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This study presents the theoretical modeling of the part-pedaling effect in the piano. Part-pedaling means a com-
mon use of the sustain pedal where the pedal is not fully depressed, but pressed somewhere between the two
extremes. The model implies to consider the distributions of the string deflection and the string velocity along the
string as functions created by the traveling nondispersive waves generated by the hammer impact and moving in
both directions. The damper restricts the amplitude of the string deflection in the region of its position, and also
suppresses the ”up” velocity of the string. Such a nonlinear model gives possibility to calculate the spectrograms of
the string vibration tone, and to compare the numerical calculations with the measured example tones of the string.
To obtain the appropriate decay rates of the string vibrations, the damping factor at one termination of the string
is induced. The modeling confirms that in the bass range the nonlinear amplitude limitation causes energy transfer
from the lower partials to higher partials, which can excite missing modes during the damper-string interaction.

1 Introduction

This paper presents a physics-based model for simulat-
ing the damper-string interaction in the part-pedaling effect
in the piano. Part-pedaling is a popular pedaling technique
used for creating various artistic expressions. It means that
the sustain pedal is not fully depressed, but pressed some-
where between the two extremes. The effect has been studied
experimentally earlier [1] by analyzing recorded piano tones
played with part-pedaling. The results showed that the use
of the part-pedaling affects the timbre and decay characteris-
tics of the tone, since the damper limits the amplitude of the
string motion in a nonlinear fashion.

Physics-based sound synthesis is a popular approach for
modeling musical instrument sounds [2]. In the case of string
instruments, modeling of the string vibrations forms a basis
for the synthesis. The most popular approaches are the dig-
ital waveguides [3] (DWG), the finite-difference scheme [4],
and the modal synthesis approach [5]. Specifically, mod-
els for the sustain pedal synthesis that use the DWG tech-
nique [6, 7] and modal synthesis approach [8] have been pre-
sented. These methods simulate the effect of the sympathet-
ically resonating string register in a real piano when the sus-
tain pedal is completely pressed down. On the other hand,
the effect of the nonlinear amplitude limitation present in the
part-pedaling is not accounted for in these models.

However, the idea of modeling a collision between a vi-
brating string and a rigid obstacle in the context of physics-
based sound synthesis has been presented earlier. Rank and
Kubin [9] developed a DWG model for slapping technique on
electric bass guitars that introduces nonlinear signal process-
ing elements for limiting the amplitude of the string vibra-
tion. Krishnaswamy and Smith [10] proposed methods for
simulating a collision between an ideal string and a rigid ob-
stacle using both DWG modeling and finite-difference scheme.

This paper shows how the damper-string interaction can
be simulated in a DWG model of a piano string, when part-
pedaling is used. This can be divided into two stages. Firstly,
mathematical modeling of the hammer-string interaction al-
lows prediction of the the piano string motion [11, 12]. Sec-
ondly, this knowledge is used for appropriate simulation of
the interaction of the vibrating string with a damper. When
part-pedaling is used, the string motion is limited when the
damper altitude, i.e., the depth of the sustain pedal, above the
string is smaller than the transverse string deflection.

The numerical simulation of the hammer-string interac-
tion is based on physical models of a piano hammer described
in [13, 14, 15]. These models are based on the assump-
tion that the woollen hammer felt is a microstructural ma-
terial possessing history-dependent properties. The elastic
and hereditary parameters of piano hammers were obtained

experimentally using a special piano hammer testing device
that was developed and built in the Institute of Cybernetics at
Tallinn University of Technology [15].

In this paper a number of simplifying assumptions re-
garding the string and string supports are introduced. Thus,
the piano string is assumed to be an ideal flexible string, but
the coupling of strings at the end supports is neglected, and
the bridge motion is also ignored. We also assume that the
left string termination (agraffe) is the ideal rigid support. The
right string termination (bridge) we consider here as a rigid
but not ideal support. To obtain the appropriate decay rates of
the string vibrations, we introduce the reflection coefficient
for the traveling waves reflecting from the bridge. The ap-
plication of the proposed procedure in modeling of the part-
pedaling in the piano clarifies the physics of this effect.

