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A complex system as it is understood nowadays is
composed by its constituents that interact with each
other resulting in emergent properties of the system
as a whole. In mechanics the concepts of complex-
ity has been analysed by Engelbrecht [7] with a fo-
cus on wave propagation. This theory is based on
some cornerstones like the introduction of internal
structures at different scales and the nonlinearity of
the models which in other words means incorporat-
ing intrinsic microstructural and nonlinear effects.
In this case complexity means that we have differ-
ent scales, with several interaction processes which
encompass many physically meaningful phenomena.
Usually a microstructured body, as we shall see, is
modeled as a solid with an internal structure at a dif-
ferent scale, which is apt to describe the mechanical
behaviour of solids with dislocations, polycrystalline
solids, ceramic composites, granular media, etc. One
main aspect of such theories is that they always take
into account the nonlinearity of the materials, the
nonlocality and the interactions between micro- and
macroscales. It is possible, and useful, to develop
also models with a hierarchy of microstructures, i.e.
a first level micro-structure which contains a second
level micro-structure, and it is meaningful also the
case of concurrent micro-structures (see Berezovski
et al [1]). In this paper we want to analyze the
subject, recalling some main results in the theory
of complex microstructures, developing new results
in the case of multiple microstructures, exploiting
hierarchical governing equations and analyzing non-
linear wave propagation, which is crucial to put in
evidence the weight of the different scales and the
interaction of micro- and macro-structures.

1 INTRODUCTION

In this presentation we want to elaborate the idea
that complex systems in Continuum Mechanics are
strictly related to a more general theory, as briefly
described in Maugin [12], that we can obviously
call Generalized Continuum Theory. This theory is
based on some cornerstones like the introduction of
internal structures at different scales and the non-
linearity of the models which in other words means
incorporating intrinsic microstructural and nonlin-
ear effects. A typical case in continuum mechan-
ics, among many, is the case of materials with cer-

tain microstructure. In this case complexity means
that we have different scales, with several interac-
tion processes which encompass many physically
meaningful phenomena. The pioneering work of
Mindlin [13] is a basic reference, another more re-
cent general treatment can be found in Capriz [2],
while many papers have appearcd where different
particular and less particular cases have been de-
scribed (see the papers by Engelbrecht, Pastrone,
Cermelli, Porubov quoted in the references). Usu-
ally a microstructured body, as we shall see, is mod-
eled as a 3D solid with an internal structure at
a different scale, which is apt to describe the me-
chanical behaviour of solids with dislocations, poly-
crystalline solids, ceramic composites, granular me-
dia, etc. One main aspect of such theories is that
they always take into account the nonlinearity of
the materials, the nonlocality and the interactions
between micro- and macroscales. It is possible,
and useful, to develop also models with a hierarchy
ol microstructures. i.e. a first level micro-structure
which contains a second level micro-structure, and
so on, as done in Casasso and Pastrone [3], En-
gelbrecht et al [10]. But it is meaningful also the
case of concurrent micro-structures (see Berezovski
et al [1]). In Section 2 we recall some main results
in the theory of complex microstructures, develop-
ing new results in the case of multiple microstruc-
tures. In Section 3 we exploit hierarchical governing
equations and analyze nonlinear wave propagation,
which is crucial to put in evidence the weight of
the different scales and the interaction of micro-
and macro-structures. In Section 4 we analyse sim-
ilar problems in the case of concurrent microstruc-
tures. The presentation in its full form is to be
published in Atti della Accademia delle Scienze di
Torino [6]. To give a simple idea of different scales
in solids we refer to Gates et al. [11]: from 10~°m
(nanomechanics) over 10~° m (mesomechanics) and
103 m (micromechanics) to 10%m (structural me-
chanics).
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2 'THE FIELD EQUATIONS

The kinetic energy T of a microstructured body
is defined as a quadratic form in the velocities
r, dH, where r is the position vector describing
the macrostructure, dg is the director apt to pro-
vide a description of some properties of the mi-
crostructure as they act at the macroscopic level,
dot means derivative with respect to time ( while
the material point X is kept fixed, the notation
(+).; = 0(:)/8X7 will mean derivatives with respect
to the material coordinates X'. Here and in the fol-
lowing H,K,--- = 1,2,3....,n, where n depends
on the type of microstructure we want to model;
1,7 =1,2,3. T is a definite positive quadratic form.
Without any loss of generality, we can reduce it to
a diagonal form

