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Abstract The natural wool felt is becoming increasingly popular and important as a resource material in
various applications. In this study, a constitutive equation that describes the deformation wave propagation in
the felt material is derived using a hysteretic piano hammer model. A nonlinear partial differential equation
with third-order terms that takes into account the elastic and hereditary properties of a microstructured felt is
used to study a pulse propagation in the one-dimensional case. The boundary value problem is considered,
and the numerical solution describing the strain wave propagation is provided. It is shown that the speed of a
deformation wave increases with the growth of its amplitude. Also, the nonlinearity makes the front slope of
a pulse steeper, which causes the eventual breaking of a pulse. The solution of the linear problem is analyzed,
and the rate of the wave attenuation in the felt material is estimated.

1 Introduction

The felt is likely to be the oldest textile fabric known to man. It is made using wool or other animal fibers
by tightly matting them together. Nowadays, wool felt with its unique cellular structure is being used for a
wide variety of applications: vibration isolation, sound absorption, noise reduction, filtering, etc. For almost
two centuries, the felt has been widely used in the piano manufacturing. For instance, felt pads are used for
vibration isolation between vibrating strings and the cast iron frame. Piano dampers are made using wool felt,
and of course, the piano hammers are coated with two or several layers of felt.

The first constitutive framework proposed as a mathematical model of the hammer felt was worked out by
Ghosh [1], who considered the force–compression characteristic of the felt obeying the power law

F = Au p̂, A = const, (1)

where F is the acting force, and u is the felt compression. Experimental static testing of different hammers by
Hall and Askenfelt [2] demonstrated that for voiced piano hammers, the values of parameter p̂ ranging from
2.2 to 3.5 give a good approximation of dependence (1). According to Hertz’s law, the force acting on two
Hookean bodies gives p̂ = 3/2. The values of p̂ different from 3/2 indicate the non-Hookean felt properties.
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More in-depth information about properties of the hammer felt was presented by Yanagisawa et al. [3] and
by Yanagisawa and Nakamura [4,5]. Their dynamic experiments demonstrated very important properties of
the felt: The nonlinear force–compression characteristic, strong dependence of the slope of the loading curve
on the rate of loading, and the significant influence of hysteresis, i.e., the loading and unloading of the felt, are
not alike. The existence of these phenomena requires that the felt is understood as a microstructured material
possessing history-dependent properties, or in other words, is a material with memory.

The aim of the current paper was to derive and present a mathematical model that describes the deformation
wave propagation in the felt material using the hysteretic piano hammer model. The problem is studied for
the one-dimensional case. The presented model takes into account the elastic and hereditary properties of the
microstructured wool felt.

2 Compression properties of piano hammer felt

The first dynamical model of the piano hammer felt, which takes into consideration both the hysteresis of the
force–compression characteristics and their dependence on the rate of felt loading, was presented in [6]. Fol-
lowing Rabotnov [7], this new nonlinear hysteretic model of the felt was proposed by replacing the parameter
A in expression (1) with a time-dependent operator F0[1−R(t)∗], where ∗ denotes the convolution operation,
and the relaxation function was given by

R(t) = γ

τ0
e−t/τ0 . (2)

Thus, instead of the simple relation (1), the four-parameter hysteretic model of the felt was derived in [6] in
the form

F(u(t)) = F0

⎡
⎣u p̂(t) − γ

τ0

t∫

0

u p̂(ξ)e(ξ−t)/τ0 dξ

⎤
⎦ . (3)

Here, the instantaneous stiffness F0 and the nonlinearity exponent p̂ are the elastic parameters of the mate-
rial, and hereditary amplitude γ and relaxation time τ0 are the hereditary parameters. The history of the felt
deformation is assumed to start at t = 0.

An experimental investigation of the compression characteristics of the piano hammer felt was carried
out using a special piano hammer testing device [8,9]. The device was designed for measuring the force and
compression histories during a hammer strike against a rigid surface. The aim of these experiments was a
verification of the hysteretic model in the form (3), and the determination of the hammer felt parameters.

Figure 1 displays the compression characteristics obtained experimentally. Force–compression curves are
presented for three different rates of loading by combining the force and compression histories presented in [9].

