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Abstract. On the basis of the Mindlin-type micromorphic theory for wave motion in microstructured solids the 1D governing
equations and corresponding dispersion relations are derived. The leading physical dimensionless parameters are established and
their importance for describing dispersion effects is discussed. The general discussion reveals the role of both geometrical and
physical dimensionless parameters in mechanics of microstructured materials.
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1. INTRODUCTION

The mathematical models which describe wave motion in microstructured solids, as a rule, involve many
physical parameters. In the celebrated paper by Mindlin [1] the number of parameters in the most general
3D case involves as many as 1764 physical constants. Clearly, this number is too large to be determined by
physical experiments and thus further studies have focused on specifying the leading parameters, including
Mindlin [1] himself. The crucial point is to establish the leading physical effects and then derive the
corresponding governing equation using various theories [2–4]. In addition, various models are compared
between themselves [5–9]. It is clear that besides the dispersion analysis, attention must be paid to specifying
the main parameters. Following Barenblatt [10], the scaling of physical parameters against the basic notions
will give a better insight into the character of processes.

In this paper we very briefly describe the Mindlin-type model of microstructured solids, focusing on final
governing equations of motion. Then the dimensionless parameters are brought up and their significance
is discussed. The discussion is centred around the importance of geometrical and physical dimensionless
parameters which characterize microstructured solids.

2. MATHEMATICAL MODELS

We use the Mindlin-type micromorphic model [1] modified by Engelbrecht et al. [3]. It has been shown
that such a model can be linked to models derived also by other assumptions [3,11], therefore providing an
excellent basis for deriving the governing equations for microstructured solids.
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Leaving aside the details, the starting point in modelling is the free energy function W , which is taken
for the 1D case in the form
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where A, B, C, D, N, M are material parameters, u is the macrodisplacement, and ϕ is the microdeformation.
Here and further, the subscripts denote differentiation with respect to the indicated variable.

Together with the kinetic energy

K =
1
2

ρu2
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1
2

Iϕ2
t , (2)

where ρ is macrodensity and I is microinertia, the governing equations of motion can be derived by making
use of the Euler–Lagrange equation for the Lagrangian L = K−W . The corresponding equations of motion
are then (cf. [3])

ρutt = Auxx +Dϕx +Nuxuxx, (3a)

Iϕtt = Cϕxx−Bϕ−Dux +Mϕxϕxx. (3b)

After introducing dimensionless variables X = x/L, T = tc0/L, U = u/U0, the scaling parameter
δ = l2/L2 (L and U0 can be the wavelength and the amplitude of the initial excitation, respectively; c2

0 = A/ρ
and l is the characteristic scale of the microstructure), and making use of the slaving principle [12], the
following hierarchical model is obtained from Eqs (3):
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Here the following notations are used:
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The notion of wave hierarchy is introduced by Whitham [13] for description of scaling the different wave
operators. It means that in a wave hierarchy scale parameters indicate the dominance of certain wave
operators. This is exactly the case of Eq. (4) where parameter δ has this role: if δ is small, the wave
operator on the left-hand side of Eq. (4) is dominant and if δ is large, the wave operator on the right-hand
side of Eq. (4) is dominant.

If coefficients are determined in terms of speeds only, Eq. (4) yields
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Here the following notations are used:
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I
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and kN , kM are the parameters expressing the strengths of physical nonlinearities on macro- and microscale,
respectively.

The linear approximation of Eq. (6)
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demonstrates clearly the hierarchical nature of the process. Here the coefficient c2
A/c2

B has the role of the
scaling parameter.
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If we return to initial variables, the full system (3) with kN = kM = 0 (i.e., the linear case) and the
hierarchical approximation (6) can be written as

utt − (c2
0− c2

A)uxx =−p2(utt − c2
0uxx)tt + p2c2

1(utt − c2
0uxx)xx (9)

and
utt − (c2

0− c2
A)uxx = p2c2

A(utt − c2
1uxx)xx, (10)

respectively [14]. Here the time parameter p is defined as p2 = I
B .

In order to derive the dispersion relations, the solution

u(x, t) = ûexp[i(kx−ωt)] (11)

is assumed. Then Eqs (9) and (10) yield the following dispersion relations:
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respectively.
Detailed analysis of nonlinear [15,16] and linear [14,17] cases gives insight into the wave profile

distortions in these complicated models. Distortions of wave profiles can be related to the differences in
phase (cph) and group (cgr) speeds.