2 String and hammer models

In this paper it is assumed that the piano string is an ideal
(flexible) string. The displacement y(x, t) of such a string
obeys the simple wave equation

∂2y
∂t2
= c2 ∂

2y
∂x2
. (1)

As in [11], we have the system of equations describing
the hammer-string interaction

dz
dt
= −

2T
cm

g(t) + V, (2)

dg
dt
=

c
2T

F(t), (3)

where g(t) is the outgoingwave created by the hammer strike,
c is the speed of a transverse nondispersive wave traveling
along the string; F(t) is the acting force, T is the string ten-
sion; m, z(t), and V are the hammer mass, the hammer dis-
placement, and the hammer velocity, respectively. The ham-
mer felt compression is determined by u(t) = z(t) − y(0, t).
Function y(0, t) describes the string deflection at the contact
point x = 0, and is given by [12]

y(0, t) = g(t) + 2
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i=1

g

(
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2iL
c

)
−
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[
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c

]

−
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i=0

g

[
t −

2(i + b)L
c

]
. (4)

It is assumed that the string of length L extends from x =
−aL on the left to x = bL = (1 − aL). Parameter a = l/L is
the fractional length of the string to striking point. The initial

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1224



conditions at the moment when the hammer first contacts the
string, are taken as g(0) = z(0) = 0, and dz(0)/dt = V .

The physical sense of Eq. (4) is simple. It means that the
deflection of the string at the contact point is determined by
the traveling waves moving in both directions along the string
and reflecting back from the string supports. Here the index
of summation i simply denotes the number of rereflections.

The experimental testing of piano hammers demonstrates
that all hammers have a hysteretic type of force-compression
characteristics. A main feature of hammers is that the slope
of the force-compression characteristics is strongly depen-
dent on the rate of loading. It was shown that nonlinear hys-
teretic models can describe the dynamic behavior of the ham-
mer felt [13, 14, 15]. These models are based on assumption
that the hammer felt made of wool is a microstructural mate-
rial possessing history-dependent properties. Such a physical
substance is called either a hereditary material or a material
with memory.

According to a four-parameter hereditary model of the
hammer presented in [13, 14], the nonlinear force F(t) ex-
erted by the hammer is related to the felt compression u(t) by
the following expression

F(u(t)) = F0

[
up(t) −

ε

τ

∫ t

0
up(ξ) exp

(
ξ − t
τ

)
dξ

]
. (5)

Here the instantaneous hammer stiffness F0 and compliance
nonlinearity exponent p are the elastic parameters of the felt,
and ε and τ are the hereditary parameters.

The parameters of the hammers in this model were ob-
tained experimentally by measuring a whole hammer set of
recently produced unvoiced Abel hammers. The results of
this experiment and continuous variation in hammer param-
eters across the compass of the piano are presented in [15].

The hammer-string interaction is simulated using the ba-
sic formulae presented above. The tone G3 ( f0 = 196.4 Hz;
the note and the hammer number N = 35) was chosen for
modeling. The string length L = 878 mm, the actual distance
of the striking point from nearest string end l = 111 mm, the
string tension T = 847 N.

The four-parameter hammer model (Eq. (5)) is explored,
and the values of hammer parameters are computed by for-
mulae presented in [15]. These parameter values used are F0

= 122220 N/mmp; p = 4.225; ε = 0.9925; τ = 2.13 μs, and
the hammer mass m = 8.7 g.

The simulation of the hammer-string interaction was pro-
vided by solving the system of equations Eq. (2), Eq. (3) for
initial hammer velocity V = 3 m/s, and for one string per
note. For this purpose the acting mass of a hammer is de-
fined as being the total hammer mass divided by the number
of strings per note n = 3. Thus the hammer mass used is m
= 2.9 g. As a result of simulation we can find the force his-
tory F(t) and the time dependence of the outgoing wave g(t)
created by the hammer strike.

