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Abstract

In this paper two Boussinesq-type mathematical models are described which lead to

solitonic solutions. One case corresponds to microstructured solids, another case to bio-

membranes. The emergence of soliton trains in both cases is demonstrated by using nu-

merical simulation. The pseudospectral method guarantees the high accuracy in comput-

ing. The significance of the nonlinearities – either deformation-type or displacement-type,

is demonstrated.
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1 Introduction

The celebrated wave equation is one of the classical equations of mathematical physics and

describes the motion of a wave with a constant speed. For many practical applications this
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model must be generalised. One of such a generalisation in conservative media is called after

Boussinesq, who derived this model for surface waves on a fluid layer [1, 2]. Nowadays the

Boussinesq-type models are widely used also in solid mechanics [3]. In brief, such models

are: (i) bi-directional (including the d’Alembert operator); (ii) include non-linear terms (of any

order); (iii) include higher order terms (the presence of space and time derivatives of the fourth

order or higher) describing the dispersive effects [3]. In general terms, the Boussinesq equation

may be presented in a following form:

utt − c20uxx +N(u) = D(u), (1)

where u is the displacement, c0 - the velocity and indices x, t here and further denote differen-

tiation. Operator N(u) expresses nonlinear effects

N(u) = N(u2, u3, . . . , uux, . . .) (2)

and D(u) describes dispersive effects

D(u) = D(u4x, u4t, u2x2t, u6x, . . .). (3)

There are many studies of this type of equations derived using various physical assumptions

[3–7]. Attention is paid to the mathematical correctness of models in the sense of Hadamard,

i.e., establishing whether the initial value problem is well-posed or ill-posed [3, 5]. In physical

terms, the Boussinesq-type models describe waves in crystals [5, 8], longitudinal waves in rods

[6, 9], waves in microstructured solids [7, 10], waves in biomembranes [11], etc.

The most remarkable phenomenon resulting from using models where nonlinearity and dis-

persion are both taken into account, is the possibility of existence and/or emerging of solitons.

Many studies are devoted to the special type of dispersion when D(u) = uxxxx. This is typical

for cases when the governing equation is derived on the basis of lattice dynamics [5]. The

“well-posedness” of such a model is analysed in detail [12, 13].

The Boussinesq-type equations which actually model weak dispersion, are not the only

ones able to describe solitons. The sine-Gordon equation, for example, is able to model solitons

and bound-soliton complexes [14] emerging in ferromagnets. The combination of the sine-

Gordon and the Boussinesq-type equations permit to analyse the dislocation (crowdion) motion

in crystals [15]. This model is

utt − uxx + sinu− γu2xuxx − βuxxxx = 0, (4)
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where γ and β are the physical parameters. Equation (4) is nowadays called the Kosevich-

Kovalev equation describing motion in a strongly dispersive medium. Other generalisations

are possible demonstrating the richness of the model [16]. The striking duality of solitons and

quasi-particles is noted [17].

Based on this brief overview, it is clear that Boussinesq-type equations govern complic-

ated dynamics. However, one should clearly describe the physics behind the mathematical

models. In what follows, the focus is on the emergence of soliton trains modelled by the

Boussinesq-type equations. The attention will be paid to the model equations focusing on the

influence of various nonlinearities on the emergence process together with the fourth-order

dispersive terms. The physical background of models is related to the microstructured media:

microstructured Mindlin-type solids and biomembranes which possess internal structure. The

latter is qualified also as a microstructure. In Section 2 types of nonlinearities (deformation-

dependent and displacement-dependent) are presented and analysed. Section 3 is devoted to

mathematical models with dispersive terms. In this case the inertia of a microstructure is taken

into account which leads to dispersion operator D(u) = D(uxxxx, uxxtt). This means that in

mechanics of microstructured solids dispersion is more complicated than proposed in lattice

dynamics [5]. The emergence of soliton trains for two model cases is analysed in Section 4.

Finally, the discussion and conclusions are presented in Section 5. The results obtained earlier

are here analysed from a unified viewpoint.

