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Abstract. The present-day state of piano manufacturing in Estonia is described based on
the cooperation between the Tallinn Piano Factory and the Institute of Cybernetics at Tallinn

Technical University. Scaling of the medium-sized pi&stoniais considered in detail.

1. INTRODUCTION

A brief survey of the development of Estonian piano companies from the late I8th
century to 1995 is given in [1]. Some problems, related to design of a mini-sized piano
developed in 1995 by the Tallinn Piano Factory in collaboration with the Institute of
Cybernetics, are also described there. The first samples of the newBadyoGrand
were completed by the end of 1995.

Today, Tallinn Piano Factory manufactures approximately 275 grand pianos per

year. These includBaby Grand medium-sized grand pian®&arlour, and grand pianos



Concert Grand pianos€stoniaare exported worldwide, mainly to the US, Iceland,
Belgium, Finland, Norway, Russia, etc, and they have drawn wide attention.

The pianogarlour andConcerthave been manufactured by Tallinn Piano Factory
for many years. Nowadays the construction of the pianos is modernized.

The present-day market demands are very high, especially concerning the piano
construction and design, the final quality of the piano frame and the details made of
wood, and the stability of all the piano parameters during the period of exploitation.

The most significant work was made to improve the iron frame of the piBaps
lour and Concertin order to achieve the frame stiffness and dynamic stability. The
calculation of the iron frame was carried out by means of the computer program COS-
MOS/M using the 3D model of the frame. Owing to that, the stability of the piano sound
improved.

The studies of the piano soundboard continue as well. This problem is rather
complicated and up to the present time only experimental analysis of the prototypes of
the soundboard has been performed.

Scaling of the piano is in general a theoretical problem. Considerable amount of
data has been collected about it. The method of interactive approach to the evaluation of
the mensure of the piar®aby Grandis described in [1]. Nevertheless, some problems
of the piano mensuration have not been considered earlier. Next we present an analysis

of the mensure of the medium-sized pidParlour.



2. PIANO SCALE

Mensure (or piano scale) is the summary table of the full collection of the string
lengths, string diameters, diameters of the winding wires of the bass strings, and the po-
sitions of the striking point (the distance of the hammer from the nearest string end), the
string tensions, etc. The piano scale is based on practical requirements and pure empiri-
cal data. Main requirements to the determination of the piano mensure are discussed in
[2, 3, 4]. They are the following.

1. The length_ of the shortest string is equal to 52 mm, and its diamefes equal to

0.775 mm. These values have been chosen on the basis of practical experience to pro-
vide the maximum permissible stress of the steel wire, and by taking into account some
indeterminate considerations about a "good voicing” in treble notes.

2. For approximately sixty upper notes of the grand piano the position of the striking
point| becomes little by little displaced from 1/8 to 1/24 of the whole string length in

the direction to the higher notes.

3. The distribution of the string tension must be more or less smooth function of the key
number to provide a uniform loading of the iron frame.

The string tensiof is calculated as
T = (2fL)%u= (2f)’LM = mpg(L f ), (1)

whereT is the string tensionf is note frequencytis linear mass density of the string,
M is the entire string mass, apd is the density of the steel core (7860 kgjm

For a good instrument, the vallid d; should be a constant. However, it is very



difficult to achieve such a distribution of the tension. Therefore, a linear or parabolic law
of the tension distribution is mostly used.

Since the stiffness of the string increases sharply with its diameter (proportionally
to df), inharmonicity is especially noticeable in the case of the bass strings. Because
wrapped strings are more flexible than solid strings of the same diameter, the inhar-
monicity of the bass strings is reduced substantially by using wrapped rather than solid
strings of the same weight.

There are no reliable recommendations available about how to choose the wrap-
ping wires for the bass notes. A simple way is to choose the thinnest core wire to avoid
the string inharmonicity.

The next step in the calculation of the piano scale is the matching of the linear
mass density of the string in order to obtain the frequency of the given note. The set of

frequencies for each note of the grand piano is defined by
foe1 = fn V2 = 1.05946f, . (2)

Thus, the region of the note frequencies is exactly determined fre®7.5 Hz for the
first noteA2 to f=4186 Hz for the last note5.

