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Abstract In nonlinear theories the axiom of equipresence requires all the effects
of the same order to be taken account. In this paper the mathematical modelling of
deformation waves in media is analysed involving nonlinear and dispersive effects
together with accompanying phenomena caused by thermal or electrical fields. The
modelling is based on principles of generalized continuum mechanics developed by
G.A. Maugin. The analysis demonstrates the richness of models in describing the
physical effects in media with complex properties.
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1 Introduction

The legacy of G.A. Maugin is huge and has an imprint on many studies on contin-
uum mechanics in the second half of the 20th century. His studies have cast light on
many fundamental problems of continua like the principle of virtual power, gener-
alized continuum mechanics, the concepts of internal variables and configurational
forces, propagation of waves and fronts – just to name a few (dell’Isola et al., 2014).
His sparkling ability to inspire his colleagues to collaborate and find new prob-
lems in the field of fundamental understanding of the behaviour of materials has
been realized in numerous joint publications. In this paper, the attention is paid to
nonlinear wave propagation. G.A. Maugin himself has studied waves in elastic crys-
tals (Maugin, 1999), numerical methods used for the analysis of waves and fronts
(Berezovski et al., 2008) and published several overviews on waves (Maugin, 2011;
Christov et al. 2007). The cooperation with colleagues in Tallinn has resulted in de-
scribing complexities of soliton theory (Salupere et al., 1994; 2001), in nerve pulse
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analysis (Maugin and Engelbrecht, 1994), in elaborating the concept of internal vari-
ables (Berezovski et al. 2011a; 2011b), etc. Here we shall present some fundamental
ideas from this cooperation and novel results developed recently. The basic problem
is how to describe real properties of materials and how these are reflected in wave
propagation. The importance of such an analysis is pointed out also by G.A. Maugin
(2015).

In what follows, the problems in deriving the governing equations of nonlinear
wave motion for describing complicated properties of media (materials) and the
corresponding mathematical models are presented in Section 2. The physical ef-
fects resulting from these governing equations are analysed in Section 3. Finally, in
Section 4 discussion is given together with ideas for the further research.

2 The governing equations

The governing equations for describing wave motion are based on the balance of
momentum. Besides classical linear wave equations, the Boussinesq-type models
are richer because they account also nonlinear and dispersive effects (Christov et
al., 2007). Like classical wave equations in the 1D setting, these equations have bi-
directional solutions. Another class of models describing nonlinear waves are evo-
lution equations like the Korteweg-de Vries (KdV) equation and its modifications.
Evolution equations describe uni-directional propagation and are usually derived
from complicated systems by the reductive perturbation method using the moving
frame of reference. Characteristically for both types of equations, the modelling of
nonlinear and dispersive effects permits to describe many interesting physical phe-
nomena. Below some results of modelling are briefly described. The 1D set-ups
are used in order to reach transparent models where it would be easy to trace the
influence of individual terms in models.

A typical form of a Boussinesq-type equation in terms of a displacement u is
(Christov et al., 2007):

utt − c2
0uxx − [F(u)]xx = (β1utt −β2uxx)xx , (1)

where c0 is the wave velocity, Fu is a polynomial and β1,β2 are physical constants.
As usual, x denotes space and t denotes time. Here and further, indices x and t denote
the differentiation with respect to the indicated variable. This equation can be found
as in solid mechanics as well as in fluids where it was derived originally. It must
be noted that the r.h.s. of Eq. (1) has often an order of O(ε) where ε is a small
parameter.

The general form of a KdV-type evolution equation in terms of v ∼ ux (or v ∼ ut )
is (Salupere et al., 2001).

vτ +[P(v)]ξ +D(v) = 0, (2)
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where τ is a scaled coordinate, ξ = c0t−x is the moving frame coordinate, P(v) is a
polynomial and D(v) is a dispersion operator including the odd derivatives of v with
respect to ξ only.