2 Nonlinearities

In mechanics of solids the nonlinearities are caused by physical and geometrical effects (see

[18]). According to the conventional continuum theory [19], the physical nonlinearity means

the nonlinearity of the stress-strain relations and the geometrical nonlinearity is related to the

finite deformations, i.e., to the strain tensor. The free energy function (potential) in terms

of the strain tensor is then presented in the form including beside quadratic terms also the

higher order terms. Such a form reflects better the shape of the potential in terms of forces

between the atoms in the discrete lattice. Note that as far as the stress tensors are determined

by the derivatives of the potential with respect to the components of the deformation tensor,

the quadratic terms lead to the conventional linear theory [19]. The first approximation of
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a nonlinear stress tensor includes the quadratic polynomial of displacement gradients. For

example, in the one-dimensional case the Kirchhoff stress tensor is [18]

K11 = (λ+ 2µ)ux +

(
1

2
λ+ µ+ 3ν1 + 3ν2 + 3ν3

)
u2x + . . . , (5)

where λ, µ are the elastic constants of the second order (the Lamé parameters) and ν1, ν2, ν3 -

the elastic constants of the third order. It means that the velocity is determined by the relation

c2 = c20(1 + kux), (6)

where c0 is the velocity in the unperturbed state and k is the constant of nonlinearity which

according to expression (5) is k = 3(1 +m0), m0 = 2(ν1 + ν2 + ν3)(λ+ 2µ)−1.

Such a situation may lead to the formation of shock waves, i.e., the discontinuities of the

solution [18, 20]. More complicated free energy potentials lead certainly to more complicated

mathematical models [18] but the situation described briefly above is the fundamental case of

the nonlinear wave motion in solids.

In biological tissues and cells, expression (6) might be different, especially when the dis-

creteness of structures is taken into account. Such a situation is the case of biomembranes

which are built by bilayers of lipid molecules. Based on experimental observations, Heimburg

and Jackson [21] have proposed for longitudinal waves in biomembranes

c2 = c20 + pu+ qu2, (7)

where u = ∆ρA, ρA is the density and p, q are experimentally determined constants.

It means that contrary to solids with deformation-dependent (ux) nonlinearities, for bio-

membranes the governing wave equation based on expression (7) includes nonlinearities in

terms not ux but simply u, i.e., the nonlinearities are of displacement-type (see below).

3 Mathematical models for dispersive waves

In general, dispersion of waves is the separation of waves into constituents of different wave-

lengths and may be caused by either geometrical or physical effects. The geometrical disper-

sion takes place in waveguides due to the influence of the existence of lateral surfaces [9]. The

physical dispersion in solids is caused by the existence of the microstructure of the material
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[5, 7]. In the first case dispersion depends on the transverse dimensions of waveguides, in the

second case – on the scale effects.

Here we present two nonlinear mathematical models where the physical dispersion is of

importance. Both models are of the Boussinesq-type like Eq. (1).

Microstructured solids In the theory of microstructured solids [22, 23] the behaviour of the

macro- and microcontinuum is described by the separate balance laws. In terms of macro-

displacement u and microdeformation ϕ, the simplest free energy W is governed by a cubic

function

W = αu2x + Aϕux +
1

2
Bϕ2 +

1

2
Cϕ2

x +
1

6
Nu3x +

1

6
Mϕ3

x, (8)

where α,A,B,C,N ,M denote material parameters [10].

The balance laws are derived then from the Euler-Lagrange equations. Introducing dimen-

sionless variables X = x/L0, T = c0t/L0, U = u/U0 where c20 = α/ρ and U0 and L0 are

certain constants, along with geometrical parameters δ = (l0/L0)
2 and ε = U0/L0, where

L0 is the characteristic scale of the microstructure, the governing Boussinesq-type equation of

motion is derived. By using the slaving principle (see [23]) this governing equation in terms of

deformation (V = UX) is [24]

VTT − bVXX −
µ

2

(
V 2
)
XX

= δ

(
βVTT − νVXX +

λ
√
δ

2

(
V 2
X

)
X

)
XX

, (9)

where b = 1 − A2/(αB), µ = NU0/(αL0), β = IA2/(ρl20B
2), ν = CA2/(αB2l20) and

λ = A3MU0/(αB
3l30L0) are constants. Here I denotes microinertia.

