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Abstract

A hammer-string interaction for bass notes is investigated
and the problem what can cause the hammer to rebound
is clarified. For a linear elastic hammer interacting with
a long flexible string the exact solution of the equation
describing the hammer motion is derived. It was shown
that in some cases no reflected wave is needed to assist
the hammer for going away from the string. The numer-
ical simulation carried out for the first ten hammers and
strings ofParlour Grand Pianoshows that the real hys-
teretic hammer leave the string before the string begins
pushing back on the hammer.

1. Introduction

The process of the string excitation by striking with a
hammer is under investigation more than a hundred years.
There are quite many studies devoted to this problem. We
may recollect the well known reviews by Hall [1], Suzuki
and Nakamura [2], and Fletcher and Rossing [3].

A central point of many papers was the problem of
the contact duration between the hammer and the string,
and discussion what can cause the hammer to rebound.
The prevailing view about this question is expressed by
Hall in [4]. He writes (p. 142) that this is not a gravity
of course, because”gravity will not ordinarily have an
appreciable effect before the string begins pushing back
on the hammer.”

And further:”An infinite string has a purely resistive
impedance, so it would only slow the hammer to a stop
but never reverse its motion. Finite string length gives
reactance, so that the string can act like a spring, but the
hammer cannot possibly ”learn” that the string is finite
until there has been time enough for a wave to travel to
the near end of the string and back. Only this reflected
wave can possibly give the hammer a negative velocity.”

The same understanding of the dynamics of the
hammer-string interaction is expressed in [5]:”When the
hammer has less mass than the string, it will most likely
be thrown clear of the string by the first reflected pulse.”

In according to this assumption the contact duration
t0 is greater, or at least not less than the minimum timetα

t0 ≥ tα = 2αL/c , (1)

needed for a wave to travel to the near end of the string
and back. HereL is the total string length,αL is the
distance from the agraffe to the striking point, andc is
the speed of waves on the ideal (flexible) string.

In spite of this, it may be established by using the ex-
perimental data presented in different articles that the in-
equality (1) is not hold for the first bass notes. For exam-
ple in [6] the contact duration forA1 note is determined
ast0 ' 3 ms that is less thantα ' 4.5 ms for the same
note.

Hall critically reviews his earlier work [4] in [1]:
he considers the role of the critical complianceC0, and
shows the possibility”that the hammer can rebound from
the string without the aid of any reflected wave.”The ref-
erence to this article we can find in [7], where discussing
the problem of the multiple contacts Askenfelt and Jans-
son wrote (p. 2189) that”In the bass, where the ham-
mer is relatively light compared to the string, the hammer
may lose string contact without the assistance of reflected
waves from the agraffe.”

Nevertheless, at present it is widely believed that only
the reflected wave is the reason that the hammer leaves
the string. Here we shall try to comprehend how this mis-
understanding is appeared, and we shall also demonstrate
which hammers can go away even from the infinite string.

2. Hammer-string interaction

The displacementy(x, t) of the ideal (flexible) string
obeys the simple wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, (2)

wherec =
√

T/µ is the wave speed in terms of tension
and linear mass density of the string.

This equation is satisfied by arbitrary waveforms
moving in both directions. At the contact pointx = 0,
we have

m
d2w

dt2
= −F (t) , (3)

and

F (t) = m
∂2y1
∂t2

= m
∂2y2
∂t2

= −T
∂y2
∂x

+ T
∂y1
∂x

, (4)
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wherem is the mass of the hammer,w is the displace-
ment of the hammer,F (t) is the acting force between the
hammer and the string, andy1 andy2 are the outgoing
waves created by the hammer-string interaction. To these
equations we must add the relationship between the ham-
mer and the string displacement, and the initial conditions
taking into account the initial hammer velocityV

y1(0, 0) = y2(0, 0) = w(0) = 0 ;
dw

dt

∣

∣

∣

∣

t=0

= V . (5)

Now, let us consider the hammer-string interaction for
the different types of hammer.

