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Abstract The propagation of action potentials in nerve
fibres is usually described by models based on the ionic
hypotheses. However, this hypothesis does not provide expla-
nation of other experimentally verified phenomena like the
swelling of fibres and heat production during the nerve pulse
propagation. Heimburg and Jackson (Proc Natl Acad Sci
USA 102(28):9790–9795, 2005, Biophys Rev Lett 2:57–
78, 2007) have proposed a model describing the swelling
of fibres like a mechanical wave related to changes of longi-
tudinal compressibility of the cylindrical membrane. In this
paper, the possible dispersive effects in such microstructured
cylinders are analysed from the viewpoint of solid mechan-
ics, particularly using the information from the analysis of
the well-known rod models. A more general governing equa-
tion is proposed which satisfies the conditions imposed by
the physics of wave processes. The numerical simulations
demonstrate the influence of nonlinearities, the role of var-
ious dispersion terms and the formation and propagation of
solitary waves along the wall together with the correspond-
ing transverse displacement. It is conjectured that due to the
coupling effects between longitudinal and transverse dis-
placements of a cylinder, the transverse displacement (i.e.
swelling) is related to the derivative of the longitudinal dis-
placement. In this way, the correspondence between theo-
retical and experimental (Tasaki in Physiol Chem Phys Med
NMR 20:251–268, 1988) results can be described.
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1 Introduction

The Hodgkin–Huxley (HH) model is a widely known
description for a nerve pulse propagation (Hodgkin and Hux-
ley 1952). This model is based on the electric circuit analogue
in which ionic currents through the cylindrical membrane are
taken into account. The changes in the relative concentration
of sodium and potassium ions in the axoplasm core of a nerve
create the transmembrane (action) potential carried along the
nerve fibre. There are several voltage and time dependences
which enter to the governing equation of a parabolic (diffu-
sive) type with a source term. The HH model is actually based
on the telegraph equations where the inductivity is neglected.
Such a model is able to describe several important and exper-
imentally checked properties, such as a typical asymmetric
pulse with an overshoot, the existence of a threshold for an
excitation for triggering the pulse (the all-or-none phenom-
enon), the refraction length and the annihilation of pulses
at the head-on collision. The model proposed by Nagumo
et al. (1962) is a simpler one based on only one ionic cur-
rent and is called nowadays the FitzHugh–Nagumo (FHN)
model. Lieberstein (1967) has used the full hyperbolic tele-
graph equations for describing the nerve pulse propagation
and Engelbrecht (1981) has derived an evolution equation
(one-wave equation) on the same basis. If the simplified ion
current following the FHN model is used, then the evolu-
tion equation can be easily analysed and its stationary form
belongs to the class of Liénard equations (Engelbrecht 1981).
This evolution equation is also able to describe an asymmet-
ric pulse, the all-or-none phenomenon and the refractoriness.
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However, there are several phenomena which are not
described by models mentioned above. Namely, it has been
shown experimentally by Iwasa et al. (1980) and Tasaki
(1988); Tasaki et al. (1989), etc. that the propagation of an
action potential is accompanied by the movement of the nerve
surface which is a cylindrical biomembrane. This means that
there is also a mechanical wave accompanying the nerve
pulse. In addition, it is found that temperature and heat have
an important role during the propagation process of an action
potential (Heimburg and Jackson 2005, see also the refer-
ences therein). None of these phenomena can be described by
models based on a purely electrical description of conductors.