3 String-damper interaction model

The proposed model of the string-damper interaction is
based on the knowledge of the outgoing wave function g(t)
created by the hammer strike. It is evident that Eq. (1) may
be satisfied by combination of simple nondispersive waves
g1(t − x/c) and g2(t + x/c) moving in either directions along

the string from the point x = 0 where the string makes con-
tact with the hammer. At this point g1(t) = g2(t) = g(t).
These two waves g1 and g2 are simply translations of the out-
going wave g(t) from the point x = 0 to the other segment of
the string, and their amplitudes are always positive, because
g(t) > 0. These two waves are being reflected from each end
of the string, and create the pair of reflected waves g3(t− x/c)
and g4(t+ x/c). The amplitude of these waves is always neg-
ative. The scheme of waves propagation along the string is
shown in Figure 1.

Figure 1: Scheme of string-damper interaction in the
waveguide model. Functions g are the traveling waves; kl

and kr are the reflection coefficients.

At the left end of the string the reflected wave g3(t) =
−klg2(t), and at the right end of the string the reflected wave
g4(t) = −krg1(t). Here kl and kr are the left and right reflec-
tion coefficients, which are introduced to obtain the appro-
priate decay rates of the string vibrations.

The physical interpretation of the functions g3 and g4

shows what we should use for their values: they exist only
because the outgoing wave g at some earlier time has been
reflected from the string ends. According to our model, the
string deflection y(x, t) (shown in Figure 1 by red line) at any
point x and at any time t is simply the resulting sum of wave-
forms g moving in both directions:

y(x, t) = g1(t−x/c)+g2(t+x/c)+g3(t−x/c)+g4(t+x/c). (6)

A computing method that realizes the calculation of the
string deflection determined by Eq. (6) is based on a digi-
tal delay-line procedure. The numerical application of this
method is best explained by Hall in Appendix A [11].

The position of the damper at any moment is fixed by
two points on the x axes, D1 and D2, which denote the co-
ordinates of the left and right side of the damper, and the
altitude H of the damper above the string. At each time step
of calculations and at each point of the string we control a
value of the string deflection calculated according to Eq. (6).
If the string deflection at the moment ti at the left point D1 of
the damper is greater than H, we reduce the amplitude of the
positive wave g1(ti − D1/c) traveling above the string in the
right direction to obtain y(D1, ti) = H. If the string deflec-
tion at the moment t j at the right point D2 of the damper is
greater than H, we reduce the amplitude of the positive wave
g2(t j + D2/c) traveling above the string in the left direction
to obtain y(D2, t j) = H. Therefore, at any moment the am-
plitude of the string deflection under the damper is less than
the altitude of the damper above the string. Thus we may
simulate the part-pedaling effect in the piano by using the
traveling-wave model of the string-damper interaction.
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4 Results and analysis

With the model described in Section 3 it is possible to
compute the string vibrations in a desired point of the string.
Thus, it is possible to simulate the damper-string interac-
tion in a part-pedaling situation and compare the results with
recorded waveforms described in [1]. Figure 2 shows the
waveforms of the recorded tone G3 ( f0 = 196.4 Hz) played
without the sustain pedal, with part-pedaling, and with full
sustain pedal, and Figure 3 shows the waveforms of the cor-
responding simulated tones.

The simulation parameters for the string and the damper
were chosen based on the signal analysis of the recorded
tones, and they are described in Section 2. The damper cov-
ers the range 113-184 mm measured from agraffe. The left
end of the string is assumed absolutely rigid, thus the value
of the left reflection coefficient kl = 1. To obtain the simi-
lar decay rate of the string vibrations the value of the right
reflection coefficient was chosen kr = 0.995.