Fig. 1 Comparison of measured data and numerical simulations of force–compression characteristics of the piano hammer. The
arrows show the directions of the compression and decompression branches. The symbols denote measured data for hammer strik-
ing velocities: 1.31 m/s (diamonds) (contact time tc = 1.7 ms); 1.00 m/s (triangles) (tc = 2.0 ms); 0.74 m/s (bullets) (tc = 2.5 ms).
The solid lines are the corresponding curves obtained numerically
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The arrows indicate the direction of compression and decompression processes. The solid lines represent the
numerical simulation of the experiment, using the four-parameter hysteretic model of the felt in the form (3).

The experimental results presented in Fig. 1 are typical for all measured hammers. A significant influence
of hysteresis can be seen clearly in the hammer felt characteristics. The hysteresis leads to the behavior where
the loading and unloading of the felt do not follow the same path. This indicates that the energy is dissipating
due to viscous damping or frictional losses caused by fiber slippage effects. Moreover, the slope of the force–
compression characteristics increases with the growth of the rate of impact, and the contact time is decreased
by a stronger strike, exactly like the model of the hysteretic hammer predicts. Thus, we may state that the
constitutive four-parameter hysteretic model of the felt describes the dynamic features of piano hammers fairly
well and is consistent with the results from experiments presented in [3–5].

The continuous variations in the hammer felt parameters versus key number N were obtained in [9] by
numerical simulation of the experimental data for a whole piano hammer set. A best match to the whole set of
hammers was approximated using

p̂ = 3.7 + 0.015 N , 3.72 � p̂ � 4.98, (4)

γ = 0.9894 + 0.000088 N , 0.9895 � γ � 0.9972, (5)

τ0 = 2.72 − 0.02 N + 0.00009 N 2, 1.65 � τ0 � 2.70, (6)

F0 = 15,500 e0.059 N , 16,440 � F0 � 2,787,300 (7)

for hammer number 1 � N � 88. Here, the unit for relaxation time τ0 is µs, and the unit for the instantaneous
stiffness F0 is N/mm p̂.

The presented regular dependencies of the piano hammer parameters on the key number can be used as a
tool for systematical exploration of the process of the hammer–string interaction, or they can be useful for the
purpose of improvement of the technological process of the piano hammer manufacturing.

In this study, the aforementioned knowledge regarding the hammer felt compression is used to develop the
wool felt model.

3 Wool felt model

In order to analyze the influence of hereditary felt features on the behavior and form of the waves traveling
through the felt, the propagation of plane one-dimensional longitudinal wave in an unbounded half-space is
considered. The classical equation of motion is in the form

ρ
∂2u

∂t2 = ∂σ

∂x
, (8)

where u is the displacement, σ is the stress, and ρ is the density.
The constitutive equation of microstructured wool felt is derived in a similar manner as the hammer felt

model was obtained above. Instead of relation (1), we assume and propose

σ(ε) = Eε p(t). (9)

Here, ε = ∂u/∂x is the strain, and E is Young’s modulus, and p is the nonlinearity parameter. Because
this approach is based on the piano hammer model, we are limited to describe only the compression wave
propagation (ε(x, t) � 0).

Following Rabotnov [7] once again, we obtain the constitutive equation of microstructured wool felt
by replacing the constant value of Young’s modulus E in expression (9) by a time-dependent operator
Ed [1 − R(t)∗], with the relaxation function in the form (2). This means that for the case of one-dimensional
deformation and for any rate of loading, the hysteretic felt material is defined with the aid of the constitutive
equation

σ(ε) = Ed
[
ε p(t) − R(t) ∗ ε p(t)

]
, (10)

where the constant Ed is the dynamic Young’s modulus of the felt. From Eq. (10), it follows that if t � τ0,
then we obtain the constitutive equation for the fast felt compression,

σ(ε) = Edε p(t), (11)
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and if t � τ0, then we have constitutive equation for the slow compression,

σ(ε) = Esε
p(t). (12)

In these two cases, the loading and unloading of the felt occurs in the similar manner. Quantity Es = Ed(1−γ )
is the static Young’s modulus of the felt material.

