially grow up eventually, and its appeade-
pends on the curvature of the edge of the frame. It is shown
that the power spectrum of the string vibration is enrichgd b
spectral components up to very large numbers, and es$gntial
reshapes with increasing of the amplitude of the initial evex-
ited by the piano hammer.

It is revealed that even the small variation of the edge curva
ture significantly influenced on the amplitude of the secaard h
monic in fact. For this reason the manufacturers of grandqsia
should produce a cast iron frame very accurately, and direfu
process the surface of the edge.
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