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Abstract. The present-day state of piano manufacturing in Estonia is described based on

the cooperation between the Tallinn Piano Factory and the Institute of Cybernetics at Tallinn

Technical University. Scaling of the medium-sized pianoEstoniais considered in detail.

1. INTRODUCTION

A brief survey of the development of Estonian piano companies from the late l8th

century to 1995 is given in [1]. Some problems, related to design of a mini-sized piano

developed in 1995 by the Tallinn Piano Factory in collaboration with the Institute of

Cybernetics, are also described there. The first samples of the new pianoBaby Grand

were completed by the end of 1995.

Today, Tallinn Piano Factory manufactures approximately 275 grand pianos per

year. These includeBaby Grand, medium-sized grand pianosParlour, and grand pianos
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Concert. Grand pianosEstoniaare exported worldwide, mainly to the US, Iceland,

Belgium, Finland, Norway, Russia, etc, and they have drawn wide attention.

The pianosParlour andConcerthave been manufactured by Tallinn Piano Factory

for many years. Nowadays the construction of the pianos is modernized.

The present-day market demands are very high, especially concerning the piano

construction and design, the final quality of the piano frame and the details made of

wood, and the stability of all the piano parameters during the period of exploitation.

The most significant work was made to improve the iron frame of the pianosPar-

lour and Concert in order to achieve the frame stiffness and dynamic stability. The

calculation of the iron frame was carried out by means of the computer program COS-

MOS/M using the 3D model of the frame. Owing to that, the stability of the piano sound

improved.

The studies of the piano soundboard continue as well. This problem is rather

complicated and up to the present time only experimental analysis of the prototypes of

the soundboard has been performed.

Scaling of the piano is in general a theoretical problem. Considerable amount of

data has been collected about it. The method of interactive approach to the evaluation of

the mensure of the pianoBaby Grandis described in [1]. Nevertheless, some problems

of the piano mensuration have not been considered earlier. Next we present an analysis

of the mensure of the medium-sized pianoParlour.
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2. PIANO SCALE

Mensure (or piano scale) is the summary table of the full collection of the string

lengths, string diameters, diameters of the winding wires of the bass strings, and the po-

sitions of the striking point (the distance of the hammer from the nearest string end), the

string tensions, etc. The piano scale is based on practical requirements and pure empiri-

cal data. Main requirements to the determination of the piano mensure are discussed in

[2, 3, 4]. They are the following.

1. The lengthL of the shortest string is equal to 52 mm, and its diameterd1 is equal to

0.775 mm. These values have been chosen on the basis of practical experience to pro-

vide the maximum permissible stress of the steel wire, and by taking into account some

indeterminate considerations about a ”good voicing” in treble notes.

2. For approximately sixty upper notes of the grand piano the position of the striking

point l becomes little by little displaced from 1/8 to 1/24 of the whole string length in

the direction to the higher notes.

3. The distribution of the string tension must be more or less smooth function of the key

number to provide a uniform loading of the iron frame.

The string tensionT is calculated as

T = (2 f L)2µ= (2 f )2LM = πρs(L f d1)
2, (1)

whereT is the string tension,f is note frequency,µ is linear mass density of the string,

M is the entire string mass, andρs is the density of the steel core (7860 kg/m3).

For a good instrument, the valueL f d1 should be a constant. However, it is very
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difficult to achieve such a distribution of the tension. Therefore, a linear or parabolic law

of the tension distribution is mostly used.

Since the stiffness of the string increases sharply with its diameter (proportionally

to d4
1), inharmonicity is especially noticeable in the case of the bass strings. Because

wrapped strings are more flexible than solid strings of the same diameter, the inhar-

monicity of the bass strings is reduced substantially by using wrapped rather than solid

strings of the same weight.

There are no reliable recommendations available about how to choose the wrap-

ping wires for the bass notes. A simple way is to choose the thinnest core wire to avoid

the string inharmonicity.