2.1. Rigid hammer

Consider an event of striking of the long flexible string by
the absolutely rigid hammer. The solution of this problem
was derived many years ago, and it is well known. In
this case the string displacement is equal to the hammer
displacement

y1(0, t) = y2(0, t) = w(t) , (6)

and thus at the contact pointx = 0, we have

dw

dt

∣

∣

∣

∣

t=0

=
∂y1
∂t

∣

∣

∣

∣

t=0

=
∂y2
∂t

∣

∣

∣

∣

t=0

= V . (7)

The solution of Eqs. (3, 4) representing the string distur-
bance at any momentt > 0 has the form shown in Fig. 1,
wherey1 is the direct wave

y1 =
mcV

2T

{

1 − exp

[

2T

mc2
(x− ct)

]}

, (x− ct < 0);

y1 = 0 , (x− ct > 0) , (8)

andy2 is the return wave

y1 =
mcV

2T

{

1 − exp

[

−
2T

mc2
(x+ ct)

]}

, (x+ ct < 0);

y1 = 0 , (x+ ct > 0) . (9)

In according to equality (6) the hammer positionw at
any momentt > 0 is defined by

w(t) =
mcV

2T

{

1 − exp

[

−
2Tt

mc

]}

, (10)

and the hammer velocityVh at any moment

Vh(t) = V exp

(

−
2Tt

mc

)

> 0 . (11)

For this reason, it is obvious that the rigid hammer
will never lose the contact with the string until at least one
reflected wave returns tox = 0. Apparently, due to this
well known interpretation of the process of the hammer-
string interaction the prevalent misunderstanding exists
that only the reflected wave is the cause the hammer to
rebound.

Figure 1:The waves moving away from the hammer.

2.2. Elastic hammer

To remove all doubts, consider the process of striking of
the long flexible string by an elastic, or deformable ham-
mer. This case is totally different from previous one. First
of all, the forceF is determined now by the hammer com-
pressionu, which is given by

u(t) = w(t) − y(0, t) . (12)

Taking into account thatF (0) = 0, and using (12) we
have the initial conditions at the contact pointx = 0

y(0, 0) = w(0) = u(0) = 0 , (13)

and
dy

dt

∣

∣

∣

∣

t=0

= 0 ; (14)

dw

dt

∣

∣

∣

∣

t=0

=
du

dt

∣

∣

∣

∣

t=0

= V . (15)

In case of the rigid hammer the initial string velocity is
the same as the hammer speed, but now it is equal to zero.
In case of the elastic hammer the initial compression ve-
locity is equal to hammer speed. Thus, in the beginning,
the hammer is compressed first, and then the rising of the
force compression causes the string acceleration. For the
linear elastic hammer described by a function

F (u) = F0 u , (16)

we can find the exact solution of the problem of the
hammer-string interaction. Using Eqs. (3, 4, 12) we can
find that the hammer displacement is determined by equa-
tion

d2w

dt2
+ 2b

dw

dt
+ 2abw − 2bV = 0 , (17)

wherea = 2T/cm and b = cF0/4T . HereF0 is the
hammer stiffness. In [1] the valueF−1

0
is denoted asC

and called the hammer compliance.
Introducing the definition

δ2 = 1 −
2a

b
= 1 −

16T 2

mc2F0

, (18)

it is easy to derive the different type of solutions of Eq.
(17) depending onδ value.
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2.2.1. Caseδ2 = 0

In the case when

2a

b
=

16T 2

mc2F0

= 1 , (19)

the solution of Eq. (17) is given by

w(t) =
2V

b

(

1 − e−bt −
bt

2
e−bt

)

, (20)

and the hammer velocityVh at any moment

Vh(t) = V (1 + bt) e−bt > 0 , (21)

and therefore, only the reflected wave can give the ham-
mer a negative velocity.

2.2.2. Caseδ2 > 0

In this case we have

2a

b
=

16T 2

mc2F0

< 1 , (22)

and the solution of Eq. (17) is given by

w(t) =
V

a

{

1 − e−bt

[

cosh(δbt)

+δ−1

(

1 −
a

b

)

sinh(δbt)

]}

. (23)

The hammer velocity in this case at any moment

Vh(t) = V [cosh(δbt) + δ−1 sinh(δbt)] e−bt , (24)

is also always positive.

