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Abstract. An overview is presented on interdisciplinary studies into complexity of wave processes with the main attention to
wave–wave, field–field, wave–internal structure a.o. interactions. The nonlinearity of these processes creates specific physical
phenomena as a result of interactions. The basic assumptions of modelling, main hypotheses adopted and resulting governing
equations are presented. Due to complexity of processes, numerical methods are mainly used for the analysis. However, in many
cases the methods (the finite volume method, the pseudospectral method) must be modified in order to guarantee the accuracy and
stability of solutions. The spectrum of problems modelled and analysed is wide including dynamical processes in solids, fluids and
tissues.
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1. INTRODUCTION

Classical research aims to split up general problems into
their simpler components and then to study them as
deep as possible. Contemporary understanding, however,
takes problems or systems to be composed by simpler
components or constituents but pays special attention to
the interaction between them which results in emerging
properties of the system as a whole. Such systems are
called complex and as a rule they are nonlinear. This is
the reason why the interactions may lead to new coherent
states of systems which display new global properties
not predictable from the properties of the constituents.
And that is why complex systems are studied not only in
physics and chemistry but also in biology, econophysics,
social studies etc. Similar patterns may emerge in
different processes, similar methods can be used in
studies of different fields and language of different
studies is more understandable to the general community
of scientists. The keywords like hierarchies, emergence,
power laws, networks, unpredictability, self-organized
criticality, and many others are widely used in many
fields of studies [44].

In short, the main issues of complex systems
are: (i) complex systems comprise many different
constituents which are connected in multiple ways;
(ii) complex systems produce global effects including

emergent structures generated by local interactions;
(iii) complex systems are typically nonlinear; (iv) emer-
gent structures occur far from equilibrium.

There are many excellent overviews on complexity
studies. Limiting ourselves to physical systems, the
basic understanding is described in [23,45,49]. For
wave motion the earlier results, focusing on nonlinearity
and accompanying effects, can be found in [14,40,61].
Our interest is on time-dependent processes in continua
where different physical fields act and continua
themselves may have inner structure which is called
microstructure. A field is a physical quantity that has
value for each point of a medium at a certain time. A
typical moving dynamical entity is a wave – a dis-
turbance which propagates from one point in the medium
to another without giving the medium as a whole
any permanent displacement. Based on main issues on
complex systems, the basic considerations on time-
dependent processes including fields and waves are
specified in following statements:
– mechanical behaviour (stresses, velocities, deforma-

tions, temperature) of continua depends on the inter-
actions of constituents and fields;

– properties of waves as carriers of information and
energy reflect the interaction processes;

– physical properties of waves (amplitudes, velocities,
spectra, shapes) are measurable; beside the analysis of
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a process (direct problem) this information can be used
for determining the properties of fields or the internal
structures (inverse problem);

– the physical consistency of mathematical models is
guaranteed by satisfying thermodynamical conditions;

– the different scales (macro-, meso-, microscales and
molecular structures) need to be specified.

From that follows that there are several interactions:
wave–wave, wave–field, wave–internal structure and
their combinations which must be carefully studied
in order to understand the physical mechanisms that
govern the behaviour of continua, let them be solids,
fluids or tissues. As far as the processes usually
are nonlinear, there are few analytical solutions and
the asymptotical and numerical methods should be
elaborated. Although the wave motion is a large field
of studies, the mathematical models are based on the
theory of continua, which gives a joint basis and leads
to similar basic governing equations. However, classical
theories of homogeneous continua are not able to
reflect such complicated processes mentioned above and
therefore must be modified, especially in the direction of
heterogeneous media. The methods for the analysis must
also be modified and even tailored to meet the conditions
of consistency and accuracy.

In what follows, an overview of complex engineer-
ing and physical phenomena is given from the viewpoint
of the Centre for Nonlinear Studies. It is certainly
not the whole Nonlinear Universe [54] but a part of
it. CENS was launched in 1999 in order to create
a unit for nonlinear studies with a focus on wave
motion, optics, system biology and control. The
studies have certainly been embedded into the general
framework of nonlinear science because of numerous
interactions of ideas and thoughts needed for building
a whole. Section 2 is devoted to mathematical models
for solids, fluids and tissues leading, if possible, to
concrete novel governing equations. Next, in Section 3
the methods used in analysis are described starting from
main numerical methods to some specific methods. The
main physical results reflecting the interaction of waves,
fields and structures are collected in Section 4. Finally,
the summary and conclusions are presented.

