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Abstract: Estonia Piano Factory is among the few companies in the world that build their pianos with 
movable double duplex scale. It enables the technicians to change the tuning according to their wishes 
and necessary acoustics. The special sample of Parlour Grand Piano Estonia L190 was fabricated for 
experimental studies. Using B&K impact hammer and accelerometers attached to the bridge as a tool, 
the frequency response functions and two dimensional motion of piano treble bridge were examined in 
cooperation with IRCAM. The influence of the bridge impedance and duplex scale tuning on the string 
vibrations was considered. It was shown that inharmonicity of vibrating string appears not due to string 
stiffness, but due to the bridge impedance and the presence of a duplex scale. The mathematical models 
of the string-bridge interaction were also discussed. These results should prove extremely useful in 
developing an accurate model of the real string vibration excited by piano hammer. 

1. Introduction 
Only a few grand piano companies in the world 
produce pianos with movable double duplex scale. 
These companies are Steinway, Yamaha, Fazioli, 
Pfeiffer, and Estonia. The traditional duplex scale 
was created by Steinway in 1872. The illustration 
of a grand piano duplex scale is shown in Figure 1. 

The duplex scale is the part of a string between the 
front tip of the bridge and the brass bridge before 
the string pin. Their length can be adjusted and 
“tuned” in harmony with the main strings by 
sliding of the brass bridge on an inox steel surface, 
fixed to the iron frame.  

 

Figure 1. Yamaha grand piano duplex scale. 

In general, the duplex scale lengths must remain in 
a fifth or octave relationship with the length of the 
related string and can be tuned by moving the brass 
bridges. It does serve to enhance the tonal quality 
of the note being played by adding that extra sound 

one octave higher than the actual note, adding a 
pleasant resonance.  

This system of doubling the octave of the notes is 
only effective in the middle and upper range of the 
piano. Therefore the duplex scale is present in that 
part of the piano only. Duplex scaling is not 
effective on all pianos due to the differences and 
size and overall design and has in fact been 
installed on some pianos without proper 
engineering only to result in tone that is too harsh 
or even worse, or in other words, in a piano that is 
very difficult to tune properly. One should not 
assume that a piano with a duplex scale is better 
than one without. The tone quality of the given 
piano should be the final criterion by which we 
judge its effectiveness.  

There are also other opinions that the duplex scale 
does not improve the sound quality, and the “art of 
tuning the duplex scale” is a myth although most 
piano tuners have been taught to believe it by the 
manufacturers, because it makes for a good sales 
pitch.  

Nonetheless, a proper understanding of the role of 
the duplex scale is certainly preferable. Evidently, 
the tuning the duplex scale can optimize the 
mechanical impedance of the bridge. The duplex 
scale is needed to allow the bridge to move more 
freely, and not for producing sound. However, for 
impedance matching, the tuning needs only be 
approximate, which is what is done in practice. 

The experimental investigation of the duplex scale 
and the mathematical modeling of this problem 
allow clarify the influence of the duplex scale 
tuning on the sound quality of the piano. 



2. Model of string-bridge interaction 
The displacement y(x,t) of the ideal (flexible) 
string obeys the second-order wave equation 
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The relationships connecting the velocity c of the 
transverse wave of the string vibration, angular 
frequency ω , string length L, string tension T, and 
the linear mass density of string �  are 

2, cTLc µωπ ==  (2) 

Discussing the model of the string-bridge 
interaction we may consider a string of finite 
length, stretched between one rigid support 
(agraffe) at x=0, and the bridge having the 
transverse mechanical impedance Z( ω ) at x=x0. 
Therefore, for the simple-harmonic oscillations of 
frequency ω /2 π , the boundary conditions for the 
string will be y=0, at x=0, and  
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at x=x0.  

We can suppose that the n-th trial function is 
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where ω n and an must be obtained from boundary 
conditions. Using (3) and assuming (T/ ω x0 Z) << 1, 
we can derive  
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As a result, the fundamental function at x=x0 is  
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Thus, the real part of the mechanical impedance of 
the bridge as well as the imaginary causes the 
damping of the free vibrations. The damping 
constant depends also on the string length x0. For 
this reason the oscillation of a short string is dying 
faster, then oscillation of a long string.  

It is also important that the string partials are not 
exact integral multiplies of the fundamental string 
frequency due to the influence of the bridge 
impedance, in according to formula (5). 

In fact, in real grand pianos the strings are not 
terminated on the bridge, but passing the bridge 
they terminate on the hitch-pin rail of the frame. 
Therefore we can suppose also another 
mathematical model of the string-bridge 
interaction. Probably, it is possible to consider the 
bridge as an extra load attached to a string of finite 
length L, stretched between agraffe and the brass 
bridge before the string pin.  

