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A complex system as it is understood nowadays is
composed by its constituents that interact with each
other resulting in emergent properties ofthe system
as a whole. In mechanics the concepts of complex-
ity has been analysed by Engelbrecht [7] with a fo-
cus on wave propagation. This theory is based on
some cornerstones like the introduction of internal
structures at different scales and the nonlinearity of
the models which in other words means incorporat-
ing intrinsic microstructural and nonlinear effects.
In this case cornplexity means that we have differ-
ent scales, with several interaction processes which
encompass many physically meaningful phenomena.
Usually a microstructured body, as we shall see, is
modeled as a solid with an internal structure at a dif-
ferent scale, which is apt to describe the mechanical
behaviour of solids with dislocations, polycrystalline
solids, ceramic composites, granular rnedia, etc. One
main aspect ofsuch theories is that they always take
into account the nonlinearity of the materials, the
nonlocality and the interactions between micro- and
macroscales. It is possible, and useful, to develop
also models with a hierarchy of microstructures, i.e.
a first level micro-structure which contains a second
level micro-structure, and it is meaningful also the
case of concurrent micro-structures (see Berezovski
et al [1]), In this paper we want to analyze the
subject, recalling some main results in the theory
of complex microstructures, developing new results
in the case of multiple microstructures, exploiting
hierarchical governing equations and analyzing non-
linear wave propagation, which is crucial to put in
evidence the weight of the different scales and the
interaction of micro- and macro-stmctrrres.

1 INrRonucriorv

In this presentation we warit to elaborate the idea
that compiex systelrrs irr Contirruurn Nlechariics are
strictly related to a more gereral theory, as briefly
described iir N{augin 112], that we cari obviously
cali Generalized Coritinuum Theory. This theory is
based on sorne cornerstorres like the introduction of
irrtcrrral stmcturcs at diffcrcrrt scalcs and tirc rron-
linearity of tire models which in other words rlealrs
iricorporatirrg intrinsic rnicrostructura,l and norilin-
ear elfects. A l,vpical case iI] conlinuum mechan-
ics, among nany, is tlie ca,se of rnateriais with cer-

tairr rnicrostructure. Iti this case cornplexity means
that ive have different scales. rvith several interac-
tion processes which encompass mal)y pirysically
meanirigful phenornena. The piorieeririg work of
N{iridlin 113] is a basic refererrce, anot}rer rnore re-
cent gerrerai treatrnent can be found in Capriz l2],
while many papcrs havc appcarcd wherc different
particular arrcl less particular cases have beeri de-
scribed (see the papers by Erigelbreclrt, Pastrorie,
Cerrnelli, Porubov quotecl irr tlie refererrces). Usrl-
a1ly a microstmctured body, as we shall see, is lrrod-
eled as a 3D solid rn'ith an irrternal structure at
a differeut scale. u,.hich is apt to describe the me-
chanical behaviour of solids with dislocations, poly-
crystallirle solids, cerarrric cornposites, granular rrre-
dia, etc. Orie rnairi aspect of such theories is tiiat
they always take into accourit tlie norrlinearity of
the nraterials, the tronlocality and the interactiorrs
between rrricro- and nracroscales. It is possible,
and useful, to develop also rnodels with a hierarchy
oI microslnrct,ures. i.e. a firsl level micro-strLlct,Llre
which contains a secorrd level rnicro-structure, arrd
so or, as rlone in Casasso and Pastrone l3], En-
gelbrecht et al [10] . But it is rnealriligful also the
case of concurrerrt rnicro-structures (see Berezovski
et aI [1]). hr Sectiorr 2 we recall sorre tnairr results
in the theory of cornplex microstructures, develop-
ing new results in the case of multiple tnicrostruc-
tures. In Sectiori 3 we expioit hierarctiical goveruirrg
equatiorrs arid arialyze rrotlirrear wave propagatiolll
whicli is cruciai to put in evi<lence the weigiit of
the different scales and the interactior of micro-
arrd nracro-structures. Iri Sectiorr 4 we arialyse sim-
ilar problems in the case of concur.rent rnicr.ostr.uc-
tures. The presentation iri its full forrrr is to be
publisherl it Att,i della Accatlern,ia delle Sc,ienze: d,i

Tor"ino [6] To give a simple idea of different scales
in solids we refer to Gates et al. 111]: froni 10 ern
(narrornecharrics) over 10 6 m (rriesornecharrics) arxl
10-3 rn (rnicrornechanics) to 100 rn (structural rne-
chanics).
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2 TgB FIELD EQUATIoNS

