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ABSTRACT

We associate the bass hammer-string contact duration with the
time of propagation of compression wave traveling through the
hammer body from the contact point to the hammer kernel and
back. Based on the hereditary model of the microstructured
wool felt, it has been revealed that the stiffness of felt is anon-
linear function of the compression and it is strongly determined
by the rate of the felt loading. This means that the speed of the
compression wave that propagates through the felt depends on
the wave form and on its amplitude. It has been shown that the
pulse of a smooth form, and which has no discontinuity on its
front propagates with constant speed until the accumulation of
nonlinear effects results in the eventual continuous wave break-
ing. After that moment the shock has been formed, and now the
velocity of the shock wave depends on the value of the jump
discontinuity across the wave front. It has been shown that the
front velocity of the shock wave is greater than the velocityin
a linear medium. Therefore, the total time of wave propaga-
tion, which is related with a duration of the hammer-string con-
tact, decreases as the dynamic level of the hammer impact is
raised. As result, for the first bass hammers the contact dura-
tion is shorter than the round-trip time to agraffe, and hence, no
reflected wave is needed to assist the hammer for going away
from the string.

1. INTRODUCTION

The process of the string excitation by a hammer impact is un-
der investigation for a plenty of years. There are many studies
devoted to this problem. We may recollect the well known re-
views by Hall [1], Suzuki and Nakamura [2], and Fletcher and
Rossing [3].

By now, it is well known that the duration of the hammer-
string contact time is one of the main parameters in determin-
ing the spectral content of the sound produced by a piano. The
problem of the contact duration between the hammer and the
string, and discussion what can cause the hammer to rebound is
a central point of many papers. The prevailing view about this
question is presented in [4, 5, 6].

The common understanding of the dynamics of the hammer-
string interaction is expressed in [5]: ”When the hammer has
less mass than the string, it will most likely be thrown clearof
the string by the first reflected pulse.”

Nevertheless, the assumptions that only the first reflected
wave can rebound the hammer from the string is not quite true.
For example, in [7] it was found that the contact duration forA1
note is less than the round-trip time to agraffe. In addition, in
[1], and in [6] it is definitely stated that the hammer can rebound
from the string without the assistance of any reflected wave.

This problem was also considered in [8], and by using the
nonlinear hysteretic hammer felt model it was shown that the
bass hammers, which are relatively light compared to the string,

may lose string contact due to the hammer elasticity, and with-
out the assistance of waves traveling along the string, and re-
flecting back from the agraffe.

This fact is illustrated by Fig. 1.
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Figure 1: Normalized force history of the hammer-string inter-
action. Hammer numberN = 6 (noteD1: f = 36.71 Hz); initial
hammer impact velocity is 5 m/s.tα is the moment of reflected
wave arrival.

The numerical simulation of the hammer-string interaction
shows that the acting force exerted by the hammer impact con-
sists of two pulses. The first pulseA displays the process of
loading and unloading of the hammer during the impact. The
moment of arrival of the first reflected wave from the agraffe is
marked bytα. It means that the hammer has time enough to
decompress fully, and moves away from the string without the
assistance of reflected wave.

After the momenttα the reflected wave arrives to the con-
tact point, and one can see the beginning of the second, or re-
peated contact between the hammer and the string (pulseB).
This process is presented in Fig. 1 definitely.

The goal of the current paper is to understand the physics
of the hammer unloading through the traveling waves, but trav-
eling not along the string, but by means of compression waves
propagated inside the hammer body, which stiffness is essen-
tially nonlinear.

2. COMPRESSION WAVES IN THE FELT

We associate the contact duration with a time, which is needed
for a wave traveling with velocityc to spread for a distance
L = 2λ, whereλ is the felt thickness. The simple scheme of
wave propagation through the hammer body is shown in Fig. 2.

In order to analyze the process of compression wave prop-
agation in the hammer felt, and to estimate the speed of that
wave, the constitutive equation of the microstructured wool felt
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Figure 2: Hammer wave parameters.

material was derived in [9] in the form

σ(ε) = Ed

[

εp(t)−
γ

τ0

∫ t

−∞

εp(ξ) exp

(

ξ − t

τ0

)

dξ

]

. (1)

Hereσ is the stress,ε = ∂u/∂x is the strain,u is the displace-
ment, the constantEd is the dynamic Young’s modulus of the
felt, p is the parameter of nonlinearity,γ is the hereditary am-
plitude, andτ0 is the relaxation time.

Because this approach is based on the piano hammer model
[10, 11], we are limited to describing only the compression
wave propagation (ε(x, t) > 0).