Figure 3(a) shows the string vibrations after interaction
with the damper, which at the moment t = 1 s falls down to
the altitude 0.005 mm above the string (without the sustain
pedal); Figure 3(b) shows the string vibrations after interac-
tion with the damper, which at the moment t = 1 s falls down
to the altitude 0.1 mm above the string (part-pedaling); Fig-
ure 3(c) shows the string vibrations without the interaction
with the damper (full sustain pedal) at the point of the string,
which is in vicinity of right side of the damper.

The nonlinear effect caused by the damper-string inter-
action was studied through spectrograms. Figure 4(a), 4(b),
and 4(c) show the spectrograms of the recorded tone G3 ( f0
=196.4 Hz) played without the sustain pedal, with part-pedal-
ing, and with the sustain pedal, respectively. These spectro-
grams correspond to the sound waveforms in Figures 2(a),
2(b), and 2(c).

Figures 5(a), 5(b), and 5(c) show the spectrograms of the
simulated tone G3 ( f0 =196.4 Hz) without the sustain pedal,
with part-pedaling, and with full sustain pedal, respectively.
The corresponding waveforms are presented in Figures 3(a),
3(b), and 3(c). All spectrograms were computed using a
Chebyshev window of length 200 ms with a 150 ms overlap.

By comparing Figures 4 and 5 several observations can be
made. First of all, the effect of the damper is very similar in
Figures 4(a) and 5(a), as well in Figures 4(b) and 5(b), which
implies that the model presents well the effect of the shaking
damper when it comes in contact with the vibrating string;
this is visible as ”spreading” in the vicinity of the horizontal
lines that correspond the partials in Figures 5(a) and 5(b). In
Figure 5(a) it can be seen that after the damper-string interac-
tion also the level of the background noise is lower compared
to the beginning of the tone. The frequencies that correspond
to the partials have some energy left; the present model does
not take into account the frequency-depending damping of
the partials.

Figure 5(b), which presents the spectrogram of the sim-
ulated tone with part-pedaling shows that after the damper-
string interaction the levels of the partials are slightly lower
compared to the full pedal case (see Figure 5(c)). Addition-
ally, the eighth partial gains energy after the interaction, like
in the case of the recorded tone (see Figure 4(b)). Thus,
with the suggested model it is possible to imitate the energy
transfer from the lower partials to the higher partials, a phe-
nomenon which is present in part-pedaling [1].
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Figure 2: Recorded sound waveforms of the piano tone G3
( f0 = 196.4 Hz) played (a) without the sustain pedal, (b)
with part-pedaling, and (c) with full sustain pedal. The

vertical lines show the time instant when the key is released.
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Figure 3: Normalized string vibration of the simulated piano
tone G3 ( f0 = 196.4 Hz) played (a) without the pedal, (b)

with part-pedaling, and (c) with full sustain pedal.

The effect of the vibrating string register in the case of
the recorded tones is clearly visible in Figure 4 as noise es-
pecially in the beginning of the tone. Since the current part-
pedaling model does not contain the sympathetically resonat-
ing string register, it is natural that this effect is not present
in Figure 5, which shows the spectrograms of the simulated
tones.

5 Conclusions

This paper presented a method for simulating the non-
linear limitation of string vibrations caused by the interac-
tion between the damper and the string in the context of the
physics-based sound synthesis of the piano. Specifically, it
was shown that the proposed approach is suitable of simulat-
ing the nonlinear effects of the part-pedaling technique.
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Figure 4: Spectrograms of recorded tones G3 ( f0 =196.4
Hz) corresponding to the sound waveforms in Fig. 2(a,b,c).

The developed theoretical model was compared with ex-
perimental results shown in [1] and it was concluded that the
proposed technique was able to produce the main effect of the
nonlinear amplitude limitation caused by the damper limiting
the amplitude of the string vibration.

Future research will concentrate on combining the re-
sults presented in this paper and the model of the effect of
the whole piano string register, which is resonating sympa-
thetically when the sustain pedal is used. This phenomenon
affects the sound, since the vibrational energy is spreading
among all strings that are coupled through the bridge.
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