3. PHYSICAL DIMENSIONLESS PARAMETERS FOR MICROSTRUCTURED SOLIDS

Following the models in Section 2, we specify the parameters [3,17]
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and [16]
Γ = 1− γ2

A− γ2
1 , (17)

where it is assumed that I = ρl2I∗ and C = l2C∗, and I∗ is dimensionless and C∗ has the dimension of stress.
Introduction of I∗ and C∗ is needed for the proper scaling in order to derive hierarchical equation (4) [3].

Parameter Γ is crucial to distinction between the dispersion type following the acoustic dispersion
branch. If Γ > 0, the dispersion is normal (cgr < cph) (see Fig. 1a) and if Γ < 0, the dispersion is anomalous
(cgr > cph) (see Fig. 1b). If Γ = 0, we have the dispersionless case. The optical dispersion branch always
describes the case cgr < cph.

The influence of normal and anomalous dispersion on the character of solution is demonstrated by
solving system (3) in its linear form (N = M = 0) under a sinusoidal boundary condition for the material
initially at rest (see [17] for details). For calculations the Laplace transform is used together with the
numerical evaluation of the inverse transform [17]. The results are depicted in Fig. 2a (normal dispersion)
and Fig. 2b (anomalous dispersion), respectively. Although the boundary condition has constant frequency,
the fastest part of the signal is made of many frequencies and the signal disperses according to the dispersion
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Fig. 1. Group (solid line) and phase (dashed line) speed curves for (a) γA = 0.8 and γ1 = 0.3 and (b) for γA = 0.8 and γ1 = 0.8.

Fig. 2. Wave profiles at 50 time steps for (a) γA = 0.8 and γ1 = 0.3 and (b) for γA = 0.8 and γ1 = 0.8. The dimensionless frequency
at the boundary is equal to 0.5.

type. The low-amplitude oscillations in Fig. 2 reflect the influence of the optical dispersion branch, which
is a direct consequence of the inclusion of the microstructure [18].

Parameter γA is directly related to coupling effects and influences the speed of the wave. Such an effect
has also been demonstrated by numerical calculations [3]. Parameter γ1 is actually the ratio of speeds
in micro- and macrostructures while parameter γAB is related to inertia of the microelement and coupling
effects. In addition, parameters γA and γ1 define the dimensionless speed of long ((1− γ2

A)1/2) and short
waves (γ1), respectively. The greater the parameter γA, the smaller the speed of long waves and the greater
the parameter γ1, the greater the speed of short waves. Returning to initial coefficients in the free energy
function (1), it is obvious that the smaller the value of A, B, and I, the greater the value of γA and γ1 and the
greater the value of C, D, and ρ , the greater the value of γA and γ1.

Similarly to Fig. 2, in Fig. 3 the influence of parameter γA on the wave motion is demonstrated by
solving system (3) in its linear form under a sinusoidal boundary condition for the material initially at rest.
In order to consider a simple dispersionless case, γ1 should be altered as well. It can be seen that in case of
the smaller value of parameter γA (Fig. 3a), the high-amplitude part of the wave profile travels faster than
in case of the higher value of parameter γA (Fig. 3b). The low-amplitude part travelling at the unit speed
reflects again the influence of the optical dispersion branch.

Parameters γA and γ1 together can be used for estimating the differences between full equation (9) and
its approximation (10). For example, it is possible to estimate the regions in the γA – γ1 plane where the
dispersion curves for the acoustic branch of Eqs (9) and (10) differ with the accuracy of 5% or 10% at a
given frequency or wave number [14]. These differences will be translated into differences in wave profiles,
while the speed of the main pulse/signal is equal in both models [17,18].
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Fig. 3. Wave profiles at 50 time steps for (a) γA = 0.77 and γ1 = 0.63 and (b) for γA = 0.95 and γ1 = 0.31. Dimensionless frequency
is equal to 0.5.

4. THE IMPORTANCE OF DIMENSIONLESS PARAMETERS

In general terms it is clear that both geometry and physical properties of microstructure(s) influence the wave
motion in microstructured solids. Here we present a brief summary on parameters and their importance.

4.1. Geometrical parameters

The most important effect of the geometry is the emphasized ratio of the scale length l of the microstructure
to the wavelength of the excitation L. We have used δ = l2/L2 for describing the hierarchical model (4). As
shown above, if δ is small, the waves are governed by the properties of the macrostructure, if, however δ is
large, the waves ‘feel’ more microstructure (see for example [3]).

A similar parameter is of importance for granular materials where the scale length is the particle dia-
meter [19]. However, the variety of microstructures in technical as well as in biological materials needs more
elaborated analysis for understanding the influence of grains, cells, particles, pores, etc. on macrobehaviour.
It is proposed to use stereology and 3D microscopy for the quantitative analysis of microstructures [20]. In
this case, for example, the notion of contiguity is introduced, which characterizes the fraction of the spatial
area shared with other elements (grains) of the microstructure.