Substituting (10) in Eq. (8) and eliminating the integral term lead to the equation in the following form:

ρ
∂2u

∂t2 + ρτ0
∂3u

∂t3 − Ed

{
(1 − γ )

∂

∂x

[(
∂u

∂x

)p]
+ τ0

∂2

∂x∂t

[(
∂u

∂x

)p]}
= 0. (13)

The analysis of Eq. (13) was reported in [10] where it was shown that the second term of Eq. (13) is
significantly smaller compared to the other terms for any reasonable rate of the felt loading (up to 10 m/s).
This fact corresponds to the inequality u � τ0|ut |, and therefore, the three-parameter model of the felt was
derived in [10]. Neglecting the second term of (13), and comparing the new form of Eq. (13) with Eq. (8), one
can assume another form of constitutive equation of microstructured wool felt,

σ(ε) = Es

[
ε p + α0

∂(ε p)

∂t

]
, (14)

where

α0 = τ0/δ, δ = 1 − γ. (15)

Equation (14) is a nonlinear modification of the well-known Kelvin–Voigt model.
Further, this study will consider the equation of motion in its full form (13). The dimensionless form of

the equation is obtained by using the nondimensional variables that are introduced by relations

u ⇒ u/ l0, x ⇒ x/ l0, t ⇒ t/α0, (16)

where

l0 = cdα0
√

δ, cd = √
Ed/ρ, cs = cd

√
δ. (17)

Thus, Eq. (13) in terms of the nondimensional displacement variable u(x, t) takes the following form:

[
(ux )

p]
x − utt + [

(ux )
p]

xt − δuttt = 0, (18)

and for the strain variable ε(x, t)

(ε p)xx − εt t + (ε p)xxt − δεt t t = 0. (19)

Several samples of felt pads made of the same material that is used in piano hammers manufacturing were
subjected to the static stress–strain tests. The average value of the static Young’s modulus of the pads was
estimated to be Es = 0.6 MPa. The average value of the felt density was ρ = 103 kg/m3. For realistic results,
one should select the values of hereditary parameters γ and τ0 as follows: γ = 0.99 and τ0 = 20µs. This
selection results in the following values of material constants:

δ = 0.01, Ed = 60 MPa, cs = 25 m/s, cd = 250 m/s. (20)

Using those values of material constants, the space and time scales l0 and α0 used in (16) are

l0 = 50 mm, α0 = 2 ms. (21)
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4 Linear case and dispersion relations

Peculiar characteristics of wave propagation in the wool felt are revealed already in the linear case p = 1,

εxx − εt t + εxxt − δεt t t = 0. (22)

The fundamental solution of this equation has the form of traveling waves,

ε(x, t) = ε̂eiκx−iωt , (23)

where i is the imaginary unit, κ is the wavenumber, ω is the angular frequency, and ε̂ is an amplitude. The
dispersion law Φ(κ, ω) = 0 of Eq. (22) is defined by the relation

iδω3 − ω2 − iκ2ω + κ2 = 0. (24)

In the case of the boundary value problem, the general solution of Eq. (22) has the following form:

ε(x, t) = 1

2π

∞∫

−∞
Θ(ω)eiκ(ω)x−iωt dω, (25)

where Θ(ω) is the Fourier transform of the boundary value of the strain prescribed at x = 0,

Θ(ω) =
∞∫

−∞
ε(0, t)eiωt dt. (26)

In case of the initial value problem, the general solution of Eq. (22) has the following form:

ε(x, t) = 1

2π

∞∫

−∞
χ(κ)eiκx−iω(κ)t dκ, (27)

where χ(κ) is the Fourier transform of an initial disturbance of the strain prescribed at t = 0,

χ(κ) =
∞∫

−∞
ε(x, 0)eiκx dx . (28)

The dependencies κ = κ(ω) and ω = ω(κ) are derived from dispersion relation (24). In general case, κ
and ω are complex quantities. In order to provide the dispersion analysis in context with a boundary value
problem, we rewrite the wavenumber κ(ω) in the form

κ(ω) = k(ω) + iλ(ω), (29)

where k = Re(κ) and λ = Im(κ). Using this notation, expression (23) can be rewritten as follows:

ε(x, t) = ε̂ei(k+iλ)x−iωt = e−λx ε̂eikx−iωt . (30)

From here, it is clear that for positive values of λ it acts as an exponential decay constant for the spectral
components of the wave that is propagating along the positive direction of the space axis. In other words,
spectral components decay exponentially as x, t → ∞ for λ(ω) > 0. On the other hand, if λ(ω) < 0, then
the amplitudes of the spectral components grow exponentially as they propagate further along the positive
direction of the x-axis. In the latter case, the solution of linear Eq. (22) becomes highly unstable for t � 0.
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5 Dispersion analysis