In order to overcome this difficulty, Heimburg and Jack-
son (2005, 2007) and Andersen et al. (2009) have proposed a
model for describing the propagation of mechanical wave in
a cylindrical biomembrane which could also be a model for
the nerve pulse. Biomembranes are made of ordered lipids
(Andersen et al. 2009) and it is difficult to apply the conven-
tional approaches known in mechanics of continua for deriv-
ing the governing equations for waves in such structures. In
physical terms, the compression of such a biomembrane will
change its density, resulting in the transfer from its liquid
state to a gel state. This process is also associated with the
release of heat. So an action potential in a nerve fibre causes a
local compression of the biomembrane which, as said above,
means the transfer from one state to another. And vice versa,
it is shown (Andersen et al. 2009) that the local cooling of
a nerve causes a local transition from a liquid state to a gel
state and therefore will induce an action potential. Conse-
quently, two processes, electrical and mechanical ones are
coupled as shown already by Gross et al. (1983). The model
of Heimburg and Jackson (2005, 2007) is written in terms
of the density change in the membrane under the influence
of the action potential and takes nonlinearity and dispersion
into account. The similarity to a rod model is noted and most
of the coefficients of the governing equation are determined
by thermodynamical considerations (see Heimburg and Jack-
son 2005). However, the direct coupling between an action
potential and the corresponding density wave is not described
in terms of mathematical models.

In this paper, we examine the Heimburg–Jackson (HJ)
model from a viewpoint of dispersion analysis known from
mechanics and compare the results with well-known rod
models. The HJ model is actually an extended wave equation
like those derived for waves in microstructured solids (Bere-
zovski et al. 2013). It is important not only to find steady
solutions to such equations but also to solve initial and/or
boundary value problems in order to understand the process
of emergence of steady solutions. This is the main topic of
this paper. The numerical solutions of the modified nonlin-
ear governing equation of HJ permit to analyse the shape and
velocities of solitary pulses and establish the mechanism of
their distortion.

2 Brief overview of mathematical models of nerve pulses

The models of pulse propagation as an action potential are
based on telegraph equations neglecting the inductance. The
celebrated Hodgkin–Huxley model is actually a reaction–
diffusion equation

∂2v

∂x2 = RCa
∂v

∂t
+ 2

a
RI, (1)

where v is the potential difference across the membrane and
a is the axon radius. The constants are: Ca is the axon self-
capacitance per unit area per unite length, R is the specific
resistance and I is the ion current density. In this model,
the ion current ji = 2πaI is determined in terms of three
phenomenological variables: n, m and h. These variables
govern: n—the potassium conductance (turning on); m, h—
the sodium conductance (turning on and turning off, respec-
tively). The ion current expression according to Hodgkin and
Huxley (1952) is

ji = gK n4(v−VK )+gNam3h(v − NNa)+gL(v − VL),

(2)

where gK , gNa and gL are potassium, sodium and leakage
conductances, respectively, and VK , VNa and VL are cor-
responding equilibrium potentials. For variables n, m and
h, Hodgkin and Huxley (1952) proposed to use the kinetic
equations.

FitzHugh (1961) and Nagumo et al. (1962) have proposed
a simpler model with only one phenomenological variable.
Then, the final governing equation is

∂3v

∂t∂x2 = ∂2v

∂t2 + μ
(

1 − v − εv2
) ∂v

∂t
+ v (3)

with constants μ and ε.
Based on the full telegraph equations (Lieberstein 1967),

it is possible to derive an evolution equation for a nerve pulse.
Using the simplified variant of Nagumo et al. (1962) for the
ion current, the evolution equation in a moving frame ξ =
c0t − x is obtained in the following form (Engelbrecht 1981,
1991)

∂2z

∂ξ∂x
+ f (z)

∂z

∂ξ
+ g(z) = 0, (4)

where z = v + q1, f (z) = b0 + b1z + b2z2, g(z) = b3z
and q1 is the reference level; b0, b1, b2, b3 are the constants.
The moving frame includes the velocity c0 determined from
the telegraph equation, but the final velocity of the pulse is
dictated by the ion current. Like HH and FHN models, the
evolution equation is also able to reflect the main properties
of the action potential (Engelbrecht 1991).
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The propagating action potential cannot describe all the
dynamical effects in nerve fibres. Experiments by Iwasa et al.
(1980); Tasaki (1988), etc. have clearly demonstrated the
swelling of the biomembrane and the accompanying heat.
Swelling is related to the mechanical wave and Heimburg and
Jackson (2005, 2007) have proposed a mathematical model
governing such a wave motion. Their model is based on the
wave equation in terms of density change �ρ A = u. Two
essential assumptions are made. The starting point is a wave
equation which actually is the balance of momentum