Boussinesq-type models. In modelling of microstructured solids, it is possible
to distinguish macro- and microstructure that must be taken into account in mod-
elling the wave motion. Based on the Mindlin (1964) micromorphic theory, the
governing equations can be derived for both coupled structures. The existence of
the microstructure leads to dispersive effects while nonlinearity is of the physical
character. The free energy W is assumed to have a form:

W =
ρ0c2

2
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x +A1φux +
1
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Bφ2 +Cφ2
x +
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6
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where ρ0 and c are the density and the sound velocity of the macrostructure, u is the
macrodisplacement, φ is the microdeformation in the sense of Mindlin (1964), and
A,B,C,N,M are material parameters. The kinetic energy K is

K =
ρ0

2
u2

t +
I
2

φ2
t , (4)

where I is the measure of microstructure inertia.
Then the governing equation in terms of the macrodisplacement u is (Engelbrecht

et al., 2005; Berezovski et al., 2013):

utt − (c2 − c2
A)uxx −

1
2

k1(u2
x)x = p2c2

A
(
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1uxx
)

xx

− 1
2

k2(uxx)xx, (5)

where c2
A = A2/ρ0B , C2

1 =C/I , p2 = I/B and k1,k2 are the coefficients of nonlin-
earities.

It must be stressed that Eq. (5) reflects the following: (i) the nonlinearities are
of the deformation-type as usually in solid mechanics; (ii) microinertia of the mi-
crostructure is taken into account; (iii) the second wave operator at the r.h.s has a
parameter p2 which is usually small and therefore Eq. (5) is a hierarchical equa-
tion. In addition, the velocity of the wave operator for the macrostructure at the l.h.s
is influenced by the properties of the microstructure. In such a way, the governing
equation reflects real properties of the microstructured material.

In case of a multiscale (the scale in the scale) microstructure, the governing equa-
tion involves two wave operators reflecting the properties of microstructures (Engel-
brecht et al., 2007). In the linear case this equation is:

utt − (c2 − c2
A1)uxx = p2

1c2
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where indices 1 and 2 denote the microstructures. The smaller scales bring in higher
order dispersive terms. Like the macrostructure, the level 1 microstructure is also
influenced by the level 2 microstructure. Two wave operators at the r.h.s. of Eq. (6)
indicate the hierarchical structure the governing equation.

If internal variables are considered to include nonlinearities in the microscale
then the structure of governing equations becomes even more complicated compared
to Eq. (3) as shown by Berezovski (2015).

The asymptotic analysis demonstrates also the hierarchies for waves in Cosserat
media and ferroelectrics, analysed by Maugin (1999). In the linear case, the govern-
ing equations are similar to those for microstructured solids (Salupere and Engel-
brecht, 2014).

In biomechanics, the character of nonlinearities can be different from what is typ-
ical in solid mechanics. Based on experiments, it has been shown that in biomem-
branes where the microstructure is built up by lipid molecules, the nonlinearity of
mechanical waves can be accounted in the effective velocity (Heimburg, Jackson,
2005).

c2
e = c2

0 + pu+qu2, (7)

where c0 is the velocity in the unperturbed state and u is the density change along
the axis of the biomembrane, while p,q are material coefficients. Substituting c2

e into
the balance of momentum and the adding dispersive terms, the governing equation
for longitudinal waves in biomembranes takes the form

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt , (8)

where h1,h2 are constants. This equation was proposed by Heimburg and Jackson
(2005) with h2 = 0 and later improved by Engelbrecht et al. (2015). This improve-
ment with h2 ̸= 0 is important because it accounts for the microstructure of the
biomembrane made of lipids and removes the discrepancy that at higher frequencies
the velocities are unbounded. This is a physically admissible situation as stressed by
Maugin (1999). It must be stressed that as noted above, in Eq. (5) the nonlinearities
are of the deformation-type, then in Eq. (8) they are of the displacement-type.

Evolution-type (KdV-type) models. These one-wave asymptotical models have
gained wide attention because of the iconic status of several nonlinear evolution
equations like the KdV equation, Schrödinger equation a.o. which permit in some
cases also analytical solutions (for example, Maugin, 1999; 2011; Ablowitz, 2011).
The classical KdV equation combines the quadratic nonlinearity and cubic disper-
sion:

vτ + vvξ +dvξ ξ ξ = 0, (9)

where d is the dispersion parameter. The numerical analysis of the KdV equation
has revealed many details including the behaviour of multi-recurrence of solitons
forming from a harmonic excitation (Salupere et al., 2002), the explanation of the
importance of hidden solitons (Salupere et al., 2003; Engelbrecht, Salupere, 2005)
and the influence of an additional force (Engelbrecht, Salupere, 2005). The mod-
ifications of the KdV equations involve more physical effects. For example, for
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martensitic shape-memory alloys the governing equation takes the form (Salupere
et al., 2001):

vτ +[P(v)]ξ +dvξ ξ ξ +bv5ξ = 0, (10)