As discussed above, in order to study the wave propagation along the x-axis, one needs to solve the dispersion
relation (24) against wavenumber κ . The solution is in the form

κ(ω) = ω
√

1 − iδω√
1 − iω

. (31)

For real values of k and λ, the dispersion relation (24) takes the following form:

k2 + 2ikλ − λ2 − ik2ω + 2kλω + iλ2ω − ω2 + iδω3 = 0. (32)

In order to study real and imaginary parts separately, the system of equations in the form
{

k2 − λ2 + 2kλω − ω2 = 0

2kλ − ω(k2 − λ2) + δω3 = 0
(33)

is solved and analyzed. Solutions with respect to k and λ are

k(ω) = L M
(√

1 + M2 − 1
)−1/2

, (34)

λ(ω) = L
(√

1 + M2 − 1
)1/2

, (35)

where

L = ω

√
1 + δω2

2(1 + ω2)
, M = (1 − δ)ω

1 + δω2 . (36)

The frequency dependencies k(ω) = Re(κ) and λ(ω) = Im(κ) of dispersion relation (24) are displayed in
Fig. 2 for the various values of the material parameter δ. Parameter δ can have values on the interval δ = [0, 1].

If δ = 1, then from (34) and (35) one can find

k(ω) = ω, λ(ω) = 0. (37)

This real valued nondispersive case is evident from the study of expression (10). Because γ = 1 − δ = 0,
it follows that R(t) = 0, and instead of Eq. (10), we are left with the constitutive equation in the form (11).
This form is not dependent on the rate of the felt loading. In fact, Eq. (11) describes a usual elastic material,
in which the wave propagates without attenuation.

In case of ω → ∞, it is easy to see that k(ω) → ω
√

δ and that

lim
ω→∞ λ(ω) = 1 − δ

2
√

δ
. (38)

For large frequencies, the exponential decay constant λ depends only on the parameter δ.

Fig. 2 Dispersion relations k(ω) and λ(ω) for various values of parameter δ in range [0.0, 1.0] with step 0.1
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Fig. 3 Phase velocity as a function of frequency for various values of the parameter δ in range [0.0, 1.0] with step 0.1

Fig. 4 Group velocity as a function of frequency for various values of the parameter δ in range [0.0, 1.0] with step 0.1. The
maximum of vgr for δ < 1 is shown by a dashed line

The phase velocity is defined as vph(ω) = ω/k, and it takes the following general form:

vph =
√

2(1 + ω2)(N − δω2 − 1)

(1 − δ)ω
, (39)

where

N =
√

(1 + ω2)(1 + δ2ω2). (40)

The frequency dependence vph(ω) for various values of parameter δ is shown in Fig. 3. In case of δ = 1, the
phase velocity becomes vph(ω) = 1 [cf. relationship (37)]. For large frequencies, the phase velocity has a
limit

lim
ω→∞ vph(ω) = 1√

δ
. (41)

Taking into account (16) and (17), the range of dimensional values of the phase velocity is cs � vph < cd .
The group velocity, which is defined as vgr(ω) = dω/dk = (dk/dω)−1, takes in this case the following

general form:

vgr = 2(1 + ω2)2
√

2(1 + δ2ω2)
(
N − δω2 − 1

)3/2

ω(1 − δ)[(1 + 3δ2)ω4 − (2N + 2δN − 3δ2 − 5)ω2 − 4(N − 1)] , (42)

where N is defined by relation (40). The frequency dependence vgr(ω) for various values of the parameter
δ is presented in Fig. 4. In case of δ = 1, the group velocity vgr(ω) = 1 [cf. relationship (37)]. For large
frequencies, the group velocity has the same limit as the phase velocity has,

lim
ω→∞ vgr(ω) = 1√

δ
. (43)
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Fig. 5 Comparison of group and phase velocities for a single value of the parameter δ = 0.5. The dashed line shows the limit for
the large frequencies

The essential difference between the behavior of phase and group velocities is that the phase velocity is a
monotonic function of frequency, while the group velocity has a maximum. The maximum of different values
of δ is located on the dashed line shown in Fig. 4. A comparison of the two velocities for a single value of
δ is presented in Fig. 5. In the wool felt, the group velocity is larger than the phase velocity for any positive
frequency. This means that the felt is a material with anomalous dispersion. This fact is true for δ < 1 because
as mentioned above, if δ = 1, then vgr = vph = 1, and we have nondispersive case.