∂2u

∂t2 = ∂

∂x

(
c2 ∂u

∂x

)
. (5)

The first assumption relates velocity c with the compressibil-
ity of the circular biomembrane which is made of lipids. It is
assumed that

c2 = c2
0 + pu + qu2, (6)

where c0 is the velocity of the small amplitude sound and p
and q are constants determined from experiments. The sec-
ond assumption is to add a higher-order term −h∂4u/∂x4

responsible for dispersion. The governing equation reads
then

∂2u

∂t2 = ∂

∂x

[(
c2

0 + pu + qu2
) ∂u

∂x

]
− h

∂4u

∂x4 . (7)

Here, h is an ad hoc constant. Further, this equation is called
the Heimburg–Jackson (HJ) model.

Heimburg and Jackson (2005) have demonstrated that a
solitary wave solution to Eq. (7) exists and have found such
an analytic solution (see Heimburg and Jackson (2007)). This
solution has the width of about 10 cm. They also gave later
a possible physical explanation to the constant h (Mosgaard
et al. 2012).

Equation (7) is of the Boussinesq-type (Christov et al.
2007) grasping the following effects: (i) bi-directionality of
waves; (ii) nonlinearity (of any order), (iii) dispersion (of any
order, modelled by space and time derivatives of the fourth
order at least). There are many Boussinesq-type equations
used in solid mechanics (Christov et al. 2007; Engelbrecht
et al. 2011; Berezovski et al. 2013), and further in our analy-
sis, we rely upon these results.

3 Dispersion analysis

For dispersion analysis, we assume a solution to the linearised
version of Eq. (7) in the form of a harmonic wave

u(x, t) = û exp[i(kx − ωt)], (8)
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Fig. 1 Phase (solid lines) and group (dashed lines) velocity curves
against the wave number (top) and the frequency (bottom) for h =
2m4/s2 and c0 = 176.6 m/s

where k and ω are the wave number and the angular fre-
quency, respectively. The dispersion relation then is (Heim-
burg and Jackson 2005)

ω2 = k2(c2
0 + hk2) (9)

with the following expressions for the phase (cph = ω/k)
and the group velocity (cgr = ∂ω/∂k)

cph =
√

c2
0 + hk2, cgr = c2

0 + 2hk2

√
c2

0 + hk2
, (10)

which are plotted in Fig. 1 with the same parameters as in
Heimburg and Jackson (2005).

It is easy to see from Eq. (10) and in Fig. 1 that although
dispersion relation (9) meets the requirement of anomalous
dispersion (Heimburg and Jackson 2005) (i.e. higher frequen-
cies result in higher velocities), the velocity is unbounded
when the wave number k or the frequency ω approach the
infinity. This does not only conflict with physical consider-
ations but also with Fig. 2 in Heimburg and Jackson (2005)
where it can be seen that the parameters defining the velocity
remain finite.

The infinite velocity of high-frequency harmonics is phys-
ically not plausible. One should also take into account that
pulses, in general, contain wide variety of harmonics, and the
infinite velocity of high frequencies can cause problems in
causality. Moreover, it has been shown that the existence of

123



162 J. Engelbrecht et al.

only the fourth-order spacial derivatives can lead to instabil-
ities in wave propagation (see Maugin 1999, for example).

The dispersion relation (9) can be modified by considering
a similarity between the nerve fibre and the rods. Although
the material properties of biomembrane close to transition are
quite different to that of rods, the dispersion is modelled by
linear terms and taking inspiration from the physically well-
motivated one-dimensional rod models seems to be justified.