P(v) =−1
2

v2 +
1
4

v4, (11)

where d and b are the third- and the fifth-order dispersion parameters, respectively.
The quartic potential (11) corresponds to the two-well energy distribution which
has a direct influence on nonlinear effects. Equations (10), (11) are able to describe
several solitonic structures (Ilison, Salupere, 2006).

It is also possible to derive an evolution equation from the bi-directional model (5).
However, in this case the result is a modified KdV equation (Randrüüt, Braun,
2010).

vτ +a1vvξ +d1vξ ξ ξ +a2(v2
ξ )ξ ξ = 0, (12)

where a1 describes the nonlinearity of the macrostructure, a2 ∼ O(ε) - the non-
linearity of the microstructure and d1 denotes the joint influence of dispersive
terms (cf. Eq. (5)). It means that both of the effects – inertia of the microstruc-
ture (term uttxx in Eq. (5)) and elasticity of the microstructure (term uxxxx in Eq. (5))
are involved in the dispersive term in Eq. (12), reflected by the sign of d1 (Randrüüt,
Braun, 2010).

More detailed analysis of nonlinearities in the microscale demonstrates that
also Benjamin-Bona-Mahoney or Camassa-Holmb equations can be derived (Bere-
zovski, 2015).

Like for the Boussinesq-type equations, the evolution equations may also have
a hierarchical character reflecting the scale effects. This is the case of granular ma-
terials when the evolution equation can be written in the form (Giovine, Oliveri,
1995):

vτ + vvς +α1vξ ξ ξ +β
(
vτ + vvξ +α2vξ ξ ξ

)
ξ ξ = 0, (13)

where α1 and α2 are macro- and microlevel nonlinearities and β is a parameter
involving the ratio of the grain size and the wavelength. The solutions of Eq. (13)
involve beside single solitons also soliton ensembles. This is a typical example of
two concurrent dispersive effects (Ilison, Salupere, 2009).

Coupled fields. Several physical situations need accounting for coupled fields.
For example, in mechanics of solids, the presence of heat sources lead to cou-
pling of deformation fields and temperature fields. For microstructured materials
the processes in macro- and microstructures are influenced by both fields. Besides
the deformations of macro- and microstructures, the temperature fields can also be
divided: macrotemperature and microtemperature (fluctuation of temperature in mi-
crostructural elements). The corresponding governing equations can be derived by
using the concept of internal variables (Berezovski et al., 2011a; 2011b). However,
due to the complicated structure of these equations, it is impossible to derive a sin-
gle governing equation like it is done for elastic waves in microstructured solids (see
above). In this coupled case the governing system of equations is (Berezovski et al.,
2014):
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balance of linear momentum:

vtt − c2
ouxx = m1θx +m2αx +m3φxx; (14)

balance of energy:
θt = n(kθx)x +m4uxt + r1φ2

t ; (15)

governing equation for microdeformation:

αtt − c2
d αxx =−m2ux −m3α; (16)

governing equation for microstructure:

φtt − c2
t φxx = m5uxx − r2φt , (17)

where u is the macrodisplacement, φ - the microdeformation, θ - the macrotemper-
ature, α - the microtemperature; c0,cd ,ct denote velocities, k is the thermal conduc-
tivity and m1,m2,m3,m4, m5,r1,r2,n are coefficients. If conditions θ = const,α =
const are satisfied then Eqs. (14) and (16) can be reduced to the linear form of
Eq. (5). The full system of Eqs. (14) – (17) includes three hyperbolic equations
(Eqs. (14), (16), (17) and one parabolic equation (Eq. (15)). The coupling of physi-
cal effects is complicated – microdeformation and microtemperature are not coupled
but both are coupled to the balance of linear momentum while macrostructure is af-
fected by the macrodisplacement (like in the usual theory of thermoelasticity) and
microtemperature.