6 Numerical solution of the boundary value problem

The aim of this study was to analyze the one-dimensional deformation (strain) wave propagation inside the felt
material along the x axis. This calls for the solution of the boundary value problem of Eq. (19). A boundary
value of the strain prescribed at x = 0 is selected in the following form:

ε(0, t) = A

(
t

t0

)3

e3(1−t/t0), (44)

where t0 defines the time coordinate corresponding to the maximum of a pulse amplitude. This form of a
pulse is continuous and smooth. The front of a pulse satisfies the necessary conditions ε(0, 0) = εt (0, 0) =
εt t (0, 0) = 0.

The solution to this problem is obtained numerically by applying the finite difference method. A more
suitable form of Eq. (19) for the finite difference approximation can be obtained by integrating Eq. (19) over
time. This yields

εt t = (ε p)xx − γ

t∫

0

(ε p)xx eξ−t dξ, (45)

where γ = 1 − δ. Initially (t � 0), the felt material is assumed to be at rest, thus ε(x, 0) = εt (x, 0) = 0.
Further, the solution of the boundary value problem (45), (44) is presented and analyzed.

6.1 Linear case

Figure 6 shows the numerical solution of the boundary value problem (45) and (44), with the nonlinearity
parameter p = 1. A pulse propagates through the felt material in the direction of the x-axis. The form of a
pulse determined by the boundary value (44) is presented for three sequential time moments, and for three
different values of parameter δ. The dashed lines show corresponding decays of pulse amplitudes. These curves
are plotted through the pulses’ maxima.

The numerical results presented in Fig. 6 are calculated for a pulse with boundary value where the parameter
t0 = 1/2. The additional calculations were also repeated for the boundary values where t0 = 1 and t0 = 1/3.



Propagation of deformation waves in wool felt 3111

Fig. 6 Snapshots of the pulses’ profiles shown for time moments t = 4.5, t = 6.75, and t = 9.0, varying the parameter δ. The
boundary value parameter t0 = 1/2. The dashed lines show the amplitude decay. For a pulse 1 (δ = 0.8), the corresponding
amplitude decay function is e−0.08x ; for a pulse 2 (δ = 0.5), the amplitude decay function is e−0.20x ; for a pulse 3 (δ = 0.2), the
amplitude decay function is e−0.32x

Table 1 Comparison of exponential decay constants λ for different values of parameter δ and frequency ω

δ t0 ω λ(ω) λnum |λ(ω) − λnum|
0.2 1 1 0.246 0.304 0.058

1/2 2 0.493 0.321 0.172
1/3 3 0.632 0.361 0.271

0.5 1 1 0.142 0.184 0.042
1/2 2 0.254 0.201 0.053
1/3 3 0.300 0.214 0.086

0.8 1 1 0.053 0.068 0.015
1/2 2 0.087 0.077 0.010
1/3 3 0.099 0.082 0.017

Here, we suppose that the fundamental spectral component ω of a pulse (44) is estimated from relationship
ωt0 	 1. This is a rough approximation, but below, it is shown that the resulting numerical calculations are in
agreement with the dispersion analysis.

Table 1 displays the parameter δ, the boundary value parameter t0, the corresponding value of frequency
ω, the value of λ(ω), the value of exponential decay constant λnum, and the absolute value of the difference
between λ and λnum. We conclude that the results presented in Table 1 for all values of δ are sufficient enough
to confirm that the values of numerically calculated decay constants λnum and the exponential decay constant
λ defined by relation (35) are approximately the same. This means that in principle this approach can be used
to verify the decay constants for any specific value of t0 rather accurately.

6.2 Nonlinear case

In this section, the effects of the nonlinearity of the wool felt model on the wave propagation are considered.
We examine the influence of the nonlinearity parameter p, and the effect of an initial pulse amplitude A on
the evolution of the wave form during its propagation through the felt material.