The kirietic energy T of a rnicrostructured body
is defined as a quadratic forru in tire velocities
i, ds, where r is the position vector describing
the rnacrostructure, drr is the director apt to pro-
vide a description of some properties of the rni-
crostructure as they act at the rnacroscopic level,
dot rneans derivative with respect to time l. while
the rnaterial poirit X is kept fixed, the notation
O.i: AOIAXj will rneart derivatives with respect
to tlie rnaterial coordirrates X'. Here arid iu the fol-
lowing H, K,.. . - 1, 2,3,. . ., n, where n depends
ori the type of microstructure we want to rnodel;
i, j : 1,2,3. T is a defirrite positive quadratic forrn.
Without any loss of generality, we can reduce it to
a diagorral fornr

T-:

where p is the rrrass density arid lfl( represents the
iriertia form of tire nricrostructure. If we deal with a
Lagrangian forrnulation, p alnd I are dcflncd on thc
rcfcrence configuration, hence thcy arc functions of
X only.

Let us assurne that the body adrnits a gerieralized
stored energy density

W' : W(r,n,ds, ds.r, X). (2)

We cat derive the fleld equations via the usual
variational principle, rrarnely requiring that the rno-
tioris of the body in a certain interval of time [t0, 11]

will make the eriergy functional

rtt rt : I I tr -w -wb)dvd, (3)
Jto JB

statiorrary in comparisori with all admissible rno-
tions. Tlie Euler Lagrange equations reail
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3 ONe DrI\TENSTONAL N,IoDEL wITH HIERARCHT-
CAL MICROSTRUCTURE

We consider a one-dimerrsionai microstructured
model with two different scale levels applied for the
microstructure. Instead of the two-scaie eiastic sys-
tern, containing both rracro- and microstructures,
we introduce a rnaterial, which is supposed to be
a cornpourt<l of a rrtacrostructure, a first 1e-,,e1 rni-
crostructure and a second Ievel microstructure at a
much srnaller scale. The last rnay be irrterpreted as

a narrostructure, to sorne extent (see 13], [10], 114]).
Iri F'igure 1 we give a sketch of the possible con-

Iigural,ion of a solid with two levels microslructures.

G' ffi.-
Figure 1: Two-levels rnicrostructure

Therefore, following the rnodel, we deal with
three different scalar functions: the oue for the rla-
crostructure and two for the rnicrostructures, one
for each scale level. The model of a rnaterial is
the orre-dirnensionai rnanifold, arrd we consider the
rnaterial coordinates in space .r and in tirne fl ald
the functions u : u(r, /) for the rnacrostructure,
g : p@,/) and lt : ,1,@,1) respectively for the
lirst and the second scale level in microscale. 'I'he
macro body is supposed to be purely elastic, and
both the flrst and second level microstructures sat-
isfy the same generalized eiasticity hypotliesis as
weli, therefore the existence of an internal strain
elergy is assurned.

A particular choice of the strain errergy functiori
tr4/ dcfines diffcrerrt rronlirroar rnodcls, scc [3]; iu t]ris
paper we consider it in the followirrg form:

ttz - 1o u? - loul * ArJr.", !o, r,2 3', 2"
i l^ r l^I ;Cr;,'/. -r Bs."u -t =Btuz | :C'"u!.. (6)'2 -'." 2' 2'"

This function is the generalization of the strain err-
ergy functiorr for nonlinear elastic solids with orre
rnicrostructure level to our case, where tire intro-
ductiorr of the cubic terrn uj represents tlie nonlin-
ear behaviour of tlie matrix.

'Ihe field equatiols carr be derived as in 13] via a
variational prirrciple:

', (r, t + IHK da ;^) , (1)

I aw\ atvb d at
t-t

\a",/,, a, - dt ai'
Iaw\ aw an6 dar (4)

\qdn.;)., qdu 0dn dt ddu

In gerreral, from a physical poirrt of view, the nri-
crobody forces are different from the macrobody
forces, hence we carr split tr4lr, in two parts:

wt : wi""""(r, X) + Ir.,'i""(d1?. x) . (b)

I e,',, : o lrr + @ri) " 
-r Ari,.

\,tr,, 
:et{,,-AtL,, -Btg- BU,. (7)

I lru,, : C2u.," - Azg, - Bzu.
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where o, p and Ai. Bi, Ci (i : 1,2) denote material
constants.