In biophysics, a theoretical model for nerve signal propagation including all the
physical effects is still a challenge calling “to frame a theory that incorporates all
observed phenomena in one coherent and predictive theory of nerve signal propa-
gation” (Andersen et al., 2009). The phenomena are following: the action potential
(the electrical pulse) in a nerve fibre which carries the signal, generates also mechan-
ical waves in the axoplasm within a fibre and in the surrounding biomembrane. The
longitudinal wave in the biomembrane leads to the transverse displacement which is
measurable. Leaving aside the detailed description on the origin of physical effects
and corresponding models, a possible mathematical model uniting all the processes
into one system has recently been proposed in the following form (Engelbrecht et al.,
2016).

First, the action potential can be modelled by the simplified FitzHugh-Nagumo
(FHN) equation governing the propagation of an electrical pulse z (Nagumo et al.,
1962):

ztxx = ztt +µ(1−a1z+a2z2)zt + z, (18)

where a1,a2,µ are parameters and z is the scaled voltage.
Second, the pressure wave in axoplasm may be governed by a 1D Navier-Stokes

model
ρ(Vt +VVx) =−px +µνVxx +F1(z), (19)
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where V is the velocity, ρ – the density, p – the pressure and µν – the viscosity. The
force acting from the action potential is denoted by F1(z).

Third, the longitudinal wave in the biomembrane is modelled by Eq. (8)

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt +F2(z,V ), (20)

where F2(z,V ) is a force from other waves. The system of equations (18), (19), (20)
is solved for the initial condition

z
∣∣
t=0= f (x) (21)

and the transverse wave (horizontal displacement w of the biomembrane) is calcu-
lated by

w =−krux, (22)

like in rods (Porubov, 2003). All the governing equations are nonlinear and demon-
strate explicitly the complexity of the process. The nature of forces F1(z),F2(z,V )
must be determined by experiments.

3 Physical effects

The model equations described in Section 2 give an idea about how to account
for complicated physical effects reflecting the properties of nonlinear media. In this
Section, the most typical effects are described which have resulted from recent stud-
ies (many in cooperation with G.A. Maugin). As typical for the complex world, the
interactions of effects lead to new phenomena.

Most of the mathematical models described above are the soliton-bearing sys-
tems. The nonlinear Boussinesq-type model like Eq. (5) demonstrates the emer-
gence of soliton trains. Note that here the nonlinearity is of the deformation type. An
initial condition produces left- and right-propagating trains of deformation solitons
(Berezovski et al., 2013) where, as expected, the higher the amplitude, the faster the
soliton. The interaction of solitons governed by non-integrable equation (5), howe-
ver, is not fully elastic and produces some radiation explained already by Maugin
(1999). Due to the nonlinearity at the microlevel, the emerging solitons are not fully
symmetric (Salupere et al. 2008). By solving the corresponding evolution equation
(12), the same effect is demonstrated (Randrüüt, Braun, 2010).

Another Boussinesq-type equation (8) involves displacement-type nonlinearities.
It possesses a soliton solution and from an initial input, the soliton trains can be
formed. Given the signs of the coefficients from experiments (p < 0) contrary to
the previous case, the soliton trains have an interesting property – the smaller the
amplitude, the faster is the soliton. The analysed improved model (8) demonstrates
clearly that the existence of the inertial term h2uxxtt leads to a narrower pulse which
is important in determining its value from experiments by measuring the width of
the pulse. The full analysis of Eq. (8) is given by Engelbrecht et al. (2017) together
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with the demonstration of the existence of periodical waves (cf cnoidal waves for the
KdV equation) governed by this equation. Like in the previous case, the interaction
of solitons is not fully elastic resulting in some radiation during interactions.