The next step in the calculation of the piano scale is the matching of the linear

mass density of the string in order to obtain the frequency of the given note. The set of

frequencies for each note of the grand piano is defined by

fn+1 = fn
12
√

2 = 1.05946fn . (2)

Thus, the region of the note frequencies is exactly determined fromf =27.5 Hz for the

first noteA2 to f =4186 Hz for the last notec5.

In this paper we shall consider the problems of the distribution of the string ten-

sion and the determination of the diameters of the winding wires on the example of the

medium-sized pianoParlour. Since we are interested only in these two problems, we

may assume that the string lengths and the striking point ratios for all the strings are
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given. The number of strings in choir for each noteN is also known. The upper view of

the soundboard with the piano strings is presented in Fig. 1.

Fig. 1. Position of strings over the soundboard of the medium–sized grand pianoParlour.

3. STRING TENSION

The total number of notes in the piano is 88. The number of strings is much larger,

because the number of strings in a choir,N, changes from one string for the lower bass

notes to three strings in treble. As it was mentioned above, the distribution of the tension

of strings must be a more or less smooth function of the key number to provide a uniform
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loading of the frame. For the first version of the pianoBaby-Grand, a smooth function

of tension distribution per choir was chosen. Therefore, since the number of strings per

note changes, the difference of tension per string for these notes is big. So, if the number

of strings in choir changes from one to two, and from two to three, then the discontinuity

of the relative tension is equal to 70 and 40%, respectively.

Evidently, the main piano manufacturers are trying to reduce the discontinuity of

tension when the number of strings in choir varies. Let us consider minimization of the

jump of the tension.

According to the construction of the medium-sized piano , the first ten notes (A2−

F]1) have only one string per note. The notes from eleven to twenty five (G1−A0)

have two strings per note, and the other notes consist of three strings. Let us denote the

tension of strings of the tenth and the eleven note byT10 andT11, respectively. To obtain

the minimum jump of the tension between these notes,r12, the relative tension per string

must equal to the relative tension per note

r12 =
2(T10−T11)
(T10+T11)

=
2(2T11−T10)
(T10+2T11)

. (3)

From this equation we have

T10 =
√

2T11. (4)

Exactly in the same way, for the notesA0 andA]0 we may write

r23 =
2(T25−T26)
(T25+T26)

=
2(3T26−2T25)
(3T26+2T25)

, (5)
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and

T25 =

√
3
2

T26. (6)

The relations (3) and (5) give the minimum jump of relative tension in cases when

the number of strings in choir varies from one to two and from two to three:

r12 = 0.3431, r23 = 0.2020. (7)

However, practically it is very difficult to achieve exactly such distribution of the

tension, because the step of the wire diameter is equal to 0.025 mm for the steel core and

0.05 mm for the winding wire.

Using the results obtained so far, we may suggest the most suitable (ideal) distri-

bution of the string tension for all notes of a piano. It has been shown [1] that in treble

the tension of the string does not depend on the key number and is approximately equal

to 620 N. Therefore, we may chooseT26=620 N. According to (6), we haveT25=760 N.

On the other hand, experienced piano makers recommend the value of tension for

the first stringT1 = 1320 N. The tension of other bass strings must decrease from this

value toT25 = 760 N, following the linear law. Here we may choose the slope of the ten-

sion distribution between the first and the ten note arbitrarily. For example, if we choose

T11 = 840 N, then from (4) we haveT10 = 1188 N. These values of tension are acceptable

because we may use rather small diameter of the core wires and the permissible stress

of the strings will not be exceeded (see below). Thus, using the linear law of the tension

distribution between notes 1 and 10 (A2−F]1), and between notes 11 and 25 (G1−A0),

we may hope that the tension distribution as a whole is almost ideal. Such tension dis-
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Fig. 2. Ideal tension distribution.

tributions per string and per choir are shown in Fig. 2, and we shall try to obtain these

distributions also in practice.

4. DETERMINATION OF THE CORE DIAMETERS

The next step in piano scaling is the determination of string diameters. Now, we

have the ideal (preliminary) string tensionsT0n, the string lengthsLn, and the frequencies

fn for all the notes. Thus, we may calculate the preliminary linear mass densitiesµ0n for

all the 88 notes

µ0n = (2 fnLn)
−2T0n, n = 1...88, (8)
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and may calculate the diameters of the string core and of the copper winding wires.