To obtairr the governing equation in dimensiorr-
less form, it is necessary to introduce sorre suitable
pararneters and coustarrts (scc [ ]) arrd tw<-r diffcr-
errt pararneters di, i : 1,2, characterizing the ratlo
between the microstructure and the war,e lengtli ,1,,

and e, accounting fbr small but finite elastic strain
rnagnitude:

il: (hlD2, 6z:(lrlL)', e:t,o << 1, (8)

where ue is the intensity of the initial excitation
arrd the values 11 arid 12 represent the size of the
rnicrostructural eleurerrts. Introducing the rnacros-
train z : tr, (the term "strain" is used for brevity
only; in fact, it is tlie longitudinal displacernent
gradlent corrrponent, while expressions for genuirie
strairis are nonliriear with respect to r;) and the di-
merrsionless variables

u:y/uo1 X:rlL, T:(cslL)t (9)

and substituting thern into the previous systern, we
obtain the field equations. 'lhe siaving principle

[10] can now be used for further transforrnations.
This procedure allows us to write one furrction iu
terrns of the otlier; on this way we can obtairr the
governing equatiorr for tire function z(r, f) only:

I|,TT + eluxx + (12(u2) xx I (a3u# I tt4ur.r.) *,
* (a5zr, * e6rlrr** * a7urr.) r* : 0, (10)

where the cli are constant cocfficicnts explicitely de-
fined in l ] and in the Iinal rerrark of this sectiou.

The equation (10) above rnay be considered as

a hierarchical equation iri terrns of u, where two
different leveis of microstructure are expressed in
flve different dispersive terms. and the higher order
terms contain the pararneters of the second level of
microstructure.

We have obtained a 6th order PDE that is hardly
to be solved explicitly irr general case. However, we
will find somc exact travelling wave solutions of the
PDE (10), when the equation can be reformulated
in terms of the phase variable z : x * 7/ in tire
corresponding ODE and by rnearrs of the method
introduced by Sarnsonov in [17], upon the introduc-
tion of z and iritegratiori twice with corresporiding
conditions at infinity lz] -+ oc + u,ut -+ 0 the fie1d
equation rnay be rewritten as the nonlinear ODE of
the 4tli order:
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where obviously:

a: (at *v2aa)ly;
b: a2lX; c: (rrr +V,)lX;
I-os lVzay, lVtaT.

(t2)

Following the nrethod described in li7], the exact
solutiorr to the ODE (11) in terrns of elliptic func-
tions, containing only poles as the critical singular-
ities, has be found in tlie followirrg forrn:

u : A,[ 8c2 (r; gz, g) * Sge (r; 92, %) + I{ , (13)

rvlrere the coefficieuts II , S, K and invariants g; of
the Weierstrass elliptic functiorr ge arc dcfirred iu [4] .

In the appropriate limit the Weierstrass eiliptic
function p rnay be further reduced to the elliptic Ja-
cobi crz furrction and, in due course, to the bounded
solution z6 in terrns of cosh-2 function, \.e., to the
solr,tary waue soluti,on, as follows:

uo : .s cosh a(r) * q cosh '(r) + p;

-18928 -13640a - 3la2p: -clb: -
1a0(52 + a)

,1 : Bb I

507b

s: -840lb,

; (14)

which has a form of the so called "rnexican hat".
Figure 3 provides two graphical exarnples of the
solutions for differcnt values of thc parameter b.

r-B; b"'-1'5 a"'-8; b"'! I.5

Figure 2: a: -8, b: -1.5 for the figure on
the left, o: -8, b: f1.5 for the figure on
the riglit.

Rerno,rk
The approacli used to obtain these solutions is sim-
ilar to that introduced and grounded in [17], and
can be applicd to cxplicitly solvc different higher
order ODE, e.g., the 5th order KdV and the 5tli
order mKdV equations.

4 Cor{cunRENT MTcRosTRUCTURES

Instead of a hierarchy of microstructures, one can
be iriterested in concurrent microstructures, as irr-
troduced in 11], rramely in two, or more, rnicrostruc-
tures wliicli act at the sarre scale level and iriteract

-i

""1

u(IV) + ouGI) +bu2 +cu:0, (11)
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with the macrostructure as well, as illustrated in
Figure 3.

-+{$It1.4**l&&
#nsss*
ri$Jt\\lr\\ti\ffiy

ffi
Figure 3: Concurrent rnicrostructures

We can obtain the fields equations as done before
just introducing a different expression of the straiu
energy furrction, for instance:

1rl
W : =au?+ 13ui r AteL'- t AcL)u " - 18, ^2

2"", 
, 

3"", 
I ''1)/(J -tzv rt 

2"tY
1^1^r-- )C'tt'. - Aea * 782u2 + =C2a:. U5)'2 -',', 2 2 '',"

where p and fr denote the microstrains of the two
concurrerrt rnicrostructures.

