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Abstract 

 

We investigate the interaction of the transverse waves in piano string with 

the string support (bridge), which is considered as an oscillating system 

consisting of the mass, spring and damper. The part of the string passing 

the bridge terminates at a point load on a damper. Already in classical 

papers (J. Rayleigh, J. Larmor, E. Nicolai), it was shown that the elastic 

waves traveling through various systems transfer with themselves energy 

and pulse. For this reason the traveling waves exert the pressure on an 

obstacle. In this paper we show, that the parameters of viscoelastic inertial 

support of the string can be varying under the action of the traveling wave 

pressure. This phenomenon, in turn, changes the amplitude-frequency 

response of the string vibrations, and in particular, the modulation of the 

natural frequency of the string can be observed. 

 

 

INTRODUCTION 

 

It seems, L. Euler was the first [Euler, 1746] who come out with a suggestion 

that the waves bring to bear pressure on any bodies that impeded the free wave 

propagation. The fact that electromagnetic radiation exerts a pressure upon any surface 

exposed to it was deduced theoretically by J. C. Maxwell in 1871 [Maxwell, 1991]. The 

pressure of the electromagnetic radiation upon an immovable obstacle is given by 

 

c
F


 ,                                                                                                                 (1) 

 

where is the energy flux density, and c is the speed of light. 

The results of experimental studies of the sound waves pressure on the acoustic 

resonators carried out by W. Dvorak in 1876 were explained by John William Strutt 

(Lord Rayleigh) [Rayleigh, 1945]. 

After the famous experiments by P. Lebedev [Lebedev, 1901] on detection of 

pressure of light, J. Rayleigh and J. Larmor independently from each other in 1902 have 

stated the assumption that any wave motion, of any nature, exerts the pressure on the 

bodies impeded the waves propagation [Rayleigh, 1902], [Larmor, 1902]. Their studies 

of the phenomenon of the mechanical pressure of waves have found more complete 

elaboration in research works by E. Nicolai, who considered in 1912 -1925 years the 

several problems concerning the interaction of the transverse waves traveling along the 

string with the movable supports [Nicolai, 1925]. 
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ON THE PRESSURE OF WAVES OF A DIFFERENT NATURE 

 

Let's estimate the value of pressure exerted by waves of a different physical 

nature on an immovable obstacle. If the obstacle absorbs a wave, the pressure is 

determined by formula (1), where kc   is the phase speed,   is the frequency, k  is 

the wave number, and   is the energy flux density of the source in assumption that the 

whole energy flow is absorbed by an obstacle. The appropriate estimations are 

presented Table 1.  

 
  Table 1. Comparison of different waves. 

 

Wave Speed c ][ cm  Pressure F [N]  

Electromagnetic waves in vacuum 8103   9103,3   

Sound waves in steel 3105   4102   

Sound waves in air 2103   3103,3   

Transverse waves in piano string 42070  3)134.2(   

Low frequency gravity waves in fluid 11.0   101  

 

For convenience of comparison the power of sources are taken identical and 

equal to 1 w. It seems that the action of waves traveling along the string on the string 

support in some cases must be taken into account. 

 

WAVES IN A STRING WITH VISCOELASTIC INERTIAL SUPPORT 
 

We consider the interaction of the traveling waves in piano string with the string 

support (bridge), which is presented here as the oscillating system consisting of the 

mass, spring and damper. The part of the string passing the bridge terminates at a point 

load on a damper. The scheme of this model is shown in Figure 1. 

 

 

Figure 1: Scheme of model. 

 

The transverse displacement of a stiff string is described by governing equation 

 

0 xxtt Nuu .                                                                                                   (2) 

 

The boundary conditions at 0x  can be written as 

 

     tututu 0,0,0  ,            
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and at 
0xx   we have  

 

   txNutxu x ,, 00  .                

 

Here  , N are the linear mass density, the string tension, and string stiffness; h , 

m ,  ,   are the elastic, the inertial, and the dissipative coefficients of support. The 

square brackets denote the difference of limit values of this function on the right and on 

the left sides of the support. 