The diameters of the strings without winding were calculated as

d1n =

√
4µ0n

πρs
, n = 1...88, (9)

and rounded off to 0.025 mm. The new linear mass density and tension of these strings

were recalculated by formule

µn =
π
4

ρsd1n
2 , Tn = (2 fnLn)

2µn , n = 1...88. (10)

The diameter of the core in the wrapped strings must be as small as possible, but

the stress of each string should be at least twice lower than the tensile strength for the

steel wire. Thus, we must take into account the tensile strength [σ] of the steel wire.

For simplicity, with the accuracy of 1.5 % we may approximate the dependence of the

tensile strength of the wire on the core diameterd1 by formula

[σ] = 321.235(1−0.3982d1 +0.1033d2
1) , (11)

where units are for [σ] - kg/mm2, and ford1 - mm. Taking into account that suitable

relative string tension

σn =
Tn

πd2
1n [σ]

(12)

can not exceed 0.5, we may choose the diameter of the core wires also for the wrapped

strings.

9



5. DETERMINATION OF THE DIAMETERS OF THE WINDING

WIRES

If we know the entire mass of the wrapped stringM = µ0L and diameter of cored1,

then the diameters of the winding wires can be found easily. In Fig. 3(a) the cross-section

of a doubly-wound string is shown. It is the ideal cross-section, but we may suppose that

it is very close to reality. Because almost the entire length of the core is wrapped, the

number of coils of the winding is equal tom2 = L/d2 for the first winding, andm3 = L/d3

for the second one. Here and below the indexn is omitted. The diameters of the coils are

(d1 +d2) and (d1 +2d2 +d3), respectively. Thus, the lengths of the winding wires are

L2 = πm2(d1 +d2) =
L
d2

π(d1 +d2) ,

L3 = πm3(d1 +2d2 +d3) =
L
d3

π(d1 +2d2 +d3) , (13)

and the mass of the string is

M = µ0L =
πL
4

[
ρsd1

2 +πρcd2(d1 +d2)+πρcd3(d1 +2d2 +d3)
]

=
πL
4

[
ρsd1

2 +πρc(d2 +d3)(d1 +d2 +d3)
]
, (14)

whereρc is the density of the copper winding wire (8950 kg/m3).

Introducing the notationd23 = d2 +d3, Eq. (14) yields

µ0 =
π
4

[
ρsd1

2 +πρcd23(d1 +d23)
]
. (15)
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Fig. 3. Ideal (a) and real (b) cross–section of a doubly–wound piano string.

It is obvious that for the cross-section of the string (Fig. 3(a)), the value ofd23 may

be obtained from the quadratic equation (15). In this case the valuesd2 andd3 should

be chosen arbitrarily from the technological conditions, observing the conditiond2 < d3.

Scale of the pianoParlour is shown in Table 1.
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Table 1. Scale of the medium-sized pianoParlour