Hence the field equations read:

where a, At, Bt, Ct, Atz (i : 7,2) denote material
constants.

Witlr the substitution uoll : ur) from (16)1 we
derive:

puoutt : c!I)s? 1,, + 0u3(u2 ),, - Atg,* - Az|t *r,.

Usirrg the slavirrg prirciple at the flrst 
".0".(1,;lproxirnation, namely, as done before, setting

9:9o*drgr*...,
{t:,!otdd,z-l .."

(18)

we obtairr from (16), as proved in [6], the 4t]r order
PDE:

'ttr., lrryn**+h(,uz)** *d1 (o3ur, * a+,ur.r.)r,

* 62 (asur, * cu6ur., )r. : 0, (19)

whcre thc cocfficients di carr be explicitly evalu-
ated in terms of the rnaterial constants appearing
in (16).
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Equatiou (19) is clearly different from (10), since
here we liave two corrcurrent microstructures act-
ing at tire sarne levei, one is resporrsible of the terrri
dr(...), tire second orre of the terrn d2(... ), but
iri both cases the order of the derivatives is the
4tir. In (10), as rernarked, we have a }iierarchy of
microstructures. at the Iirst level corresponding to
4th order derivatives, the secorrd level to 6th or-
der derivatives. The two terms dr(...) and d2(... )
are coupled through the coefficient ,412 which ap-
pears irr both terms. Obviously, if 41, : g, 11r"

microstructures are independent and the two terrns
are uncoupled.

Technicallv, tlie reasori is that in the actual strain
energy furictiori (15) does not appear tlie terrrr

Azp;|,which is in (6), related to the hierarchy
of tlie microstructures in that case, while here we
have a "peer" coupling terrn Apglt.

Equatiorr (19) is very similar with the DDE (3.16)
in Samsonov [17], the meaning of the coefficients
being obviously different. Hence we can follow the
same procedure. Introducing the pliase variable
z : r l7f we obtain the 4th order PDE

(Vz + a)ult + /r(:u')" * d1 (a3 + V2a4) utv

f d2 (a5 + V2a6) uIV :0. (20)

By double integratiorr and regrouping the last two
terms we obtain the 2rrd order ODE

d, (o, + v'o^) + 62 (as -t v2 a6) uII
+ Ar.(u') + (v2 + a)u -t qz + c2 : o. (2t)

This equation can be forrnally written, with obvious
rneaning of the cocfficients. as

uII + b(u2) + cu + qz I c.2 - Q. (22)

X,lultiplyirig by u' arrd integrating once more we
have

L,r'r':-lart-L"r," I '.2. J 2 c2u-c1(z+rz')u-d.
(23)

In Samsonov [17], Chapter 3 one can flnd an ex-
terrsive analysis of equatioris of this kind and we
can apply here his conclusions too, rrarnely that by
rneans of an appropriate choice of the invariarrts
of the elliptic P-functions appearing in the Weier-
strass equation associated to (23) and appropriate
P-function limits in real axis, equation (23) carr ad-
rnit a discontinuous general travelling wave solutiorr
tlrat can be reduced to solitary wave and to cnoi,dal
wave solution.

I C)l

( pu,, :at).rr+B(ul1 ,-Are,-Aze,,
I

\ I#tt : CtV., - Atu, * Btg - A(, (16)

I lrv,, - Czu"., - Azu" - B2u - A;.
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Indeed ore can imagine higher order coupling
terrrrs introducing in W prorlucts of derivatives of p
and /, namely tertrrs coritaiting ,p,tfi, 1brg, gr{r,
but for rieed of brevity we do not go further in this
direction.

5 CoNcr,usroNs

The problem of the propagation of rion linear waves
in solids with diflerent inlernal structurai scales is

studied. The general model developed in [3] and

[14] has been used. In the case of one rnicrostruc-
ture a 6th order PDE is obtained and the liierarchy
of waves is clearly obtained. Using the sarne basic
model, the case of two concurrent microstructures
is studied and by rneans of the slaving pririciple orie
can reach meanirigful approxitnate equations.

This model takes in account interaction betweerr
microstructures and rnacrostructure. We have de-
rived the model equations for single and multiple
scales arid we have shown that we carr obtain ana-
Iytical solutions, but in many cases numerics are
needed. Sucli an approach dernonstrates cleariy
that complexity appears naturally in Continuum
N{echanics, when you deal with microstructures.
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