As far as modelling wave propagation in rods is a rather
complex problem, then there are number of approximations
(Abramson et al. 1958; Achenbach 1973; Erofeyev et al.
2002; Graff 1975). Two assumptions are used when deriv-
ing a approximate model of wave propagation in rods—the
Navier–Bernoulli hypothesis that is the assumption that the
plane cross sections remain planar and normal to the rod axis
and the Rayleigh–Love correction which assumes that the
transverse displacement w along the radial axis r is related
to the longitudinal strain as in statics

w = −νr
∂u

∂x
, (11)

where ν is the Poisson coefficient. Making use of these two
assumptions, we arrive to the Rayleigh–Love model (Abram-
son et al. 1958)

utt − c2
Ruxx − ν2r2

gpuxxtt = 0 (12)

with the following dispersion relation:

ω = cRk√
1 + ν2r2

gpk2
. (13)

Here, rgp is the polar radius of gyration, c2
R = E/ρ is the

velocity of the long waves, where E is the Young modulus and
ρ is the density. In case of a physical rod, this model leads
to normal dispersion (cgr < cph). Anomalous dispersion
can be achieved if the Poisson ratio is allowed to be negative.
However, this results in complex velocity when k > (νrgp)

−1

which is physically not sound.
More general model can be achieved when the effect of

shear deformation is accounted for as it is in case of the
Bishop’s model (Erofeyev et al. 2002)

utt − c2
Ruxx − ν2r2

gp(utt − c2
τ uxx )xx = 0, (14)

with the following dispersion relation:

ω = k

√√√√c2
R + c2

τ ν
2r2

gpk2

1 + ν2r2
gpk2 , (15)

where c2
τ = μ/ρ is the shear wave velocity and μ is the Lamé

parameter.
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Fig. 2 Phase (solid lines) and group (dashed lines) velocity curves
agains frequency (top panel up to 5 kHz and bottom panel up to 5
MHz) for h2 = 10−6 m2, h1 = 2.25 m4/s2 and cR = 176.6 m/s

Following Porubov (Porubov 2003), we can rewrite (14)
in the following form

utt − c2
Ruxx + h1uxxxx − h2uttxx = 0, (16)

with the following dispersion relation:

ω = k

√
c2

R + h1k2

1 + h2k2 . (17)

Note that in (Porubov 2003) h1 = α4 and h2 = α3 where
α3 = 0.5ν(ν − 1)R2 and α4 = −0.5νc2

R R2 with R as the
radius of the rod.

In case of positive ν normal dispersion follows. If the
parameters h1 and h2 are treated as arbitrary ad hoc parame-
ters, then anomalous dispersion relation follows if h2 < h1.
Moreover, the velocity is bounded and approaches the value
c1 = (h1/h2)

−1/2 as the wavelength approaches infinity (see
Fig. 2). The parameters in Fig. 2 are adjusted so that the veloc-
ity of the 5 MHz wave would have the same value as given by
Heimburg (1998). The exact value of this upper bound can
be determined from the experiments and can be adjusted by
choosing the appropriate value for the ratio h1/h2. The slope
of the dispersion curve can be adjusted by changing the para-
meter h2. In our example, the parameter h2 is taken equal to
10−6 m2 in order to achieve relatively small changes in case
of low frequencies as it is the case in Heimburg and Jackson
(2005) (see Fig. 2 top panel). Also note that the parameter h1
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is similar to the parameter h in Eq. (7) and is approximately
in the same order as it is in Heimburg and Jackson (2005).

The meaning of the parameter h2 can be explained by
considering Eqs. (12) and (14) where the fourth-order mixed
derivative is responsible for inertial effects. A similar para-
meter, only for the microinertia, is also present in the
Mindlin-type microstructure model [see Eq. (16) in Peets et
al. (2008) for example]. Lipids in biomembranes also repre-
sent a certain microstructure, and therefore, the parameter h2

can be related to the inertia of the lipids. This opens also the
way to find the value of h2 from experiments. Moreover, the
parameter h1, which is related to the elasticity of the biomem-
brane, can be expressed as c2

1h2, thus relating parameters h1

and h2 to the microstructure of the biomembrane.
Based on these arguments, we propose the modified [cf.