n L [mm] l [mm] L/l N T[N] σ µ[g/m] d1[mm] d2[mm] d3[mm]
1 2 3 4 5 6 7 8 9 10 11

1 1415.0 175.8 8.05 1 1306.8 0.45 215.75 1.350 1.000 1.700
2 1399.0 173.8 8.05 1 1292.9 0.47 194.49 1.300 0.900 1.650
3 1383.0 171.6 8.06 1 1261.2 0.46 172.98 1.300 0.700 1.650
4 1366.0 169.5 8.06 1 1268.2 0.49 158.90 1.250 0.650 1.600
5 1350.0 167.5 8.06 1 1246.0 0.50 142.36 1.225 0.600 1.600
6 1333.0 165.4 8.06 1 1228.3 0.50 128.23 1.225 0.500 1.450
7 1316.0 163.1 8.07 1 1202.0 0.49 114.72 1.225 0.400 1.400
8 1298.0 160.8 8.07 1 1197.2 0.50 104.66 1.200 1.700
9 1281.0 158.7 8.07 1 1188.7 0.52 95.05 1.175 1.600
10 1263.0 156.5 8.07 1 1188.9 0.52 87.11 1.175 1.500
11 1251.0 154.8 8.08 2 840.7 0.46 55.93 1.025 1.150
12 1233.0 152.6 8.08 2 801.2 0.46 48.89 1.000 1.050
13 1215.0 150.4 8.08 2 821.0 0.47 45.96 1.000 1.000
14 1196.0 148.0 8.08 2 821.5 0.49 42.28 0.975 0.950
15 1178.0 145.6 8.09 2 781.3 0.47 36.93 0.975 0.850
16 1159.0 143.3 8.09 2 790.0 0.47 34.37 0.975 0.800
17 1140.0 140.9 8.09 2 796.1 0.48 31.89 0.975 0.750
18 1121.0 138.6 8.09 2 781.1 0.49 28.83 0.950 0.700
19 1102.0 136.0 8.10 2 780.5 0.49 26.56 0.950 0.650
20 1083.0 133.7 8.10 2 776.8 0.49 24.38 0.950 0.600
21 1273.0 157.2 8.10 2 763.5 0.46 15.45 0.975 0.350
22 1261.0 155.7 8.10 2 750.7 0.45 13.79 0.975 0.300
23 1248.0 154.1 8.10 2 731.8 0.44 12.23 0.975 0.250
24 1233.0 152.0 8.11 2 705.7 0.42 10.76 0.975 0.200
25 1218.0 150.2 8.11 2 743.8 0.47 10.36 0.950 0.200
26 1201.0 148.1 8.11 3 612.2 0.29 7.81 1.125
27 1180.0 145.5 8.11 3 605.7 0.31 7.13 1.075
28 1153.0 142.0 8.12 3 649.1 0.33 7.13 1.075
29 1120.0 137.9 8.12 3 625.1 0.34 6.49 1.025
30 1080.0 133.0 8.12 3 652.4 0.36 6.49 1.025
31 1034.0 127.3 8.12 3 638.8 0.37 6.17 1.000
32 985.0 121.3 8.12 3 650.7 0.37 6.17 1.000
33 939.0 115.5 8.13 3 631.0 0.38 5.87 0.975
34 890.0 109.5 8.13 3 636.3 0.38 5.87 0.975
35 840.0 103.3 8.13 3 636.2 0.38 5.87 0.975
36 793.0 97.5 8.13 3 636.4 0.38 5.87 0.975
37 752.0 92.5 8.13 3 642.4 0.39 5.87 0.975
38 713.0 87.6 8.14 3 648.2 0.39 5.87 0.975
39 675.0 82.9 8.14 3 652.1 0.39 5.87 0.975
40 638.0 78.4 8.14 3 654.0 0.39 5.87 0.975
41 604.0 74.2 8.14 3 624.6 0.39 5.57 0.950
42 570.0 69.9 8.15 3 624.4 0.39 5.57 0.950
43 541.0 66.4 8.15 3 631.4 0.40 5.57 0.950
44 511.0 62.7 8.15 3 632.2 0.40 5.57 0.950
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Table 1 (continued)