The one-dimensional strain wave propagation in the wool
felt is considered in [9]. By using the classical equation ofmo-
tion

ρ
∂2u

∂t2
=

∂σ

∂x
, (2)

whereρ is the felt density, and the constitutive equation (1), a
nonlinear partial differential equation with third-orderterms is
derived in the following form
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= 0. (3)

The dimensionless form of this equation is obtained by us-
ing the non-dimensional variables that are introduced by the re-
lations

u ⇒ u/l0, x ⇒ x/l0, t ⇒ t/α0, (4)

where
α0 = τ0/δ, l0 = τ0

√

Ed/δρ , (5)

and parameterδ is defined as0 < δ = 1− γ 6 1.
In terms of non-dimensional strain variableε(x, t) Eq. (3)

reads
(εp)xx − εtt + (εp)xxt − δεttt = 0. (6)

Several samples of felt pads were subjected to the static
stress-strain tests in mechanical laboratory at the Faculty of Civil
Engineering at the Tallinn University of Technology. The aver-
age value of the static Youngs modulus of the pads was esti-
mated asEs = 0.06 MPa. The value of the felt density was
determined asρ ≈ 103 kg/m3.

For numerical simulation the reasonable value of the static
Young’s modulus of the felt is chosen to beEs = 0.05 MPa.
The values of hereditary parameters are chosen asγ = 0.99

and τ0 = 14 µs, which are close to the values of the same
parameters for bass piano hammers [12].

Taking into account the relationshipEs = δEd that is de-
rived in [9], we obtain

δ = 0.01, Ed = 5 MPa, cs = 7 m/s, cd = 70 m/s. (7)

Here velocitycs =
√

Es/ρ corresponds to the static Young’s
modulusEs (very slow loading), and velocitycd =

√

Ed/ρ
corresponds to the dynamic Young’s modulusEd (very fast load-
ing).

By using these values of material constants, the space scale
l0 and time scaleα0 that were used in (4) are

l0 = 10 mm, α0 = 1.4 ms. (8)

The numerical analysis of the strain wave propagation is
presented in [9]. This calls for solution of the boundary value
problem of Eq. (6). A boundary value of the strain prescribed
atx = 0 is selected in the following form

ε(0, t) = A

(

t

tm

)3

e3(1−t/tm), (9)

wheretm defines the time coordinate corresponding to the max-
imum of the pulse amplitudeA.

This form of a pulse is continuous and smooth, and it is
very similar to the force history pulse shown in Fig. 4a in [12].
The front of a pulse satisfies necessary conditionsε(0, 0) =
εt(0, 0) = εtt(0, 0) = 0.

The effect of the value of initial pulse amplitudeA on the
pulse evolution is presented in Fig. 3. The material parameters
are selected asδ = 0.2 andp = 1.5. The numerical solution
is presented for three sequential time moments, and for three
different values of the initial amplitudeA of the boundary value
(9).
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Figure 3: Nonlinear evolution of a pulse (tm = 1/2) for time
momentst = 2, t = 3 andt = 4. Pulses of an initial amplitude
A = 0.1 are shown by solid lines,A = 0.06 by dashed lines,
A = 0.02 by dotted lines. Bullets show the position of the
pulse maximum. The results have been normalized relative to
the largest amplitude (A = 0.1).

One can see, that in this case the front velocity is a constant
valueVf = cs, and does not depend on the pulse amplitude.
On the other hand, it is also evident that for larger amplitudes
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the maximum point, or the crest of a pulse (shown by bullets),
propagates faster than the front of a pulse.

Therefore a forward-facing slope of a pulse becomes steeper
with a distance of propagation, and accumulation of this effect
results in the finally pulse breaking. This means that the shock
wave will be formed at the moment when the forward-facing
slope of a pulse becomes vertical, and therefore the value of
discontinuity across the wave front is defined by the amplitude
of a pulse crest.

3. SHOCK WAVE PROPAGATION

Here we consider propagation of a pulse with a finite jump dis-
continuity on the front through the felt material. For any rate of
loading the felt material is defined with the aid of the nonlinear
constitutive equation (1) in the form

σ(U) = Ed

[

(Ux)
p
−

γ

τ0

∫ t

−∞

(Ux)
p e(ω−t)/τ0dω

]

. (10)

Here the values of parameters are:p > 1, and0 6 γ < 1.
The conservation law

d

dt

∫ x2

x1

ρUtt(x, t)dx = σ(x2, t)− σ(x1, t) (11)

gives a correspondence between the shock conditions and the
shock velocityVs

[σ] = −ρVs[Ut], (12)

where the brackets indicate the jump in the quantity [13].
The constitutive equation in the form (10) gives a relation-

ship
[σ] = Ed[Ux]

p. (13)

By using (12), (13), and taking into account the kinematic
identity [Ut] = −Vs[Ux], one can find the relationship between
the anticipated front velocityVs and the value of the disconti-
nuity [Ux] across the wave front

υ =
Vs

cd
= [Ux]

p−1

2 , [Ux] = [ε] = ε0 = const> 0. (14)

The dependence of non-dimensional front velocity on the
value of discontinuity across the wave front is shown in Fig.4a.
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Figure 4: Shock wave parameters as functions of the value of
discontinuityε0 across the wave front. (a) Non-dimensional
front velocity υ shown for various values of parameterp. (b)
Non-dimensional distancex of the shock formation shown for
various values of parameterδ = 0.01 (diamonds),δ = 0.2 (trian-
gles), andδ = 0.6 (bullets).