In this paper we shall consider the problems of the distribution of the string ten-
sion and the determination of the diameters of the winding wires on the example of the
medium-sized pian®arlour. Since we are interested only in these two problems, we

may assume that the string lengths and the striking point ratios for all the strings are



given. The number of strings in choir for each nbltés also known. The upper view of

the soundboard with the piano strings is presented in Fig. 1.
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Fig. 1. Position of strings over the soundboard of the medium-sized grand Pataur.
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3. STRING TENSION

The total number of notes in the piano is 88. The number of strings is much larger,
because the number of strings in a chbiy,changes from one string for the lower bass
notes to three strings in treble. As it was mentioned above, the distribution of the tension

of strings must be a more or less smooth function of the key number to provide a uniform



loading of the frame. For the first version of the pidB@by-Grand a smooth function

of tension distribution per choir was chosen. Therefore, since the number of strings per
note changes, the difference of tension per string for these notes is big. So, if the number
of strings in choir changes from one to two, and from two to three, then the discontinuity
of the relative tension is equal to 70 and 40%, respectively.

Evidently, the main piano manufacturers are trying to reduce the discontinuity of
tension when the number of strings in choir varies. Let us consider minimization of the
jump of the tension.

According to the construction of the medium-sized piano , the first ten nages (

F#1) have only one string per note. The notes from eleven to twenty &te—(A0)

have two strings per note, and the other notes consist of three strings. Let us denote the
tension of strings of the tenth and the eleven not@4gyandT; 1, respectively. To obtain

the minimum jump of the tension between these natesthe relative tension per string

must equal to the relative tension per note

fp— 2(T1o—T11) _ 2(2T11— Tio) 3)
(Tio+ T11) (Tio+2T11)

From this equation we have

Tio=v2T11. (4)
Exactly in the same way, for the notA8 andAf0 we may write

(To5+ Toe) (3Toe+2T2s)




and

3
Tos= \/;Tze- (6)

The relations (3) and (5) give the minimum jump of relative tension in cases when

the number of strings in choir varies from one to two and from two to three:
rip =0.3431, rp3=0.2020. (7

However, practically it is very difficult to achieve exactly such distribution of the
tension, because the step of the wire diameter is equal to 0.025 mm for the steel core and
0.05 mm for the winding wire.

Using the results obtained so far, we may suggest the most suitable (ideal) distri-
bution of the string tension for all notes of a piano. It has been shown [1] that in treble
the tension of the string does not depend on the key number and is approximately equal
to 620 N. Therefore, we may choo$g=620 N. According to (6), we haves=760 N.

On the other hand, experienced piano makers recommend the value of tension for
the first stringTy = 1320 N. The tension of other bass strings must decrease from this
value toT,5 = 760 N, following the linear law. Here we may choose the slope of the ten-
sion distribution between the first and the ten note arbitrarily. For example, if we choose
T11 =840 N, then from (4) we havE o= 1188 N. These values of tension are acceptable
because we may use rather small diameter of the core wires and the permissible stress
of the strings will not be exceeded (see below). Thus, using the linear law of the tension
distribution between notes 1 and 1&P(— F£1), and between notes 11 and Z5L( A0),

we may hope that the tension distribution as a whole is almost ideal. Such tension dis-
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Fig. 2.ldeal tension distribution.

tributions per string and per choir are shown in Fig. 2, and we shall try to obtain these

distributions also in practice.

4. DETERMINATION OF THE CORE DIAMETERS

The next step in piano scaling is the determination of string diameters. Now, we
have the ideal (preliminary) string tensiofs, the string lengthg,,, and the frequencies
fy for all the notes. Thus, we may calculate the preliminary linear mass dengities
all the 88 notes

Hon = (2fnLn) "Ton, N=1...88, (8)



and may calculate the diameters of the string core and of the copper winding wires.

The diameters of the strings without winding were calculated as

A,
di, = , n=1.88 9
v =70 (9)

S

and rounded off to 0.025 mm. The new linear mass density and tension of these strings

were recalculated by formule
n 2 2
Hn = Zpsdln , Th=(2foLn)Mn, N=1...88. (10)

The diameter of the core in the wrapped strings must be as small as possible, but
the stress of each string should be at least twice lower than the tensile strength for the
steel wire. Thus, we must take into account the tensile stremjtbf[the steel wire.

For simplicity, with the accuracy of 1.5 % we may approximate the dependence of the

tensile strength of the wire on the core diameteby formula
[0] = 3212351 —0.3982; +0.103342), (11)

where units are ford] - kg/mn?, and ford; - mm. Taking into account that suitable
relative string tension
Tn

o o (12)

can not exceed 0.5, we may choose the diameter of the core wires also for the wrapped

strings.