Figure 7 shows the numerical solution of the boundary value problem (45) and (44). The solution of
the problem is presented for three sequential time moments, and for three different values of the nonlinearity
parameter p. In this example, the amplitude A = 0.1 of the boundary value is a constant for all cases presented.

In Fig. 7, it is possible to see that the front of a pulse becomes steeper as it propagates through the felt
material. This pulse steepening increases with the growth of the value of the parameter p. It means that the
group velocity is larger than the phase velocity. This phenomenon confirms our conclusion that the felt is a
material with anomalous dispersion (vide Fig. 5).

The effect of an initial pulse amplitude A on a pulse evolution is presented in Fig. 8. The numerical solution
is presented for three sequential time moments, and for three different values of the initial amplitude A of
the boundary value (44). It is possible to see that a forward-facing slope of a pulse is strongly dependent on
the pulse amplitude A. For larger amplitudes, the maximum point or the crest of a pulse (shown by bullets)
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Fig. 7 Evolution of a nonlinear pulse (t0 = 1/2, A = 0.1) for three sequential time moments t = 2, t = 3, and t = 4. Material
parameters selected δ = 0.2, p = 1.5 shown by solid line, p = 1.25 shown by dashed line, p = 1.0 (linear case) shown by
dotted line. Results are normalized

Fig. 8 Evolution of a nonlinear pulse (t0 = 1/2) for three sequential time moments t = 2, t = 3, and t = 4. Material parameters
selected δ = 0.2, p = 1.5, initial amplitude A = 0.1 shown by solid line, A = 0.06 shown by dashed line, A = 0.02 shown by
dotted line. Bullet show the position of maximum. Results are normalized

propagates faster than the front of a pulse. Accumulation of this effect results in the eventual pulse break-
ing. This means that eventually the shock wave will be formed. To simulate this phenomenon, our numerical
scheme must be adjusted to the purpose of description of the propagation of discontinuities on the wave front.
A detailed analysis of this problem is in progress.

The progressive forward leaning of a propagating pulse can be explained by the fact that the group velocity
is larger than the phase velocity. Also, this phenomenon is related to nonlinear features of the felt material and
increases with the increase of the amplitude of the initial boundary disturbance.

The animations of the simulated wave pulses propagation through the felt discussed in Sect. 6 are available
for viewing at the supplementary Web page of this article.1

7 Conclusions

We have derived a nonlinear constitutive equation of microstuctured wool felt based on the experimental results
of piano hammers testing. Using this model, the boundary value problem that describes the propagation of
deformation waves in the felt material is considered in the current study. In case of the linear felt-type material,
the dispersion analysis of the model is carried out, and the dependencies of the phase and group velocities on
the felt parameters are obtained. It is shown that the group velocity is always larger than the phase velocity,
and therefore, the wool felt is a medium with anomalous dispersion.

The numerical solution of the linear boundary value problem is used to estimate a strain pulse amplitude
decay during its propagation through the felt. It is shown that in the linear case the decay constants may be
obtained rather accurately by using dispersion analysis.

1 Supplementary web page of the article: http://www.cs.ioc.ee/~dima/feltdeform.html.

http://www.cs.ioc.ee/~dima/feltdeform.html
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A strain pulse propagation in nonlinear felt is also considered. The general influence of the nonlinear
parameter p on a pulse evolution is investigated. It is concluded that the front of a pulse becomes steeper as
it propagates through the felt material and that this pulse steepening increases with the growth of the value of
the parameter p.

The effect of an initial pulse amplitude A on the nonlinear wave propagation is simulated. It is shown that
for larger amplitudes the maximum point or the crest of a pulse propagates faster than the front of a pulse.
This is related to the fact that the group velocity is larger than the phase velocity and confirms our assumptions
about the felt as a medium with anomalous dispersion.

It is revealed that the front slope of a pulse is strongly determined by a pulse amplitude A. Such a process
results in the formation of the shock wave, which is directly caused by the nonlinear features of the micro-
structured felt material. The originality of the presented model is expressed in the fact that the parameter p that
describes the felt nonlinearity may be any real number >1, including the noninteger values. The solution of the
novel wave Eqs. (18) and (19) reflects many physical effects as demonstrated in this paper. In conclusion, we
may state that the wool felt is a strongly dissipative and dispersive nonlinear medium, with a strong damping
effect.
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