As it was mentioned above, in the linear case, and for the
continuous smooth pulse (ε0 = 0), the front velocity is a constant
valueVf = cs. In case of the shock wave propagation (ε0 > 0),
the front velocityVs is always greater thanVf , becausecd > cs
(see relationships (7)).

By numerical simulation of the strain wave propagation,
whose initial form is given by the smooth and continuous bound-
ary value (9), the distances, at which the shock pulse is formed,
were specified, and the values of discontinuity across the wave
front at these points were determined. These dependencies of
the distancex of the shock wave appearance as a function of
the value of discontinuityε0 across the wave front for various
values of parameterδ are presented in Fig. 4b.

4. CONCLUDING REMARKS

Resuming the results presented above, we can state that the
strain (compression) wave, which originally is continuousand
smooth enough, initially propagates through the felt material
with a constant speedVf = cs, until the shock pulse is formed.
After that moment the pulse propagates with a velocityVs >
Vf , and this shock velocity depends on the value of the discon-
tinuity ε0 across the wave front, which, in turn, depends on the
initial level of the hammer impact.

Finally, using the data obtained, we can estimate the aver-
age velocityVav of the wave propagating through the hammer
felt. We associate this velocityVav with compression wave ve-
locity c shown in Fig. 2.

For a numerical example we have chosen the nonlinear pa-
rameterp = 1.5, and the distance of wave propagationL = 2λ
= 32 mm, which is equal approximately to the double thickness
of the felt of first bass hammer. The values of other parameters,
such as the space scalel0 and the time scaleα0, are the same
as presented in (7) and (8). The non-dimensional parameters
x andυ are obtained by using the results presented in Fig. 4.
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ε0 x(1) X(mm) t1(ms) Lx(mm) υ(1) Vs(m/s) t2(ms) t∗(ms) Vav(m/s)
0.05 3.20 32.0 4.57 0 0.473 47.3 0 4.57 7.0
0.075 1.75 17.5 2.50 14.5 0.523 52.3 0.28 2.78 11.5
0.10 1.13 11.3 1.15 20.7 0.562 56.2 0.37 1.52 21.0
0.15 0.74 7.4 1.06 24.6 0.622 62.2 0.39 1.45 22.0
0.20 0.60 6.0 0.86 26.0 0.669 66.9 0.40 1.26 25.4

Table 1: Parameters of traveling compression wave.

The other parameters displayed in Table 1 are determined by
relations

X = xl0, Lx = L−X, Vs = υcd, t1 = X/cs,

t2 = Lx/Vs, t∗ = t1 + t2, Vav = L/t∗. (15)

HereX is the distance that the wave propagates through a felt
with a ”normal” speedcs in the timet1, Lx is the part of a
whole distanceL = 2λ (see Fig. 2) through which the wave
propagates in the timet2 with the velocityVs, andt∗ is the total
time of propagation. The velocityVav is the ”average” speed of
traveling wave.

Analysis of the data presented in Table 1 shows that the
wave with a small initial amplitude, which results in the value
of jump discontinuity across the wave frontε0 = 0.05, propa-
gates through the whole distance as a smooth pulse. This small
amount of the compression amplitude one can relate withpp
dynamical level of a hammer blow, which corresponds to the
velocity of the hammer impactV = 1 m/s, approximately.

On the contrary, the value of discontinuity across the wave
front ε0 = 0.2 can be created only by a very hardff level of a
hammer blow, which corresponds to the initial hammer velocity
V = 7 m/s, approximately.

The total time of the wave propagationt∗ one can associate
with the duration of contact between the hammer and the string.
After this momentt∗ the hammer felt is unloaded completely,
and the hammer has lost the contact with the string.

Thus, with the growth of the level of the hammer impact
and the shock pulse appearance, the average speedVav of wave
propagation increases.

Therefore, we can state that the duration of the hammer-
string contact decreases as the dynamic level of the hammer
impact is raised, and this effect is appeared due to a peculiar
property of the piano hammer felt, which is called the nonlinear
hammer stiffness.
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