Eq. (7)] governing equation:

∂2u

∂t2 = (c2
0 + pu + qu2)

∂2u

∂x2 + (p + 2qu)

(
∂u

∂x

)2

− h1
∂4u

∂x4 + h2
∂4u

∂x2∂t2 (18)

where h1 = h and h2 is a new constant. As far as the
value of h was proposed (Heimburg and Jackson 2005) with-
out special physical considerations, we propose here to use
h2 = 10−6 m2 in order to get a physically more plausible
dispersion relation like Eq. (17). With these values of h1 and
h2, phase and group velocities are shown in Fig. 2.

For the following analysis, we go into dimensionless form:

∂2U

∂T 2 =
(

1 + PU + QU 2
) ∂2U

∂ X2 + (P + 2QU )

×
(

∂U

∂ X

)2

− H1
∂4U

∂ X4 + H2
∂4U

∂ X2∂T 2 (19)

with X = x/ l, T = c0t/ l, U = u/ρ0 and P = pρ0/c2
0,

Q = qρ2
0/c2

0, H1 = h/(c2
0l2); l is a certain length (see later).

The higher-order terms in Eq. (19) could be interpreted as
a wave operator

L4 = H2
∂2

∂ X2

(
∂2U

∂T 2 − H1

H2

∂2U

∂ X2

)
(20)

which is characteristic to hierarchy of waves (Berezovski et
al. 2013).

Equation (19) is solved under the pulse-type initial con-
dition which is interpreted as a forcing from the propagating
action potential.

4 Numerical simulation

4.1 Numerical scheme

For the numerical integration, the Discrete Fourier Trans-
form (DFT)-based pseudospectral method (PSM) is used.
For applying the PSM, the equation needs to be in a specific
form with only time derivatives on the right-hand side of the
equation and only spatial derivatives on the left-hand side of
the equation which is clearly not the case with Eq. (19) which
has a mixed partial derivative present.

A new variable is introduced following Salupere (2009)

Φ = U − H2
∂2U

∂ X2 , (21)

and the variable U and its spatial derivatives are expressed
in terms of the variable Φ as

U = F−1
[

F(Φ)

1 + H2k2

]
,

∂mU

∂ Xm
= F−1

[
(ik)mF(Φ)

1 + H2k2

]
, (22)

where F−1 denotes inverse Fourier transform and F the
Fourier transform. Equation (19) is rewritten in terms of the
variable Φ as

ΦT T =
(

1 + PU + QU 2
) ∂2U

∂ X2

+(P + 2QU )

(
∂U

∂ X

)2

− H1
∂4U

∂ X4 . (23)

Equation (23) can be solved with the use of the PSM after
reducing it to a system of two first-order differential equations
(see Salupere 2009, for details).

4.2 Material and numerical parameters

The material parameters are taken similar to Heimburg and
Jackson (2005) i.e.

c0 = 176.6 m/s; p = −16.6 c2
0/ρ

A
0 ;

q = 79.5 c2
0/(ρ

A
0 )2; h1 = 2.25 m4/s2; (24)

h2 = 10−6 m2; ρ0 = 4.107 · 10−3 g/m2;
which correspond roughly to unilamellar DPPC vesicles at
T = 45 ◦C and the value of l used for the transforming
into dimensionless form is 10−3 m. The parameter h2 is not
present in the Heimburg and Jackson (2005) and is chosen
so that the limiting speed for the high frequencies (at 5 MHz)
will be 1,500 m/s as indicated by Heimburg (1998). The
initial condition is a sech2-type (bell shaped) pulse with zero
initial speed (U0(x) = A0 · sech2(B0 · x)). The relevant
parameters for the numerical scheme and initial condition
are n = 1,024 (the number of grid points), B0 = 1/128 (the
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width parameter of the sech2-type initial pulse) and A0 = 2
(the amplitude of the initial pulse). The governing equations
are solved and results presented in the dimensionless form.