This equation has a hierarchical structure [20] – two nonlinear wave operators (one at the

l.h.s., another at the r.h.s.) describe motion in macro- and microstructure, respectively. In such

a way, this is an explicit description of mechanical waves in microstructured media [7, 20]

which takes into account the leading effects. The accuracy of this approximation is established

by the analysis of dispersion relations of the original and approximated equations and depends

on the ratio of velocities in macro- and microstructure [25]. Note also that even without the

operator of the wave motion in the microstructure, the velocity of waves in the macrostucture

is affected (see the structure of the coefficient b). It is possible to solve the inverse problem for

Eq. (9) in order to determine the values of its coefficients with a suitable accuracy [26].
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Equation (9) has soliton-type solutions if the following condition(
βc2 − ν
c2 − b

)3

>
4λ2

µ2
(10)

is satisfied [26]. Here the velocity of a soliton c is a free parameter. It is interesting to note

that for solutions of the highly dispersive Kosevich-Kovalev equation (4) there are also re-

strictions which govern the existence of soliton complexes [16]. Such conditions seem to be

characteristic to generalised models.

Biomembranes These important building blocks for cells and nerves are built by lipid mo-

lecules which have hydrophobic tails directed inwards [27]. It has been demonstrated exper-

imentally that such bilayers are able to carry mechanical waves [28, 29]. The molecules of a

bilayer can be treated as a microstructure and similarly to solids, the inertia of the microstruc-

ture must be taken into account.

The mathematical model for longitudinal waves in biomembranes including nonlinearity

of the biomembrane expressed by Eq. (7) was derived by Heimburg and Jackson [21] and

improved by Engelbrecht et al [30] including also inertial effects. The governing equation in

the dimensionless form is the following:

UTT = (1 + PU +QU2)UXX + (P + 2QU)U2
X −H1UXXXX +H2UXXTT , (11)

where X = x/l, T = c0t/l, U = u/ρA and P = pρA/c
2
0, Q = qρ2A/c

2
0, H1 = h1/(c

2
0l

2),

H2 = h2/l
2. Note that u = ∆ρA and l is a certain length (in case of a nerve fibre it can be the

fibre diameter). The constants h1 and h2 are dispersion parameters reflecting the elasticity and

inertia of the structure, respectively.

The accounting of inertia (term UXXTT ) means that the propagation velocity is bounded

for higher frequency harmonics [30]. Moreover, neglecting this term, i.e., the presence only

the spatial fourth order derivatives in Eq. (11) can lead to instabilities of the solution [5].

4 The emergence of soliton trains

Both mathematical models presented in Section 3 are specific cases of the Boussinesq-type

equation (1) including nonlinear and dispersive terms. As well it is known, under the certain
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conditions the nonlinear and dispersive effects could be balanced resulting in solitons. Since

the pioneering studies of Zabusky and Kruskal [31] much attention is paid to the emergence of

solitons and soliton trains from an arbitrary input. Here we demonstrate main features of the

emergence processes for both governing equations presented in Section 3. Note that there is a

fundamental difference in solutions of these equations. Equation (9) describes the deformation

while Eq. (11) describes the displacement. If we consider soliton-type solutions for both equa-

tions then there is a significant difference in displacements and deformations. A single pulse of

a displacement means actually a sign-changing (bipolar) profile of a deformation (Fig. 1 left)

and a single pulse of a deformation means a change of the displacement from one niveau to

another (Fig. 1 right) [32].
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Figure 1: Left: sech2-type displacement U (solid line) and deformation UX (dashed line), right:

sech2-type deformation UX (dashed line) and displacement U (solid line).