Let's choose the value of dissipation factor   to obtain the ideal matching 

damping structure, at which the waves reflected from the point 0xx   are absent. For 

this purpose the value of   must be equal to the string impedance  N . 

Let the source located on the left side from the object radiates a simple-harmonic 

wave     xktiAtxu f 000 exp,   , which due to the interaction with the object creates 

the reflected wave     xktiAtxur 111 exp,    and the transmitted wave 

    xktiAtxup 222 exp,   , where jA  are the complex amplitudes (j=1,2). 

Substituting the solution in the form 
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into Eq. (2) and using the boundary conditions, the following frequencies j , 

wave number jk , and amplitudes jA  results 

 

021   , ck 02,1  , 
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where  
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and Nz   is the string impedance.  



   

 

In case of the mass of the bridge or its stiffness tends to infinity, we have only 

the reflected wave  txur , , because 02 A .  

As the string support possesses elastic and inertial properties, it is the power-

consuming object too. On a bridge the energy of an incident wave transforms into the 

potential and kinetic energy of the support, and then it is transferred back to the string. 

A time delay to provide this process can be determined in according to formula 

[Vesnitskij, 2001] 

 

0 ddgr  ,  

 

where   is phase of the wave. Using this formula, and expressions (4) and (5) 

we find that the time delay for the reflected wave is 
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and the time delay for transmitted wave is 
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If the dissipative losses can be neglected, the time delay for the reflected wave is 

the same as for the transmitted wave. 

The traveling wave acts on a bridge with the pressure that can be determined in 

according to formula [Vesnitskij, 2001] 
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The average value of the pressure exerted by the incident wave for the period 

02   is given by 
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In Figure 2 are presented the dependencies of dimensionless constant component 

of an average pressure 
2

0

2

0 AFpr   as a function of dimensionless 

frequency 00  . Curve (1) is calculated for the case of absence of the dissipative 

losses, and curve (2) is calculated for the case of presence of dissipative losses. Here 

mh0 . 

If the frequency of an incident wave is equal to the main frequency of the bridge 

vibrations, the pressure exerted by the wave is minimal, but the transverse displacement 

of the bridge achieves the maximum value. 

Generally speaking, the bridge parameters can change under the action of the 

wave pressure, for example, the elasticity of the support can increase. So, if the 



   

 

fastening spring of length 
0  is become longer for a value  , it will result in change of 

elastic forces in transverse direction.  
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Figure 2: Pressure exerted by the incident wave as a function of frequency. Curve (1) - without 

of dissipative losses, and curve (2) – with dissipative losses. 

 

Therefore, taking into account the pressure of waves, the coefficient of elasticity 

of the support becomes the following 
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If the speed of longitudinal waves is much greater than the speed of transverse 

waves in a string, it is enough to consider in expression (6) only the constant component 

of the wave pressure. This will lead only to minor alterations of reflection and 

transmission coefficients shown in Fugure3.  

 

(a) (b)

 
 

Figure 3: Amplitudes of reflection (a) and transmission (b) coefficients vs. frequency for a case 

of the speed of longitudinal waves is much greater than the speed of transverse waves. 



   

 

If the speeds of longitudinal and transverse waves differ no more than on two 

orders (and it is true for piano strings), it is necessary to consider also the variable 

component of the wave pressure. In this case it is required to solve a problem with 

periodically changing coefficient, which frequency of change is equal to the double 

frequency of an incident wave. It provides modulation of frequencies of the transmitted 

and the reflected waves. 

 

SUMMARY 

 

 It was shown, that the transverse waves traveling along the string transfer with 

themselves energy and pulse. For this reason the traveling wave exerts the additional 

pressure on the piano bridge. It was shown, that the parameters of viscoelastic inertial 

support of the string can be varying under the action of the traveling wave pressure. 

This phenomenon, in turn, changes the amplitude-frequency response of the string, and, 

in particular, it is the cause of modulation of the natural frequency of the string 

vibrations. 
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