5. DETERMINATION OF THE DIAMETERS OF THE WINDING

WIRES

If we know the entire mass of the wrapped strMg= oL and diameter of cord;,
then the diameters of the winding wires can be found easily. In Fig. 3(a) the cross-section
of a doubly-wound string is shown. It is the ideal cross-section, but we may suppose that
it is very close to reality. Because almost the entire length of the core is wrapped, the
number of coils of the winding is equal ba, = L /d; for the first winding, andng = L /d3
for the second one. Here and below the indéxomitted. The diameters of the coils are

(d1+d2) and @1 + 2d> + d3), respectively. Thus, the lengths of the winding wires are

L
L, = T[mz(dl—l—dz) = d—ZT[(dl-l-dz),

L
L3 = T[mg(dl—l— 2d2+d3) = d—3T[(d1—|—2d2—|—d3), (13)

and the mass of the string is
L 2
M = Lol = — [Pst1” + TPcdo(d1 + dp) + TPcd3(d1 + 2d + ds)|

= [psdlz + TPc(dz 4 d3)(dy + dz + ds)} , (14)

4
L=
4

wherep, is the density of the copper winding wire (8950 kdjm

Introducing the notationy3 = dy + d3, Eq. (14) yields

T

2 [psdlz + TPcdaa(dy + d23) ] - (15)

Ho

10
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Fig. 3.ldeal (a) and real (b) cross—section of a doubly—wound piano string.

It is obvious that for the cross-section of the string (Fig. 3(a)), the valdgsohay
be obtained from the quadratic equation (15). In this case the vejuasdds should
be chosen arbitrarily from the technological conditions, observing the condjierds.

Scale of the pian®arlour is shown in Table 1.
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Table 1. Scale of the medium-sized piaRarlour

n Limm] I[mm] L/ N TIN] o Mo/m] difmm] dpx[mm] d3[mm]

1 2 3 4 5 6 7 8 9 10 11

1 14150 1758 8.05 1 1306.8 045 21575 1.350 1.000 1.700
2 1399.0 1738 805 1 12929 047 19449 1.300 0.900 1.650
3 1383.0 1716 8.06 1 1261.2 046 17298 1.300 0.700 1.650
4 1366.0 1695 806 1 1268.2 0.49 15890 1.250 0.650 1.600
5 1350.0 1675 806 1 1246.0 050 14236 1.225 0.600 1.600
6 1333.0 1654 806 1 12283 050 128.23 1.225 0.500 1.450
7 1316.0 163.1 8.07 1 12020 0.49 11472 1.225 0.400 1.400
8 1298.0 160.8 8.07 1 1197.2 050 104.66 1.200 1.700