1 2 3 4 5 6 7 8 9 10 11

45 481.0 58.9 8.17 3 628.8 0.39 5.57 0.950
46 455.0 54.4 8.36 3 631.6 0.40 5.57 0.950
47 428.0 49.8 8.59 3 627.3 0.39 5.57 0.950
48 408.0 46.4 8.79 3 639.8 0.40 5.57 0.950
49 381.0 42.3 9.01 3 626.3 0.39 5.57 0.950
50 363.0 39.3 9.24 3 638.1 0.40 5.57 0.950
51 345.0 36.5 9.45 3 647.0 0.41 5.57 0.950
52 328.0 34.0 9.65 3 656.4 0.41 5.57 0.950
53 312.0 31.6 9.87 3 632.1 0.42 5.28 0.925
54 298.0 29.1 10.24 3 647.2 0.43 5.28 0.925
55 284.0 26.7 10.64 3 659.8 0.43 5.28 0.925
56 270.0 24.5 11.02 3 669.4 0.44 5.28 0.925
57 256.0 22.5 11.38 3 639.4 0.44 5.00 0.900
58 244.0 20.8 11.73 3 652.0 0.45 5.00 0.900
59 231.0 19.1 12.09 3 656.0 0.45 5.00 0.900
60 218.0 17.4 12.53 3 655.7 0.45 5.00 0.900
61 208.0 16.2 12.84 3 633.4 0.46 4.73 0.875
62 197.0 14.9 13.22 3 637.7 0.46 4.73 0.875
63 187.0 13.7 13.65 3 645.0 0.47 4.73 0.875
64 177.0 12.6 14.05 3 648.6 0.47 4.73 0.875
65 167.0 11.6 14.40 3 648.1 0.47 4.73 0.875
66 158.0 10.7 14.77 3 651.2 0.47 4.73 0.875
67 150.0 9.9 15.15 3 658.8 0.48 4.73 0.875
68 141.0 9.1 15.49 3 653.4 0.47 4.73 0.875
69 132.0 8.3 15.90 3 642.8 0.46 4.73 0.875
70 125.0 7.7 16.23 3 647.0 0.47 4.73 0.875
71 119.0 7.2 16.53 3 658.2 0.48 4.73 0.875
72 112.0 6.6 16.97 3 654.4 0.47 4.73 0.875
73 106.0 6.1 17.38 3 658.0 0.48 4.73 0.875
74 101.0 5.7 17.72 3 670.5 0.49 4.73 0.875
75 95.0 5.2 18.27 3 665.8 0.48 4.73 0.875
76 90.0 4.9 18.37 3 670.8 0.49 4.73 0.875
77 84.0 4.5 18.67 3 655.9 0.47 4.73 0.875
78 79.0 4.1 19.27 3 651.2 0.47 4.73 0.875
79 74.0 3.8 19.47 3 641.3 0.46 4.73 0.875
80 70.0 3.5 20.00 3 644.1 0.47 4.73 0.875
81 66.0 3.2 20.63 3 606.6 0.46 4.46 0.850
82 63.0 3.0 21.00 3 620.4 0.47 4.46 0.850
83 59.0 2.8 21.07 3 575.3 0.46 4.20 0.825
84 56.0 2.6 21.54 3 581.7 0.47 4.20 0.825
85 54.0 2.5 21.60 3 571.0 0.48 3.95 0.800
86 52.0 2.4 21.67 3 594.3 0.50 3.95 0.800
87 51.0 2.3 22.17 3 602.2 0.54 3.71 0.775
88 50.0 2.2 22.73 3 649.7 0.58 3.71 0.775
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But reality is more complicated. The analysis and measurements of the singly- and doubly-
wound piano strings carried out at Tallinn Piano Factory show that the real cross-section of the
piano string is similar to the scheme shown in Fig. 3(b). During the process of winding the
surface of copper wires, contiguous to the core, is deformed. The same deformation of the
copper wires takes place between the first and the second winding. Thus, the outer diameterd0

of the wrapped string is less thand1+2d2+2d3. The measurements of the outer diameters of the
wrapped strings show that the value of this diameter may be obtained from the empirical formula

d0 = d1 +2d2−0.041d2

(
1+

d2

d1

)
, (16)

for singly-wound string, and from

d0 = d1 +2d2 +2d3−0.041(d2 +d3)
(

1+
d2 +d3

d1

)
, (17)

for doubly-wound string. Thus, the diameter of the coil of the singly-wound stringD1 is

D1 =

√[
d1 +d2−0.041d2

(
1+

d2

d1

)]2

+
d2

2

4
, (18)

and the diameter of the second winding coil of the doubly-wound stringD2 is

D2 =

√[
d1 +2d2 +d3−0.041(d2 +d3)

(
1+

d2 +d3

d1

)]2

+
d3

2

4
. (19)