For porous structures like in electrodes from a lithium-ion battery, the notion of tortuosity is intro-
duced [21], which relates the minimum distance within a pore to the shortest distance between pixels. The
crucial problem is how these geometrical parameters reflect the physics (and physical properties) of solids.

For wood, which is a highly cellular material, the geometry of cells can be linked to the density of
the cellular structures ρ and the density of the solid cell wall ρs [22]. For Voronoi honeycombs (foams)
a dimensionless parameter characterizes the regularity of honeycombs [23], for ceramics dimensionless
parameters characterize the ratio of the solid–solid and solid–void surface area (surface area ratio) and the
ratio of mean grain and mean void intercepts (intercept ratio) [24].

4.2. Physical parameters

Besides technological materials, snow can also be characterized in terms of a microstructured medium [25].
In this case the microstructural index Is is introduced as

Is = SV/NBVL2
3, (18)

where SV is the mean grain surface area per unit volume, NBV is the mean number of bonds per unit
volume, and L3 represents the grain character. The other physical parameters are shown to be dependent on
microstructural index Is which actually combines physical and geometrical parameters.
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For wave motion attention should be paid to dispersion effects. Maugin [26] has introduced a parameter
with dimensions in order to characterize waves in elastic crystals for which the governing equations are
derived from lattice dynamics. For waves in martensitic-austenitic alloys, where shear effects are important,
this parameter in his notations is

α = β − 1
2

c2
T , (19)

where cT is the leading velocity for shear motion and parameter β is related to shear-deformation coupling
effects which are based on the special form of the potential [26]. Parameter α is shown to govern the
conditions of soliton existence. Clearly, α can be represented in a dimensionless form

α ′ =
α
c2

T
=

β
c2

T
− 1

2
. (20)

A model for gradient elastic solids as another form of Mindlin theory [1] has been derived by Papargyri-
Beskou et al. [9]. In order to compare their results with ours, we rewrite Eq. (14) from [9] in its 1D form:

utt − c2
0uxx = h2uxxtt −g2c2

0uxxxx, (21)

where c0 is the conventional sound speed and g2 > 0, h2 > 0 characterize microstructural effects – stiffness
of the microstructure and its inertia, respectively, and have dimensions of length square. Equation (21) is
clearly similar to the hierarchical approximation (10) in our studies. It is shown in [9] that if h > g, dispersion
is normal and if h < g, dispersion is anomalous. This statement can be reformulated in the dimensionless
way: if h/g > 1, dispersion is normal and if h/g < 1, dispersion is anomalous. Note that g2 is related to
potential energy and h2 to kinetic energy. Such a physical background is characteristic also of granular
media. For this case Giovine and Oliveri [27] have constructed an evolution equation (a one-wave equation)
as a hierarchical Korteweg–de Vries (KdV)-type model for longitudinal waves. They showed that the sign of
the higher-order operator, which is reflected also in the sign of the higher-order dispersive term, is related to
the ratio of contributions from potential and kinetic energies. The same effect for our model (10) is evident
from an evolution equation derived by M. Randrüüt (see [14]), where the sign before the dispersion term in
the governing KdV-type equation characterizes the convexity or concavity of the dispersion curve.

5. CONCLUSIONS

We demonstrated that physical parameters γA, γ1, and Γ characterize dispersion effects in microstructured
solids. Besides elasticity like in models derived from lattice dynamics [26], these parameters involve also
inertial effects of the embedded microstructure. Actually these parameters are related to speeds of waves
including also the coupling between macro- and microstructure. The influence of γA and γ1 can be seen from
the analysis of initial and boundary value problems, while Γ governs the character of dispersion.
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Deformatsioonilained mikrostruktuuriga materjalides ja dimensioonita parameetrid

Jüri Engelbrecht, Tanel Peets, Kert Tamm ja Andrus Salupere

Baseerudes Mindlini tüüpi mikromorfsel teoorial, mis kirjeldab lainelevi mikrostruktuuriga tahkistes, on
tuletatud liikumisvõrrandid 1D juhul ja neile vastavad dispersiooniseosed. Liikumisvõrrandites on leitud
olulised füüsikalised dimensioonita parameetrid ja kirjeldatud nende mõju dispersiooniefektidele. Nimeta-
tud parameetrid väljendavad makro- ja mikrostruktuuri seoste mõju ning arvestavad mikrostruktuuri elast-
suse ja inertsiga. On selgitatud geomeetriliste ja füüsikaliste dimensioonita parameetrite osatähtsust mikro-
struktuuriga materjalide mehaanika kontekstis.