The existence of solitary solutions or the emergence of regular soliton trains are
like benchmarks of solitonics. However, due to complicated physics, the governing
equations are different from well-studied classical models and interest should also
be focused to the complicated solitonic structures. Such structures may emerge in
phase memory alloys (Eq. (10)), in granular media (Eq. (13)) and forced KdV mod-
els. In order to understand properly the mechanisms of emerging solitonic struc-
tures, one should determine the number of possible emerging solitons. This depends
on the energy sharing and redistribution between solitons. In general terms, starting
from the seminal paper by Zabusky and Kruskal (1965) this problem has been anal-
ysed using various estimations (see references in Salupere et al., 2014). A detailed
analysis of interaction of solitons shows that besides visible solitons there exist also
hidden (or virtual) solitons (Salupere et al., 1996; Christov, 2012). The hidden soli-
tons can be detected from the changes they cause in trajectories of other solitons
during interactions and can be visible during the short time intervals due to the fluc-
tuations of the reference level. What is important, is that these hidden solitons may
serve as “energy pockets” which may become visible if an external force acts in a
system (Engelbrecht, Salupere, 2005). This effect has been analysed for the KdV
equation with the periodic external force (Engelbrecht, Salupere, 2005). Depend-
ing on the strength of the force, several features were established: weak, moderate,
strong and dominating external fields. In the case of the weak field all hidden and
smaller visible solitons are suppressed; in the case of the moderate field the result-
ing solitons include all visible and some hidden solitons; in the case of the strong
field the number of emerging solitons is higher than in the corresponding conser-
vative case; and in the dominating field no soliton complexes but wave packets are
formed. If the external force has a polynomial character with one maximum and
one minimum then a single soliton may be suppressed or amplified depending on
its amplitude (Engelbrecht, Khamidullin, 1988). This phenomenon could explain
the possible amplification of the precursors to seismic waves generated by earth-
quakes. The hierarchical KdV equation (13) governs beside a single soliton several
types of soliton complexes: a KdV soliton ensemble with or without a weak tail;
a soliton with a strong tail; a solitary wave with a tail and wave packets (Ilison,
Salupere, 2009; Salupere et al., 2014). Here the hidden solitons play a role in the
emergence of soliton complexes.

It is obvious that the soliton “menagerie” is rich and above only a part of phe-
nomena was described related to microstructured solids. For a more detailed review
the reader is referred to Maugin (2011).

Besides solitons and soliton complexes, the microstructured solids reveal other
interesting phenomena. In the case of multiscaled hierarchical microstructures
(see Eq. (6)) the effect of the negative group velocity may appear (Peets et al.,
2013). This phenomenon is related to the coupling effects between the two scales.
In terms of dispersion analysis, this is a case when two optical branches of disper-
sion curves are very close to each other at certain frequencies. As far as the optical
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modes represent non-propagating oscillations, such a situation can be considered as
a pre-resonant one.

The processes in thermoelastic microstructured solids are described by Eqs. (14) –
(17). The numerical simulation shows that even in the absence of effects of the
microdeformation, the wave propagation process is strongly influenced by the
microtemperature (Berezovski, Engelbrecht, (2013). Namely, although the lead-
ing terms in the balance of energy (15) reflect the parabolicity as expected, the
macrotemperature is affected by the microtemperature changes (hyperbolic equa-
tion (17)) and demonstrates the wave-like behaviour. This result casts surely more
light on the behaviour of microstructured solids.

The joint model of a nerve signal propagation (Eqs. (18) – (20)) is an attempt
to explain this fascinating process by including all the possible waves into an en-
semble where the nonlinearities play a decisive role. The waves in the ensemble
interact with each other through the coupling forces. Certainly, the description of
the electrical signal is here simplified because the FHN model takes into account
only one (generalized) ionic current. This current plays a crucial role in the energy
balance of the electrical pulse dictating its asymmetric shape. It would better to ac-
count for specified currents of Na and K ions but the more complicated models like
the Hodgkin-Huxley model (1952) taking these ionic currents into account need
many more physical parameters. So at this stage we limit ourselves to the simple
FHN equation (18). The pressure wave in the axoplasm is described by the classical
Navier-Stokes equation. Finally, the longitudinal waves in the surrounding biomem-
brane are described by a recently derived equation (20). To make this model work,
two important physical phenomena must be properly understood: (i) the mecha-
nisms of opening the ion channels; (ii) the nature of coupling forces. It means that
in Eq. (18) the parameters a1 and a2 should be carefully estimated and the forces
F1(z) and F2(z,V ) determined. This work is in progress. A special challenge is to
understand the synchronization of velocities and the possible phase-shifts between
the waves in an ensemble.