The following results are obtained by numerical simulation using the pseudospectral method

(see [33]) which gives high accuracy in computing. As far as the Boussinesq-type equations

are bi-directional, from a localised initial input two soliton trains will emerge, one to the right,

another to the left. Such a solution for the Eq. (9), i.e., the case of a solid with a microstructure

is shown in Fig. 2 [24]. The initial input is taken

V (X, 0) = A0 sech2B0(X −X0), (12)

where A0 is the amplitude, B0 is related to the width of the pulse and X0 defines the spacial

shift of the input.

7



Space 

T
im

e 

Figure 2: Formation of trains of solitons from pulse-type initial condition for Eq. (9). Right-

and left-going structures are plotted at every ∆T = 2000. For details see [24].

The coefficients here and further for solutions of Eq. (9) are taken b = 0.7188, µ = 1.1395,

δ = 0.09, β = 45, ν = 9.3867, λ = 1.1470.

The number of solitons in a train depends on the energy of the initial pulse [24]. For

example, two cases are shown in Figs 3 and 4.
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Figure 3: Solutions of Eq. (9) in case of A0 = 1, B0 = 0.01 at dimensionless times T = 2230

(dashed line) and T = 7000 (solid line).
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Figure 4: Solutions of Eq. (9) in case of A0 = 1, B0 = 0.05 at dimensionless times T = 2230

(dashed line) and T = 7210 (solid line).

In the case of Eq. (11), i.e., the case of a biomembrane, the similar emergence of solitons

is observed. Here one should distinguish between the normal (H1 < H2) and anomalous

(H1 > H2) dispersion. Given the values of P < 0 and Q > 0 [21], the following results are

obtained [34]. Figure 5 demonstrates the emergence of soliton trains for anomalous dispersion

and Fig. 6 – the emergence of soliton trains for normal dispersion.
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Figure 5: Solutions of Eq. (11) in case of P = −0.2186, Q = 0.0043, H1 = 0.072144,

H2 = 0.001 at dimensionless times T = 15042 (dashed line) and T = 98001 (solid line).

Space
0

0.5

1

1.5

A
m

p
li

tu
d
e

Figure 6: Solutions of Eq. (11) in case of P = −0.2186, Q = 0.0043, H1 = 0.072144,

H2 = 0.1 at dimensionless times T = 21207 (dashed line) and T = 98001 (solid line).
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The significant difference between the cases demonstrated above is the structure of a train.

For microstructured solids the trains follow the conventional structure – the larger the amp-

litude of a soliton, the faster it propagates [31]. For biomembranes, however, given the values

of nonlinear coefficients (P < 0 and Q > 0) and anomalous dispersion, the outcome is dif-

ferent. In a train smaller solitons move ahead and larger solitons follow with a smaller speed.

The comparison of two cases is demonstrated in Fig. 7.
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Figure 7: Left: soliton train for Eq. (9); right: soliton train for Eq. (11); arrows mark the

direction of propagation.

5 Summary

The emergence of soliton trains is demonstrated for two cases of nonlinear and dispersive

operators in the governing equations of the Boussinesq type for weakly dispersive media: mi-

crostructured solids and biomembranes. The dispersive effects in both cases are caused by

the embedded microstructures while the competing nonlinearities are different. For micro-

structured solids, the nonlinearities are of the conventional deformation-type terms but for

biomembranes due to the structure of bi-layers, the nonlinearities in terms of the governing

wave equation are of the displacement-type. The corresponding governing equations allow

variation over a wide range of values which results in the changes of nonlinear dynamics. The

analysis demonstrates that both models permit the emergence of soliton trains. However, an

important problem is to establish whether the single solitons in trains are ‘pure’ solitons or not.

The studies reveal that the interactions of solitons obtained in both cases are not fully elastic.

Referring to earlier studies out of scope of this paper [11, 24], we note here that during the

interactions the radiation occurs demonstrating the ‘inelasticity’ of interaction processes. So,

strictly speaking, one should call the observed entities ‘quasi-solitons’ which is characteristic
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in many solitonic systems with inelastic interactions [3].
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