It should be noted that the numerical experiments were
also performed with the second set of material parameters
presented in Heimburg and Jackson (2005) corresponding
roughly to lung surfactant data at bulk temperature of T =
37 ◦C. The results from the second parameter set are very
similar to the one from the first set.

4.3 Numerical results

In all cases, the leading terms of governing equations are
of the second order. Consequently, the original pulse splits
into two identical pulses both having the half of the initial
amplitude and propagating in opposite directions.

In the case of the original HJ model (7) in the dimen-
sionless form, the single dispersive term UX X X X is over-
whelmingly dominant and destroys the propagating single
waveprofile even over very short propagation distances. This
situation is similar to the linearised Korteweg–de Vries equa-
tion where the dominant dispersion leads to a wave described
by an Airy function (Ablowitz 2011).

Let us start with few words about dispersion in the physi-
cally motivated model (19). If H1 = H2; then, we have ‘dis-
persionless case’ as the phase (cph) and group (cgr ) speeds
are equal. If these parameters are different, then we have
either anomalous or normal dispersion.

As modelled for the original Bishop model (14), the phys-
ically correct dispersion type should be normal (cph > cgr ),
here, however, we need to get anomalous dispersion type
(cph < cgr ) as this would be in agreement with obser-
vations from physical experiments (Heimburg and Jackson
2005) for the mechanical nerve impulse so the relationship of
the dispersion-related coefficients is changed to the opposite
compared with the original Bishop model (14).

In Fig. 3 example, solutions are presented at a certain
distance X at time T . Here, X = n�x where �x is the
grid step size. The linear case is the one where nonlinearity-
related parameters p and q are taken to be zero. The ‘wave
equation’ case is where all additional terms (p, q, h1 and
h2) in the Eq. (19) are taken to be zero and the ‘H2 = 1’
case is where all parameters are at their designated values.
In the dimensionless form, the H1 = 72.14 corresponds to
the h1 = 2.25 m4s−2 and parameter H2 = 1 corresponds to
the h2 = 10−6 m2. In the bottom panel, in Fig. 3, one can
see demonstration of the normal dispersion case (H2 = 100)
which means that on the dispersion curve the initial speed for
the long waves is c0 = 176.6 m s−1 and the limiting speed
for the short waves is smaller than c0 at 150 m s−1. The main
visible difference is that in the case of anomalous dispersion
the oscillatory tail emerges in ‘front’ of the propagating pulse,
but in the case of normal dispersion ‘behind’ the propagating
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Fig. 3 Waveprofiles at T = 9,999 (t = 56.7 ms). The waveprofiles
propagate from the right to left. Top—nonlinear versus linear at H2 =
1. Bottom—nonlinear anomalous dispersion (H2 = 1) versus normal
dispersion (H2 = 100) case

pulse (where ‘front’ is defined as the direction of propagation
for the pulse). It should be noted that parameters H1 and H2

have very similar but opposite effect on the solutions. For
example, if H2 is increased by a small amount (≈10 %) over
the dispersionless case (where H1 = H2), the effect is almost
the same when parameter H1 is reduced by the same amount.
What is also worth of noting is that the solution is very sensi-
tive towards small changes in the dispersion-related parame-
ters. On the other hand, the effect of nonlinearity seems to be
negligible compared with the magnitude of the dispersion-
related effects as ‘Linear’ and ‘Full’ solutions are identical
and overlapping in Fig. 3 top panel even after long evolu-
tion (≈ 56.7 ms in real time). It seems that although the
parameter h = h1 is related to compressibility of the mem-
brane (Mosgaard et al. 2012), the role and values of h1 and
h2 need more explanation. Note that the existence of small
amplitude waves has been shown also for the HJ model by
(Lautrup et al. 2011). Here, these waves are directly related
to the dispersion type.