2. MATHEMATICAL MODELS

The mathematical analysis of physical effects can
be based only on properly derived models, which
are physically consistent and satisfy thermodynamical
requirements. This concerns solids and fluids, as well
as biological tissues. The aims of modelling may be
different but clearly the homogeneity of a medium
is a simplifying assumption. For solids, for example,
there is an urgent need to account for microstructures
in order to understand mechanisms responsible for
physical phenomena starting from wave motion to phase
changes and fracture. One of the possibilities to model
internal structures in solids is to use the concept of

internal variables [7,21,39,60]. Internal variables are not
observable and replace the constituents by corresponding
internal fields in the solid. The main idea is to use
the material momentum equation where the forces are
explicitly shown [41] for deriving the wave equation
and the Clausius–Duhem inequality for determining the
governing evolution equations for internal variables.

The material momentum equation [41] is

∂P
∂ t

∣∣∣∣
X
−DivRb = f inh + fext + f int , (1)

where P is the material momentum (pseudomomentum),
b is the material Eshelby stress and f inh, fext , f int are
material inhomogeneity force, the material external
(body) force, and the material internal force, respectively,
(for details, see [7]). The Classius–Duhem inequality
derived from the second law of thermodynamics is [41]:

−
(

∂W
∂ t

+S
∂θ
∂ t

)∣∣∣∣
X
+T : Ḟ+∇R(θJ)−S ·∇Rθ ≥ 0,

(2)
where W is the Helmholtz free energy, θ is the absolute
temperature, S is the entropy density per unit reference
volume, S is the entropy flux, J is the extra entropy
flux, F is the deformation gradient, T is the first Piola-
Kirchhoff stress tensor and colon denotes the tensor
contraction.

These equations are also suitable to describe wave
processes in heterogeneous solids. The introduction of
microdeformations into the consideration means that the
corresponding theory is a multi-field one [43]. One of
the possibilities to derive governing equations for such
solids is to use the concept of internal variable. As shown
in [7,21,58], the formalism of dual internal variables
permits to use Eq. (1) for describing macroeffects and
Eq. (2) for deriving governing equations for describing
effects on the microlevel. In principle, it means that
the microstructure is described by additional internal
fields [21]. This approach permits to replace interactions
between waves and internal structures by interactions
between waves and fields. In physical terms it brings
in thermodynamical considerations for deriving the
governing equations and in mathematical terms leads to
more simple models preserving at the same time physical
consistency.

2.1. Waves

Based on Eqs (1)–(2) and the concept of internal
variables many mathematical models are derived: for
waves in elastic solids with microstructure [8,10,16]; in
thermoelastic solids [7,9,59] and in thermoelastic solids
with microstructure and microtemperature [11].

We present here the 1D governing wave equations
in terms of the macrodisplacement u1 = u. For
a microstructured solid, composed by macro- and
microstructure, the linear equation of motion is the
following [10]:
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utt =(c2 − c2
A)uxx +a1(utt − c2uxx)xx

−a2(utt − c2uxx)tt +a3uxxxx, (3)

where c is the velocity in the macrostructure, cA is
the velocity related to the microstructure, a1,a2,a3 are
constants which describe the elasticity and inertia of
the microstructure. The asymptotic analysis permits to
derive a simplified form [10]

utt =
(
c2 − c2

A
)

uxx + p2c2
A
(
utt − c2

1uxx
)

xx , (4)

where c1 is the modified velocity and p characterizes
the inertia of the microstructure. The modifications of
these models involve the influence of nonlinearities,
the influence of several microstructures (hierarchical
and concurrent), and the influence of thermal effects.
For example, the waves in hierarchically microstructured
solids composed by a macrostructure and micro-
structures (the second one embedded into the first) are
asymptotically described by

utt =
(
c2 − c2

A1
)

uxx +δ1b1
(
utt − c2

1uxx
)

xx

+δ 2
2 b2 (utt − c2uxx)xxxx , (5)

where δ1 and δ2 are the scaling parameters, b1,b2
describe coupling effects and c1,c2 are velocities related
to microstructures [17]. In the nonlinear case, the
governing equation of motion involving the macro- and
microstructure is [20]

utt =
(
c2 − c2

A
)

uxx +
1
2

q1
(
u2

x
)

x + p2c2
A
(
utt − c2

1uxx
)

xx

− 1
2

δ 1/2q2
(
u2

xx
)

xx , (6)

where q1,q2 are coefficients of nonlinearities on macro-
and microscale, respectively and δ is a scaling parameter.