2.2.3. Caseδ2 < 0

In this case we have

2a

b
=

16T 2

mc2F0

> 1 , (25)

and introducing the definitions

γ =

√

2a

b
− 1 ; ψ = γ b t , (26)

we can find the solution of Eq. (17) in the form

w(t) =
V

a

{

1−
e−bt

γ

[

γ cosψ+

(

1−
a

b

)

sinψ

]}

. (27)

The hammer velocity is given now by

Vh(t) = V (cosψ + γ−1 sinψ) e−bt . (28)

At the momentt = t? determined by equality

ψ = γ b t? =
π

2
+ arcsin

√

b

2a
, (29)

the hammer stops shortly and after this moment will con-
tinue in motion, but in the opposite direction. The cause
of this motion is the compression of the hammer, which
acts now as a spring. At this momentt = t? the hammer
is compressed as much as possible

u? = V

√

m

F0

exp(−b t?) . (30)

Then the decompression is continued, and at the mo-
mentt∗ = π/γb the hammer is totally decompressed and
leaves the string with a constant velocity

Vh = −V e−π/γ . (31)

The string after this momentt∗ will remain at rest, and its
maximum deflection is determined by

y(0, t∗) =
V

a
(1 + e−π/γ) . (32)

In this case no reflected wave is needed to help the
hammer to rebound.

3. String and hammer parameters

The case which allows the hammer go away from the
string without the aid of reflected wave requires

K =
16T 2

mc2F0

> 1 , (33)

which can be replaced by

K =
16Ms T

mTh
> 1 . (34)

HereMs = µL is the string mass, andTh = F0L is the so
called hammer ”tension” - the value, which characterized
the hammer stiffness. It is evident, that this case is virtual
not only for massive strings, but also for rather smooth
hammers. Because the elastic features of the real ham-
mers are essentially nonlinear, we consider the numerical
simulation of the hammer-string interaction using a more
complicated model of the hammer.

The hysteretic hammer model presented in [8], which
is very similar to nonlinear Voigt model and that is con-
sistent also with experiments is used here in the form

F (u(t)) = F0

[

up + α
d(up)

dt

]

. (35)

The parameters of this model were obtained experimen-
tally in [8], and for numerical calculations these values
may be approximated as the functions of the hammer
numberN in the form

α = 248 + 1.83N − 5.5 · 10−2N2 , (36)

F0 = 183 exp(0.045N) ; p = 3.7 + 0.015N . (37)

Here the unit for retarded timeα is (µs), and the unit for
F0 is (N/mmp). The string parameters were taken from
Table 1.Scale of Estonia Parlour Grand Piano[9].
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4. Numerical simulation of piano strings

The description of a numerical method for the case of
hysteretic hammer was presented in [10]. The process of
the hammer-string interaction was computed for the first
ten hammers and strings ofParlour Grand.

First of all, in Fig. 2 is displayedtα dependence
shown by black line and crosses. The contact durations

Figure 2:Contact times as functions of hammer number.

computed for the different initial hammer velocities are
shown by colored lines and symbols. Due to the fact
that the contact duration is decreased with increasing the
hammer velocity, all the points calculated for the ham-
mer velocity 5 m/s for all ten hammers are located under
the black line. It means that all the hammers considered
have time to decompress fully and leave the string with-
out the assistance of reflected wave. For the ninth and
tenth hammers the end of entirely decompression coin-
cides with the reflected wave appearance.

Nevertheless, the result even of the tenth string sim-
ulation shown in Fig. 3 demonstrates that the hammer
has a negative velocity, or in other words moves away
from the string, before the momenttα. Black circles
mark these parts of the force histories. The moment of
the reflected wave arrival and the beginning of the second
contact are observed in Fig. 3 rather well.

Figure 3:Normalized force histories computed for ham-
mer N=10.

5. Conclusions

We have shown that the real piano hammer can leave at
least the lowest ten strings of the piano without the aid
of any reflected wave. At that, with the increasing of the
initial hammer velocity the contact duration is decreased
due to the hammer compression and decompression come
to an end more rapidly. On the other hand, the hammer
compresses hardly with the increasing of its stiffness. It
means, that in frame of the nonlinear hysteretic hammer
model the contact duration increases with increasing of
parameterp. The numerical simulations confirm this ef-
fect completely.
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