In order to investigate the role and significance of non-
linearity in Eq. (19), two approaches are used: (i) investiga-
tion of long-term evolution of the solution at chosen material
parameter values; (ii) increasing the nonlinear terms rele-
vance significantly by multiplying relevant terms in govern-
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ing equation by a large number (105). At this stage, these
values are hypothetical but needed for obtaining numerical
results in course of realistic time (in milliseconds). Three
sets of material parameters are considered: (a) the basic wave
equation (P = Q = H1 = H2 = 0), (b) the nonlinear wave
equation without dispersive terms (H1 = H2 = 0) and (c)
the full governing equation (19) with increased nonlinearity.

The dispersion-related parameters are taken so that even
with dispersive terms present we will have dispersionless
case. The parameter h1 is kept as it is at 2.25 m2s−2 while
parameter h2 is taken as 7.214 · 10−5 m2 so that H1 = H2.
That means that the speed for the long waves is the same as
the speed for the short waves.

Over long-term evolution of solutions (t ≈ 350 ms in
physical time or T = 60,000), the difference between wave
equations (a) and (b) is negligible (maximum amplitude dif-
ference between solutions is of the order of 10−5 with no
significant phase differences). For the long-term evolution,
the case (c) with increased nonlinearity is not considered as
such a strong nonlinearity destroys the numerical scheme
before reaching that far.

In the case (c), the relevance of the nonlinear term is
increased by changing the constants P and Q by multiplying
them with 105 in order to get visible changes in solution.
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Fig. 4 Waveprofiles at T = 1,563 (top) and corresponding spatial
derivatives (bottom). The waveprofiles propagate from the right to left

It turns out that the wave profile gets asymmetric as higher
amplitudes seem to be propagating slower than the low ampli-
tudes (see Fig. 4). This can be explained by the influence of
the term PU . Taking P < 0 as in HJ model, the deformation
of the pulse is backwards to the propagation direction (Fig. 4,
top panel). In addition, here, |P| > |Q| that means the larger
the U the smaller the speed.

It is interesting to note that usually in Boussinesq-type
equations the nonlinear terms present are dependent on UX

(Christov et al. 2007) not just on plain U like it is the
case here. The emergence of waveprofile asymmetry is a
somewhat unexpected phenomenon as usually the nonlinear
effects increase the amplitude of the solution. It is clear that
the values of coefficients in governing equations need further
analysis.

5 Discussion

Many experiments have shown that the action potential prop-
agating in a nerve fibre is accompanied by geometrical
changes, i.e. changes of dimensions of a fibre (Iwasa et al.
1980; Tasaki 1988; Tasaki et al. 1989). These effects are
described also in Heimburg and Jackson (2005, 2007). The
mechanical wave, called also swelling (Iwasa et al. 1980;
Tasaki 1988), is of the asymmetrical type characterised by
a positive and negative phases (see Fig. 1 in Tasaki 1988).
For mammalian nerve terminals, however, the negative phase
(dip) is not so clearly evident (Kim et al. 2007).

The mathematical model proposed by Heimburg and Jack-
son (2005, 2007) is an important step in order to explain
the propagation of a mechanical wave. The governing wave
equation (7) proposed by them involves both nonlinear and
dispersive terms and belongs to the class of Boussinesq equa-
tions (Christov et al. 2007).

Here, we analyse the HJ model from the viewpoint of wave
mechanics. The starting point is the excitation of a mechani-
cal wave. All the studies concerning mechanical phenomena
in nerve fibres agree that these are excited by action potentials
and propagate in phase with them (Tasaki 1988). The mech-
anism of the electromechanical transduction could be based
either on electrostrictive or piezoelectric effects (Gross et al.
1983). In the first case, the excited strain is proportional to the
square of the field, the second case—directly proportional.
As fas as the action potential is an asymmetric pulse with
an overshoot, it is clear that the influence of the overshoot
is smaller for the electrostrictive mechanism. We solved the
governing equations for a pulse-type initial excitation that
can be taken as a good approximation to the real situation.

The governing equation (7) and the modified variant
(19) are solved numerically by using the pseudospectral
method (Salupere 2009) under an initial pulse-type excita-
tion. The aim is to understand the influence of nonlinear-
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ity/nonlinearities and dispersive effects for the formation of
a mechanical wave in a fibre.