We must note here, that the lateral surfaces of the copper wires are not deformed and,
consequently, we may find the number of coils easily. In case of two windings, the length of the
first winding is approximately 100 mm less than the string length. Therefore the number of coils
of the first winding is

m2 =
L−100

d2
. (20)

The length of the second winding is 40 mm less than the string length, and the number of
coils of the second winding is

m3 =
L−40

d3
. (21)

The lengths of the copper wires of the first and second windings are equal to

L2 = πm2D1 , L3 = πm3D2 , (22)

respectively. Thus, the mass of the singly-wound string is

M1 =
πL
4

[
ρsd1

2 +πρcd2D1

(
1− 40

L

)]
, (23)

and that of a doubly-wound string

M2 =
πL
4

{
ρsd1

2 +πρc

[
d2D1

(
1− 100

L

)
+d3D2

(
1− 40

L

)]}
. (24)
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Table 2. Parameters of the strings

Measured Theory
L [mm] d1 [mm] d2 [mm] d3 [mm] d0 [mm] M [g] d0 [mm] M [g]
1415 1.400 1.850 4.95 196 4.92 197
1383 1.400 1.750 4.70 174 4.74 178
1350 1.225 1.500 4.10 127 4.09 129
1165 1.300 0.850 1.950 6.55 283 6.54 282
1145 1.300 0.850 1.500 5.70 213 5.73 211
1130 1.175 0.800 1.350 5.25 174 5.23 173

The parameters of the strings obtained from the measurements and calculated theoretically
by formulae (16) - (17) and (23) - (24) are displayed in Table 2. These formulae give the values
of the outer diameters of the strings with accuracy better than 1%, and the values of the string
masses with accuracy better than 1.5%.

Semiempirical formulae (23) - (24) give us the possibility to find the diameters of the
winding wires using the known values of the ideal lineal mass density of the stringµ0 and the
diameterd1 of the core. From (23) and (24) we have for the singly-wound string

µ0 =
π
4

[
ρsd1

2 +πρcd2D1

(
1− 40

L

)]
, (25)

and for the doubly-wound string

µ0 =
πL
4

{
ρsd1

2 +πρc

[
d2D1

(
1− 100

L

)
+d3D2

(
1− 40

L

)]}
. (26)

Now, using (25) we may find immediately the value of the diameterd2 of the winding
wire. Due to technological demands, this diameter must be greater than 0.2 mm and less than 2
mm. If this diameter is greater than 2 mm then we must use the doubly-wound string. In this case
we must choose the preliminary diameterd2 beforehand, and then the diameterd3 of the second
winding wire may be found using (26). The only condition which must be fulfilled isd2 < d3 <
2. By applying this procedure the values of the copper wire diameters obtained were rounded off
to 0.05 mm. These values ofd2 andd3 are displayed in Table 1.

6. SCALE OF THE MEDIUM–SIZED PIANO

To complete the piano scaling we must calculate new values of the string tension and the
relative string stress. Using the diametersd1,d2 andd3 in formulae (25), (26), and (10) we find the
string tensionsTn, and by using (12), the relative string stressesσn. Now the Table 1 is complete.
Distributions of the string tension and relative stress are shown in Figs. 4 and 5. The values of
the string tensionsT1,T10,T11,T25, andT26 obtained are very close to the calculated values. The
values of the relative tensions calculated for notes where the number of strings changes from 1
to 2 are:r12 = 0.363 per string, andr12 = 0.323 per choir. For notes where the number of strings
changes from 2 to 3 we have:r23 = 0.199 per string, andr23 = 0.205 per choir. These values are
very close to the ideal values, and we may hope that the needed string tension is achieved.
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Fig. 4. Tension tension distribution.

Fig. 5. Relative stress distribution.
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The method of evaluation of the mensure of the grand piano presented here, is elementary.
Many problems have not been considered. The most complex problem is how to choose the po-
sition of the striking point. This problem may be solved correctly only by numerical simulation
of the hammer-string interaction that is discussed in [5]. The hammer parameters will be deter-
mined by using a hereditary hammer model presented in [6], after experimental testing of the
hammer. This problem will be considered in future publications.
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