This load changes the frequencies of free vibration 
of the string and also changes the shape of the 
standing waves of free vibration. If the load is a 
force concentrated at the point x0 of the string, and 
it is a simple-harmonic, of frequency ω /2 π , so that 
f(x,t)=F(x)exp(-i ω t), we can represent the steady–
state shape of the string with the same factor, 
y(x,t)=Y(x)exp(-i ω t). For a concentrated force of 
magnitude equal to the string tension in the string, 
f(x,t)=T δ (x-x0) exp(-i ω t), the Green’s function 
g(x|x0) is a solution of equation 
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The Green’s function must also satisfy the 
boundary conditions at the end of the string. If the 
string supports are rigid, g(x|x0) must be zero at 
x=0 and x=L. Therefore the Green’s function for 
0< x < x0 < L is 

c

x

c

xL
Axxg

ωω
sin

)(
sin)|( 0

0

−=  (9) 

and for 0 < x0 < x < L is 
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In case the load is an impedance Z( ω ), attached at 
the point x0, the reaction force is f(x,t)= 
i ω Z( ω )Y(x) δ (x-x0) exp(-i ω t), and the shape of the 
string will be 
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where the Green’s function for 0 < x < x0 < L is 
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and for 0 < x0 < x < L the Green’s function is 
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Setting x=x0 provides the equation for the resonant 
frequencies 
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The formulae above are well known, and were 
derived seventy years ago by Philip McCord 
Morse [1] (first edition of this book was in 1936). 

Because the bridge can be considered as a very 
massive load, therefore its mass M>>� L, then the 
lowest mode of the working string length is a few 
lower than that of the fundamental, ω 0=π c/x0, of 
the unloaded string. 

Setting ω =ω 0(1-ε ) and using expression (15), we 
can find the shift (ε <<1) of the fundamental 
frequency of the string oscillation caused by the 
bridge impedance 
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and β =(L-x0)/x0, is the ratio of the lengths of the 
parts of the strings passing the bridge to the 
working part of the string x0. Usually, β  changes 
approximately from 3/5 for the high treble notes to 
1/7 in the middle, and the suitable value of this 
parameter may be preferred by duplex scale tuning.  

The dependencies of the frequency shift ε  on the 
possible values of β  calculated using formula (17) 
are presented in Figure 2. Here the values of δ  
were selected arbitrary. In fact, this value is 
strongly determined by the bridge impedance by 
formula (18), and its value causes not only the 
frequency shift, but also the decay rate of the string 
oscillations. 

0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.05

0.10

0.15

0.20

lδl=0.2

lδl=0.15

lδl=0.06

lδl=0.1

β

ε

 

Figure 2. Frequency shift as a function of the duplex 
scale tuning parameter. 

Because the bridge impedance is a very specific 
and peculiar measure of each instrument, it must 
be determined in experimental testing of piano. 

3. Experimental method 
The individual sample of a grand piano shown in 
Figure 3 was manufactured by Tallinn Piano 
Factory, and presented to the Institute of 
Cybernetics as a trial tool. It is built similar to 
Parlour Grand Piano Estonia, which is produced by 
Tallinn Piano Factory during quite a few years. 
This unique instrument is prepared for 
experimental measurements and tests of the 
various parts of the piano.  

The experimental study of treble bridge vibrations 
of this piano was carried out by Rene Causse and 
Philippe Zelmar from IRCAM, Paris during their 
visit in Tallinn in December 2005 (PARROT 
Programme). 

The Bruel & Kjaer impact hammer of type 8204 
was used for the treble bridge excitation in a 
direction perpendicular to both the soundboard and 
the string. Two Bruel & Kjaer accelerometers of 
type 4374 were mounted on the bridge to measure 
the bridge motion perpendicular and parallel to the 
soundboard. 

The treble bridge impedance was measured in the 
region of termination of the strings for note F7 
(fundamental frequency f0=2794 Hz; key number 
n=81).  



 

Figure 3. Experimental grand piano Estonia. 

The frequency dependence of the relative 
transverse bridge impedance of piano Estonia is 
shown in Figure 4. In Figure 5 are shown the 
similar results obtained by P. Zelmar for Petrof 
piano. The entire collection of results of the piano 
bridges and duplex scale studies of different pianos 
is presented in P. Zelmar theses [2]. 
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Figure 4. Transverse bridge impedance of Estonia 
piano in the region of note F7 (f0=2794 Hz). 

4. Discussion 
We have presented theoretical and experimental 
results of the piano string-bridge interaction. The 
significant influence of the bridge impedance on 
the frequency of the string oscillations and its 
decay rate is shown. It is especially noteworthy 
that  the second  and  higher modes of  piano string 
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Figure 5. Transverse bridge impedance of Petrof piano 
in the region of note E7 (f0=2637 Hz). 

vibrations are not exact integral multiplies of the 
fundamental due to the influence of the bridge 
impedance, but not due to the string stiffness. The 
results of the experimental study of the piano 
bridge motion demonstrate that the bridge 
impedance is very individual for each piano and it 
is also the extremely jagged function of frequency. 
For this reason, in according to formula (18), 
variation of parameter δ  may be also very high. 
Taking into account that duplex scale tuning of a 
certain string can also change the bridge 
impedance for the neighbouring strings, in our 
opinion the role of the duplex scale tuning is not so 
efficient, as it might sound.  

The results of this study give the clear 
understanding of the process of the wave 
transmission through the bridge and the way of the 
piano soundboard excitation. 
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