9 1281.0 158.7 8.07 1 1188.7 052 9505 1.175 1.600

10 1263.0 1565 8.07 1 11889 0.52 87.11 1.175 1.500

11 1251.0 154.8 8.08 2 840.7 0.46 5593 1.025 1.150

12 1233.0 152.6 8.08 2 801.2 0.46 4889 1.000 1.050

13 1215.0 1504 8.08 2 821.0 0.47 4596 1.000 1.000

14 1196.0 148.0 8.08 2 8215 0.49 4228 0.975 0.950

15 1178.0 1456 8.09 2 7813 0.47 3693 0.975 0.850

16 1159.0 1433 8.09 2 790.0 0.47 3437 0.975 0.800

17 1140.0 1409 809 2 796.1 048 3189 0.975 0.750

18 1121.0 1386 8.09 2 7811 0.49 2883 0.950 0.700

19 1102.0 136.0 8.10 2 7805 0.49 26.56 0.950 0.650

20 1083.0 133.7 810 2 776.8 049 2438 0.950 0.600

21 1273.0 1572 810 2 7635 046 1545 0.975 0.350

22 1261.0 155.7 810 2 750.7 045 13.79 0.975 0.300

23 1248.0 1541 810 2 7318 044 1223 0.975 0.250

24 1233.0 1520 811 2 7057 042 10.76 0.975 0.200

25 1218.0 150.2 811 2 743.8 0.47 10.36 0.950 0.200

26 1201.0 148.1 811 3 6122 029 781 1.125

27 1180.0 1455 811 3 6057 031 7.13 1.075

28 1153.0 1420 812 3 6491 033 7.13 1.075

29 11200 1379 812 3 6251 0.34 6.49 1.025

30 1080.0 133.0 812 3 6524 036 6.49 1.025

31 10340 1273 812 3 6388 0.37 6.17 1.000

32 9850 1213 8.12 3 650.7 0.37 6.17 1.000

33 939.0 1155 8.13 3 6310 0.38 5.87 0.975

34 890.0 1095 8.13 3 6363 0.38 5.87 0.975

35 840.0 1033 8.13 3 636.2 038 5.87 0.975

36 7930 975 813 3 6364 0.38 5387 0.975

37 7520 925 813 3 6424 039 587 0.975

38 7130 876 814 3 6482 039 5387 0.975

39 6750 829 814 3 6521 039 5387 0.975

40 6380 784 814 3 6540 0.39 587 0.975

41 6040 742 814 3 6246 039 557 0.950

42 5700 699 815 3 6244 039 557 0.950

43 5410 664 815 3 6314 040 557 0.950

44 5110 627 815 3 6322 040 557 0.950

12



Table 1 (continued)

1 2 3 4 5 6 7 8 9 10 11
45 481.0 589 8.17 3 6288 0.39 5.57 0.950
46 4550 544 836 3 631.6 040 557 0.950
47 428.0 498 859 3 627.3 0.39 557 0.950
48 408.0 46.4 8.79 3 639.8 040 5.57 0.950
49 3810 423 901 3 6263 0.39 557 0.950
50 363.0 393 924 3 6381 040 557 0.950
51 3450 365 945 3 6470 041 557 0.950
52 328.0 340 965 3 6564 041 557 0.950
53 3120 316 987 3 6321 042 528 0.925
54 298.0 29.1 1024 3 647.2 0.43 5.28 0.925
55 284.0 26.7 10.64 3 659.8 043 5.28 0.925
56 270.0 245 11.02 3 6694 0.44 528 0.925
57 256.0 225 11.38 3 639.4 0.44 5.00 0.900
58 2440 208 11.73 3 652.0 045 5.00 0.900
59 231.0 19.1 12.09 3 656.0 0.45 5.00 0.900
60 218.0 174 1253 3 6557 045 5.00 0.900
61 208.0 16.2 12.84 3 6334 046 4.73 0.875
62 197.0 149 1322 3 637.7 046 4.73 0.875
63 187.0 13.7 13.65 3 645.0 047 4.73 0.875
64 177.0 126 1405 3 6486 047 4.73 0.875
65 167.0 11.6 1440 3 648.1 047 4.73 0.875
66 158.0 10.7 14.77 3 651.2 047 4.73 0.875
67 150.0 99 1515 3 658.8 0.48 4.73 0.875
68 141.0 9.1 1549 3 6534 0.47 473 0.875
69 1320 8.3 1590 3 6428 0.46 4.73 0.875
70 125.0 7.7 16.23 3 647.0 0.47 473 0.875
71 1190 7.2 1653 3 6582 0.48 473 0.875
72 112.0 6.6 16.97 3 6544 0.47 4.73 0.875
73 106.0 6.1 1738 3 658.0 048 473 0.875
74 101.0 5.7 1772 3 670.5 0.49 4.73 0.875
75 950 52 1827 3 6658 048 4.73 0.875
76 90.0 49 1837 3 6708 049 4.73 0.875
77 840 45 1867 3 6559 047 4.73 0.875
78 79.0 41 19.27 3 651.2 047 4.73 0.875
79 740 38 1947 3 6413 046 4.73 0.875
80 70.0 35 2000 3 6441 047 473 0.875
81 66.0 32 2063 3 606.6 046 4.46 0.850
82 630 30 2100 3 6204 047 4.46 0.850
83 59.0 28 2107 3 5753 046 4.20 0.825
84 560 26 2154 3 65817 047 4.20 0.825
85 540 25 2160 3 571.0 0.48 3.95 0.800
86 520 24 2167 3 5943 050 3.95 0.800
87 510 23 2217 3 6022 054 3.71 0.775
88 500 22 2273 3 649.7 058 3.71 0.775
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But reality is more complicated. The analysis and measurements of the singly- and doubly-
wound piano strings carried out at Tallinn Piano Factory show that the real cross-section of the
piano string is similar to the scheme shown in Fig. 3(b). During the process of winding the
surface of copper wires, contiguous to the core, is deformed. The same deformation of the
copper wires takes place between the first and the second winding. Thus, the outer dilgmeter
of the wrapped string is less thdn+ 2d, + 2d3. The measurements of the outer diameters of the
wrapped strings show that the value of this diameter may be obtained from the empirical formula

do = d; +2d, — 0.041d, <l+ 32> , (16)
1
for singly-wound string, and from
do = di + 2d; + 2d3 — 0.041(d, + d3) <1+ d2;d3> , (a7)
1
for doubly-wound string. Thus, the diameter of the coil of the singly-wound sBinig
A\ 1% do?
D, = di+d,—0.041d, | 14+ —= +—, (18)
di 4
and the diameter of the second winding coil of the doubly-wound sbBinig
do+ 3\ 1% ds?
Dy, = d; +2dy 4+ d3 —0.042(dy +d3) [ 1+ d + ik (29)
1