The nonlinearity in HJ equation (7) is based on the changes
of compressibility in the fibre wall (Heimburg and Jackson
2005). This is motivated by the special structure of the fibre
made of lipids and proteins. The nonlinearity is of the type
F(u) where u denotes the density changes �ρ A in the fibre
wall. The wave operator L(u) takes then the form

L(u) = utt − c2
0(1 + F(u))uxx . (25)

Note that in mechanics of solids the operator is usually in the
form

L(u) = utt − c2
0(1 + G(ux ))uxx . (26)

The model (25) deserves full attention in the analysis pro-
vided it is typical for complicated biosystems.

The numerical simulation has shown that the nonlinear
effects with values suggested in the HJ model are not visible
at time typical for nerve pulse propagation and only at large
time may affect the profile. Typically to the operator (25),
the nonlinear effects increase the derivative ux backwards.

Another important physical effects to be analysed is dis-
persion. The ad hoc dispersive term uxxxx (Heimburg and
Jackson 2005) leads to unbounded velocities in higher fre-
quencies. Although the propagating wave is probably con-
fined to lower frequencies, from a viewpoint of wave dynam-
ics, such limits should be avoided. That is why a more realistic
dispersion mechanism is proposed (Eq. (18)) motivated by
the analysis of rod models (Abramson et al. 1958; Erofeyev
et al. 2002, etc.). In this case, the group (cgr ) and phase (cph)
velocities are bounded (Fig. 2) which is physically rational.
The numerical simulation shows that this model with terms
uxxxx and uttxx satisfies the conditions for anomalous dis-
persion (cph < cgr ) and is close to physical experiments.
A real challenge is to link the coefficients h1 and h2 to the
real physical situation based on structural inhomogeneities of
lipids. In general terms, dispersion effects in biomembranes
should be related to the structural characteristics of lipids like
it is done for microstructured materials. These studies are in
progress.

It must be stressed that the compression along the propa-
gation direction is not directly related to the swelling which
means displacements in the transverse direction (measured
by Tasaki 1988). Following the ideas from the rod models
where Rayleigh–Love correction is introduced [expression
(11)], we propose to use the same idea. It means that after
the longitudinal wave profile is obtained (Figs. 3 and 4a), the
transverse displacement is related to its derivative (Fig. 4b).
The similarity to the experiments is obvious—see Fig. 1 in
Tasaki (1988). Whether the longitudinal and transverse dis-
placements in the cylindrical membrane are linked by the

Poisson coefficient (expression (11)) or not, is an open ques-
tion.

To sum up, the governing equation (18) proposed in this
study is physically consistent (involving bounding veloc-
ity) from the viewpoint of wave dynamics, the possibility
to model anomalous dispersion corresponds to observations
by Heimburg and Jackson (2005) and the swelling of the
biomembrane is properly coupled with the density pulse.

Some remarks should still be added. In this paper, we
avoided the notion of soliton while in mathematical physics
soliton is attributed to a solitary wave which interacts elasti-
cally with other solitons. The situation is different for nerve
pulse because in the interaction process they annihilate each
other (Hodgkin and Huxley 1952).

We also note that we did not analyse here the possible ther-
modynamical conditions for a nerve pulse propagation. This
analysis is in progress based on the theory of internal vari-
ables. The general ideas were already described in Maugin
and Engelbrecht (1994) and Engelbrecht (1997) where the
dissipation potentials for known HH and FHN models were
introduced. However, such an analysis must be cast into the
framework of experiments (Tasaki 1988; Tasaki et al. 1989;
Andersen et al. 2009).

Without any doubt, the structure of nonlinearities
[ f (u)uxx -type] in the HJ model (7) and its modified version
(18) opens a wide area for future studies in soliton dynam-
ics. As stressed by Eisenberg (2007), the quest in nerve pulse
dynamics also goes on.
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