= % (pf-HIHKdH.dK). (1)

where p is the mass density and I7K represents the
inertia form of the microstructure. If we deal with a
Lagrangian formulation, p and I are defined on the
reference configuration, hence they are functions of
X only.
Let us assume that the body admits a generalized
stored energy density
W =W(udg. duj, X). (2)
We can derive the field equations via the usual
variational principle, namely requiring that the mo-
tions of the body in a certain interval of time [tg, 1]
will make the energy functional
oty
e / (T—W —Wy)dvdt  (3)
to JB
stationary in comparison with all admissible mo-
tions. The Euler-Lagrange equations read

oW\ oW, dar
or; ), or  dt or’

4
ow B ow W, d T )
ady ; B dd g dd gy Tt adH '

In general, from a physical point of view, the mi-
crobody forces are different from the macrobody
forces, hence we can split W, in two parts:

W/'b — I/Vé!l‘d(,‘r()(r. X) + LV}?IiCI’O (dH. X) . (5)
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3 ONE DIMENSIONAL MODEL WITH HIERARCHI-
CAL MICROSTRUCTURE

We consider a one-dimensional microstructured
model with two different scale levels applied for the
microstructure. Instead of the two-scale elastic sys-
tem, containing both macro- and microstructures,
we introduce a material, which is supposed to be
a compound of a macrostructure, a first level mi-
crostructure and a second level microstructure at a
much smaller scale. The last may be interpreted as
a nanostructure, to some extent (see [3], [10], [14]).

In Figure 1 we give a sketch of the possible con-
figuration of a solid with two levels microstructures.

Figure 1: Two-levels microstructure

Therefore, following the model, we deal with
three different scalar functions: the one for the ma-
crostructure and two for the microstructures, one
for each scale level. The model of a material is
the one-dimensional manifold, and we consider the
material coordinates in space xr and in time ¢; and
the functions v = v(x,t) for the macrostructure,
v = p(z,t) and ¥ = ¢(z,t) respectively for the
first and the second scale level in microscale. The
macro body is supposed to be purely elastic, and
both the first and second level microstructures sat-
isfy the same generalized elasticity hypothesis as
well, therefore the existence of an internal strain
energy is assumed.

A particular choice of the strain energy function
W defines different nonlinear models, see [3]; in this
paper we consider it in the following form:

1 1. = 1
W= 501’3 + gﬁ“i + Arpvg + 531’152

1 1 1 i
+ 5(/'1 @2 + BosY + 3321112 + §Cz7¢’i~ (6)

This function is the generalization of the strain en-
ergy function for nonlinear elastic solids with one
microstructure level to our case, where the intro-
duction of the cubic term v3 represents the nonlin-
ear behaviour of the matrix.

The field equations can be derived as in [3] via a
variational principle:

Pt = QUzg + (BU2) 4+ A1s,
1197“ == Cl@fcm — Av, — BNﬁ — By,,
IQUtt = CZ’LQ:(:J: - A2‘p:p - BQwa

I

(7)
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where o, 3 and 4, B;, C; (i = 1, 2) denote material
constants.

To obtain the governing equation in dimension-
less form, it is necessary to introduce some suitable
paramcters and constants (sce [4]) and two differ-
ent parameters 9;, i = 1,2, characterizing the ratio
between the microstructure and the wave length L,
and €, accounting for small but finite elastic strain
magnitude:

6, = (I1/L)?,

where vg is the intensity of the initial excitation
and the values {; and [y represent the size of the
microstructural elements. Introducing the macros-
train v = v, (the term “strain” is used for brevity
only; in fact, it is the longitudinal displacement
gradient component, while expressions for genuine
strains are nonlinear with respect to ) and the di-
mensionless variables

6 = (Iz/L)°. c=wg<<1, (8)

X=z/L. T=(co/L)t (9)

and substituting them into the previous system, we
obtain the field equations. The slaving principle
[10] can now be used for further transformations.
This procedure allows us to write one function in
terms of the other; on this way we can obtain the
governing equation for the function u(z,t) only:

u = v/ vy,

Upy T QlUyx + (12(u2)xx + (O‘3uxx e (14u“.)xx

+ (a5u4x T AUy T O‘7u4'1‘)xx = 0, (10)

where the a; are constant cocfficients explicitely de-
fined in [4] and in the final remark of this section.

The equation (10) above may be considered as
a hierarchical equation in terms of u, where two
different levels of microstructure are expressed in
five different dispersive terms, and the higher order
terms contain the parameters of the second level of
microstructure.