Beside the wave equations, which model two-wave
processes, the evolution equations (one-wave equations)
are widely used. In this case one should use the moving
coordinates

(
ξ = c0t − x and τ = εx, for example

)
and

certain asymptotic procedures in order to derive them
from wave equations. For 1D processes, the wave-
equation (6) yields to the evolution equation [50]

∂α
∂τ

+ kα
∂α
∂ξ

+d
∂ 3α
∂ξ 3 + ε p

∂ 2

∂ξ 2

(
∂α
∂ξ

)2

= 0, (7)

where k,d and p are constants. This is of the Korteweg–
de Vries (KdV) equation type but the last term describes
the nonlinearity on the microlevel. For 2D unidirectional
processes, Eq. (7) is modified to [55]

∂
∂ξ

=

[
∂α
∂τ

+ kα
∂α
∂ξ

+d
∂ 3α
∂ξ 3 + ε p

∂ 2

∂ξ 2

(
∂α
∂ξ

)2
]

= q
∂ 2α
∂η2 , (8)

where ξ = c0t − x1,τ = εx1,η = ε1/2x2 and q is
the constant reflecting diffractional expansion in the
transverse direction. Equation (8) is the modified Ka-
domtsev–Petviashvili (KP) equation. For waves in
shallow water it is usually presented in the dimensionless
form [29,47]:

(vt +6vvx + vxxx)x +3vyy = 0, (9)

where t,x,y correspond to τ,ξ ,η in Eq. (8).
In models above, the parameters, which describe the

material properties, are taken as constants. Nevertheless
in many cases these parameters are space-dependent.
Bearing in mind nondestructive testing (NDT) for
determining the prestress or material inhomogeneous
properties, several mathematical models are derived
in [12,52].

For example, the one-dimensional waves in the
material, subjected to two-dimensional prestressed state,
are described by [51][

1+k1U0
1,1 + k2U0

2,2
]
U1,11

+
[
k1U0

1,22 + k3U0
1,22 + k4U0

2,12
]
U1,1

+ k1U1,1U1,11 − c2U1,tt = 0. (10)

Here the wave and the prestress are characterized
by displacements U1(X1, t) and U0

I,J(X1,X2), respectively.
Indices I;J(= 1,2) and t after comma denote diffe-
rentiation, and k1,k2,k3,k4 and c are related to material
parameters including also the Murnaghan third order
elastic constants.

The variety of microstructures in materials is
reflected in wave equations (evolution equations) pre-
sented above: Mindlin-type models

(
Eqs (3)–(6);

(7)–(8)
)

and models with prestress
(
Eq. (10)

)
. If, how-

ever, the microstructure has more complicated mecha-
nical properties, then it might be physically expedient to
start with stress–strain relations and to use the Cauchy
method for deriving the wave equations. For example,
in case of felt materials the behaviour of the material is
hereditary [56,57]. For such a case, the corresponding
wave equation is [36][

(ux)
p]

x−utt +
[
(ux)

p]
xt−δuttt = 0, (11)

where p is the nonlinearity exponent, δ = 1− γ , γ is the
hereditary amplitude.

Even the 1D models described above, are rather
complicated. If we take into account the rotation of
microstructural elements like in Cosserats model then
the mathematical models become systems of coupled
equations with many interactions involved. In addition,
the microstructure can have an orientation like in short
fibre reinforced materials [24–26]. In this case, the
constitutive equation is written in the form

T i j = T i j(T kl
matrix, µ, akl ,aklmn, T kl

f ibres
)
, (12)
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where T i j is the total stress tensor, T kl
matrix – the stress

tensor for the matrix (concrete, composite), µ – the
volume factor, T kl

f ibres – stress tensor of an isotropic
fibre orientation distribution and akl ,aklmn are alignment
tensors. The theoretical and experimental analysis of the
behaviour of the steel fibre reinforced concrete opens a
way to many practical applications [13].