We must note here, that the lateral surfaces of the copper wires are not deformed and,
consequently, we may find the number of coils easily. In case of two windings, the length of the
first winding is approximately 100 mm less than the string length. Therefore the number of coils

of the first winding is
L—-100
M = & (20)
2
The length of the second winding is 40 mm less than the string length, and the number of
coils of the second winding is

L—-40
mg = o (21)
3
The lengths of the copper wires of the first and second windings are equal to

Lo=mmpD;, L3 =TmmgDy, (22)

respectively. Thus, the mass of the singly-wound string is

L 40
My = 7 [psdl2 +Tpcd2Dy <1— L>] ) (23)
and that of a doubly-wound string
T 100 40

My = i {psd12+ﬂpc [dle <1— L) +d3D2 (1— L)} } : (24)

14



Table 2. Parameters of the strings

Measured Theory
L[mm] | di[mm] | d2[mm] | dg[mm] | do[mm] | M[g] | do[mm] | M [g]
1415 1.400 1.850 4,95 196 4.92 197
1383 1.400 1.750 4.70 174 4,74 178
1350 1.225 1.500 410 127 4.09 129

1165 1.300 0.850 1.950 6.55 283 6.54 282
1145 1.300 0.850 1.500 5.70 213 5.73 211
1130 1.175 0.800 1.350 5.25 174 5.23 173

The parameters of the strings obtained from the measurements and calculated theoretically
by formulae (16) - (17) and (23) - (24) are displayed in Table 2. These formulae give the values
of the outer diameters of the strings with accuracy better than 1%, and the values of the string
masses with accuracy better than 1.5%.

Semiempirical formulae (23) - (24) give us the possibility to find the diameters of the
winding wires using the known values of the ideal lineal mass density of the sigingd the
diameterd; of the core. From (23) and (24) we have for the singly-wound string

T 40
bo=7 {psd12+Trpcd2D1 <1— L)] , (25)

and for the doubly-wound string

il 100 40
bo =5 {psd12+npc [dle <l— L) +d3D2 (1— L)] } : (26)

Now, using (25) we may find immediately the value of the diamdgeof the winding
wire. Due to technological demands, this diameter must be greater than 0.2 mm and less than 2
mm. If this diameter is greater than 2 mm then we must use the doubly-wound string. In this case
we must choose the preliminary diametieeforehand, and then the diamedgrof the second
winding wire may be found using (26). The only condition which must be fulfilledbis d3 <
2. By applying this procedure the values of the copper wire diameters obtained were rounded off
to 0.05 mm. These values df andds are displayed in Table 1.

6. SCALE OF THE MEDIUM-SIZED PIANO

To complete the piano scaling we must calculate new values of the string tension and the
relative string stress. Using the diametgysd, andds in formulae (25), (26), and (10) we find the
string tensiond,,, and by using (12), the relative string stressgsNow the Table 1 is complete.
Distributions of the string tension and relative stress are shown in Figs. 4 and 5. The values of
the string tensiond1, T1g, T11, T2s, and T, Obtained are very close to the calculated values. The
values of the relative tensions calculated for notes where the number of strings changes from 1
to 2 are:ry» = 0.363 per string, and» = 0.323 per choir. For notes where the number of strings
changes from 2 to 3 we haveiz = 0.199 per string, ancbs = 0.205 per choir. These values are
very close to the ideal values, and we may hope that the needed string tension is achieved.
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The method of evaluation of the mensure of the grand piano presented here, is elementary.
Many problems have not been considered. The most complex problem is how to choose the po-
sition of the striking point. This problem may be solved correctly only by numerical simulation
of the hammer-string interaction that is discussed in [5]. The hammer parameters will be deter-
mined by using a hereditary hammer model presented in [6], after experimental testing of the
hammer. This problem will be considered in future publications.
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