4 Discussion

What has been described above, is the description of complexity in wave motion.
Indeed, the main features of complex systems are (Érdi, 2008): (i) complex sys-
tems are comprised of many different constituents which are connected in multiple
ways; (ii) complex systems produce global effects including emergent structures
generated by local interactions; (iii) complex systems are typically nonlinear; (iv)
emergent structures may occur far from the equilibrium. The need for the inevitable
introduction of complexity in the mechanics of real materials has been suggested
also by Maugin (2015). The list of effects in nonlinear wave motion includes many
fundamental phenomena such as the balance of nonlinear and dispersive effects,
scale effects and hierarchies, coupling of different fields, etc. As a result, special
wave structures could emerge and the interaction of waves may lead to amplifi-
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cation, instability and energy redistribution. The coupling of several fields like in
thermoelasticity and biophysics leads to completely novel physical effects which
can explain the behaviour of materials or systems in a more informative way. In
general terms, the corresponding mathematical models are non-integrable (Maugin,
2011) and that is why numerical methods are used in the analysis. Most of the re-
sults described above are obtained either by using the finite volume (Berezovski et
al, 2008) or the pseudospectral (Salupere, 2009) methods. A special attention is paid
to the accuracy and convergence of numerical simulations.

The analysis of complexity of wave motion demonstrates clearly that the mechan-
ical behaviour (stresses, velocities, deformation, temperature) of continua depends
on the interactions of constituents and fields. From another point of view, the waves
are the carriers of information and energy reflecting so the interaction processes. By
measuring the physical properties of waves (amplitudes, velocities, spectra, shapes),
this information can be used for the determining the properties of fields or internal
structures, i.e. for solving the inverse problems (Janno, Engelbrecht, 2011).

There are many unsolved problems in the complexity of wave motion. One
could ask about the soliton management, soliton tunability (generation of soli-
tons with predetermined amplitudes or spectral densities), soliton turbulence (self-
organization into spatially localized solitonic structures), etc. An interesting ques-
tion is whether intuitively well understood microtemperatures in microstructured
materials can be measured. Metamaterials and nanomaterials need more attention
because of their properties which must be reflected also in wave motion.

The impact of G.A. Maugin in generating novel ideas is enormous.
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34. Randrüüt, M., Braun, M. (2010). On one-dimensional solitary waves in microstructured solids.
Wave Motion, 47, 217–230.

35. Salupere, A., Maugin, G. A., Engelbrecht, J. (1994). KdV soliton detection from a harmonic
input. Phys. Lett. A, 192:5–8.

36. Salupere, A., Maugin, G. A., Engelbrecht, J., Kalda, J. (1996). On the KdV soliton formation
and discrete spectral analysis. Wave Motion, 23(1): 49–66.

37. Salupere, A., Engelbrecht, J., Maugin, G. A. (2001). Solitonic structures in KdV-based higher
order systems. Wave Motion, 34:51–61.

38. Salupere, A., Peterson, P., Engelbrecht, J. (2002). Long-time behaviour of soliton ensembles.
Part I – emergence of ensembles. Chaos, Solitons, Fractals, 14(9): 1413–1424.

39. Salupere, A., Peterson, P., Engelbrecht, J. (2003). Long-time behaviour of soliton ensembles.
Part II – periodical patterns of trajectories. Chaos, Solitons, Fractals, 15(1): 29–40.

40. Salupere, A., Tamm, K., Engelbrecht, J. (2008). Numerical simulation of interaction of solitary
deformation waves in microstructured solids. Int. J. Non-Lin. Mech., 43:201–208.

41. Salupere, A. (2009). The pseudospectral method and discrete spectral analysis. In: Quak E,
Soomere T (eds) Applied Wave Mathematics, pp. 301–333, Springer, Heidelberg.

42. Salupere, A., Engelbrecht, J. (2014). Scaling and hierarchies of wave motion in solids.
ZAMM, 94(9):775–783.

43. Salupere, A., Lints, M., Engelbrecht, J. (2014). On solitons in media modelled by the hierar-
chical KdV equation. Arch. Appl. Mech., 84(9-11):1583–1593.

44. Zabusky, N. J., Kruskal, M. D. (1965). Interaction of solitons in a collisionless plasma and the
recurrence of inititial states. Phys.Rev. Lett., 15:240–243.