Finally, let us turn to modelling of stress states in
living tissues, which are certainly much more com-
plicated by their structure and accompanying chemical
processes than man-made microstructured materials.
The muscle contraction is modelled by the sliding fila-
ment theory, which explains the shortening of the basic
elements in a muscle, i.e. sarcomeres by thick and thin
filaments sliding along each other [27]. The correspond-
ing Huxley-type crossbridge model is derived [35,60]
together with the formalism of internal variables [15].

2.2. Fields

The interaction of fields considerably widens the area
of physical phenomena which could be described as
complexity. The proper modelling gives insight to the
formation of patterns and/or the possibility to solve
inverse problems using data from interaction.

The interaction of stress and light fields is the basic
idea for the theory of photoelasticity. The photoelastic
phenomena and technology have been studied in the
Institute Cybernetics for a long time [2]. The main
attention nowadays is the integrated photoelasticity for
the measurement of 3D stress fields. It is based on the
measurement of the transformation of the polarization of
light when it passes a 3D test object. The transforma-
tion of the polarization is described by the following
system [2]

dE p
1

dz
=−1

2
iC0

(
σ1 −σ2

)
E p

1 +
dφ
dz

E p
2 , (13)

dE p
2

dz
=−dφ

dz
E p

1 +
1
2

iC0
(
σ1 −σ2

)
E p

2 , (14)

where E p
1 and E p

2 are the components of the electric
vector along the principal stress axes in the plane
(x1,x2),σ1 and σ2 are the principal stresses in this plane
and dφ/dz describes the rotation of the principal stress
axes along the light ray. The photoelastic constant is
denoted by C0.

Based on these fundamental models, the theory of
photoelastic tomography is developed [5], a new physical
phenomenon – interference blots – discovered [3] and
many practical problems solved [4]. New polariscopes
have been constructed which are effectively used world-
wide. Magnetophotoelasticity [1] has been applied by
Pilkington Ltd for measuring tempering stress in wind-
shields.

The complexity of fields in turbulent mixing is
modelled in [30,32,34] and models for coupling the fields

of microdeformation and microtemperature are derived
in [11].

In the mesoscopic scale, the situation is even
more complicated. For example, in the context of
liquid crystals the balance of spin must be taken
into account [24]. Here the mesoscopic space may be
non-contiguous despite the macroscopic material being
contiguous. In this case “virtual” boundaries appear and
special boundary conditions have to be introduced [26].

3. METHODS

Mathematical models described in Section 2 govern
dynamical processes which, as a rule, reflect interactions
between waves, fields and structures. Only in few
cases direct analytical solutions to governed equations
are known like for example the solutions to the KdV-like
equations. In most cases numerical and/or asymptotical
methods must be used. It is not always straightforward
to use numerics because one should be aware of all the
limitations of numerical schemes, the convergence of
calculations must be understood and thermodynamical
consistency, if needed, must be evident. Some methods
used for the analysis of problems indicated above are
briefly listed.

First, the finite volume wave-propagation algorithm
[38] is modified and widely used [6]. Second, the pseudo-
spectral method for solving the nonlinear evolution equa-
tion is used in [53] and for Boussinesq-type equations
– in [20]. Special attention is devoted to deriving the
various ODE solvers [28,48].

Turning now the attention to interaction process it is
clear that direct numerics needs additional methods for
explaining the specific features of interaction and special
tools for obtaining information about fields and/or
structures. First, wave–wave interaction in prestressed
or inhomogeneous solids permits to solve the inverse
NDT problems. Such algorithms, based on perturbation
method and Laplace transform technique, have been
elaborated for acoustodiagnostics [51,52]. Second, for
field–field interaction in solids, spectral methods in
photoelasticity have been proposed based on the tensor
tomography and on the hybrid method which combines
experimental results with analytics [4,5]. Third, for field
interaction in fluids the combination of analytics and
numerics is used. The triplet-map-model is elaborated
for describing the small-scale anisotropy of passive
scalar in nonsmooth flows [33]. As far as turbulent
mixing has close connection with statistical topography,
some specific methods have been proposed: the 4-vertex
model of random surfaces [31] and the method for
efficient extraction of scaling exponents from Monte-
Carlo simulation data [42].

In addition, a stereoscopic 3D visualization system
has been designed and built [46]. This system played
a decisive role in calculating orientation distributions of
short fibres in concrete [13].

Finally, one should note the importance of software
for scientific computation and for control of laboratory
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equipment. Most of such software is developed under
open source model available in Python library [28,48].

4. RESULTS AND DISCUSSION

The analysis of mathematical models described above
has greatly benefitted from interdisciplinarity studies
by using various concepts of complexity of nonlinear
systems. In such systems, the whole after interactions is
not only “bigger” (like Aristotle said) but also different.
The models of dynamical processes in solids, fluids and
tissues analysed intensively in CENS over recent years
have proved that. In what follows, the main results from
these studies are summarized.

As said in Introduction, the main attention is paid
to wave–wave, field–field, and wave–field nonlinear
interactions. An important problem for heterogeneous
media is related to the modelling of their internal
structures. In many cases, it is possible to use the
concept of internal variables which helps to model the
influence of internal structures to macrobehaviour of a
medium [21].

Leaving aside the details, the selected essential
results are now briefly presented.

Waves in solids:
– mathematical modelling and analysis of wave motion

in microstructured solids (Mindlin-type, functionally
graded materials, felts, etc.), phase-transformation,
propagation of fronts, etc;

– determining physical effects characteristic to wave
motion in microstructured solids: negative group
velocity, microtemperature effects, dimensionless
parameters governing dispersive effects, mesoscopic
effects, etc;

– describing the soliton interaction and emergence of
soliton trains modelled by KdV-type and Boussinesq-
type systems;

– explaining the concept of hidden solitons and
mechanisms of amplification of solitons.

Inverse problems:
– elaborating the theory of integrated photoelasticity

with many practical applications (stress determination
in cylindrical objects, glass panels, automotive
glazing, etc);

– describing physical effects in photoelasticity like
appearance of interference plots and mechanisms of
magnetophotoelasticity;

– elaborating algorithms for the NDT of materials based
profile changes (spectral distortions).

Fluid dynamics:
– establishing mechanisms for turbulent mixing in

many cases (chaotic velocity fields, non-smooth com-
pressible flows, etc);

– determining scaling exponents for turbulent mixing
and percolation;

– analysis of fractal effects like diffusion on fractal
structures, intersection of moving fractals, emergence
of coastlines and landscapes, cracking of films, etc.

For tissues (combining modelling and experiments):
– elaborating a cross-bridge model for mechano-

energetics of actomyosin interactions;
– proposing an integrated method to quantify calcium

fluxes in cardiac excitation-contraction coupling;
– analysis of lattice-like obstructions to diffusion in

heart muscle cells.
Even this brief overview demonstrates clearly how

useful the interdisciplinary approach is – complexity
studies are characterized by interactions and similarity of
methods and concepts permit more effectively to analyse
various dynamical processes [18,19]. It is not only the
physical processes, similar methods can be used also for
the analysis of financial markets [37]. A more detailed
overview on nonlinear wave motion is presented in [22].

We live in a nonlinear universe [54] and the success
of generating new knowledge depends not only on the
progress of physics, chemistry, biology, etc but definitely
depends very much on the progress of nonlinear
mathematics like pointed out already by W. Heisenberg.
Indeed, mathematics is sometimes called intellectual
machine and nonlinear science benefits largely upon the
wisdom to use this machine [44]. Nonlinear interactions
in their turn bring in new qualities, characteristic to
complexity.
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Komplekssüsteemid tehnika- ja loodusteadustes

Jüri Engelbrecht

On esitatud kokkuvõte interdistsiplinaarsetest uuringutest TTÜ Küberneetika Instituudi mittelineaarsete protsesside
analüüsi keskuses (CENS). Põhitähelepanu on mittelineaarsete vastasmõjude matemaatilisel modelleerimisel, mis
haarab laine-laine, laine-välja ja laine-sisestruktuuri tüüpi interaktsioone ning nendest tulenevaid muutusi. On
kirjeldatud ka kasutatud numbrilisi meetodeid.