We have obtained a 6th order PDE that is hardly
to be solved explicitly in general case. However, we
will find some exact travelling wave solutions of the
PDE (10), when the equation can be reformulated
in terms of the phase variable z = z & V{ in the
corresponding ODE and by means of the method
introduced by Samsonov in [17], upon the introduc-
tion of z and integration twice with corresponding
conditions at infinity |z| — o0 = u,u’ — 0 the field
equation may be rewritten as the nonlinear ODE of
the 4th order:

aM™) £ au £ py? 4+ cu =0, (11)
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where obviously:

a=(az+V3a4)/x;
b=a/x; ¢ = (au +V?)/x;
X = as + Viag + Viayg.

(12)

Following the method described in [17], the exact
solution to the ODE (11) in terms of elliptic func-
tions, containing only poles as the critical singular-
ities, has be found in the following form:

u=Mg®(x;92,93) + Sp (x;92,93) + K, (13)

where the coeflicients A, S, K and invariants g; of
the Weierstrass elliptic function g are defined in [4].

In the appropriate limit the Weierstrass elliptic
function p may be further reduced to the elliptic Ja-
cobi ¢n function and, in due course, to the bounded
solution ug in terms of cosh™2 function, i.e., to the
solitary wave solution, as follows:

up = s cosh™*(x) + ¢ cosh™2(x) + p;
—18928 4 3640a — 31a®

I e
52 +a
0= 3 ;s = —840/b,

which has a form of the so called “mexican hat”.
Figure 3 provides two graphical examples of the
solutions for different values of the parameter b.

e '/ ) N Wl ;
3 ‘“"
w8 1 b=13 e L
Figure 2: a = —8, b = —1.5 for the figure on

the left, a = —8, b = +1.5 for the figure on
the right.

Remark

The approach used to obtain these solutions is sim-
ilar to that introduced and grounded in [17], and
can be applied to explicitly solve different higher
order ODE, e.g., the 5th order KdV and the 5th
order mKdV equations.

4 CONCURRENT MICROSTRUCTURES

Instead of a hierarchy of microstructures, one can
be interested in concurrent microstructures, as in-
troduced in [1], namely in two, or more, microstruc-
tures which act at the same scale level and interact
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with the macrostructure as well, as illustrated in
Figure 3.

microstructure 1

microstructure 2

Figure 3: Concurrent microstructures

We can obtain the fields equations as done before
just introducing a different expression of the strain
energy function, for instance:

1 1 1
VV = 50[1.}_3 —+ 3,81’3 + Al(rva —+ AQ’(})’Ux + §B1(p2

1 1 1 ; -
+ 50195 + Ay + S Bay? + S0l (15)

where ¢ and ¢ denote the microstrains of the two
concurrent microstructures.
Hence the field equations read:

Pl = QUzg + B(v2)y — A1pz — Az,
[tht = Cl(rgm:c - AI(UCIT - B14,9 - ALZ)
IZwtt = CZwLLL - A2U;c s BQ¢ - ALI’J?

(16)

where «, A;, By, C;, A1s (i = 1,2) denote material
constants.

With the substitution vou = v, from (16); we
derive:

Al‘pxz - A2wm:1:-
(17)
Using the slaving principle at the first order ap-
proximation, namely, as done before, setting

2/ 2
PUoUL = QUQUgzy + ,B’bo (U )arz -

©=@o+01p1+...,

: (18)
Y =19+ 0%+ ...

we obtain from (16), as proved in [6], the 4th order
PDE:

Upp F iUy + 51 (u2)xx +01 ((Yiiuxx i (14/“'1"1‘)
= 07

XX

+ 62 (O‘Suxx + aﬁurr)xx (19)
where the cocflicients «; can be explicitly evalu-
ated in terms of the material constants appearing

in (16).
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Equation (19) is clearly different from (10), since
here we have two concurrent microstructures act-
ing at the same level, one is responsible of the term
31(...), the second one of the term da(...), but
in both cases the order of the derivatives is the
4th. In (10), as remarked, we have a hierarchy of
microstructures. at the first level corresponding to
4th order derivatives, the second level to 6th or-
der derivatives. The two terms d1(...) and &5(...)
are coupled through the coefficient A;5 which ap-
pears in both terms. Obviously, if A5 = 0, the
microstructures are independent and the two terms
are uncoupled.

Technically, the reason is that in the actual strain
energy function (15) does not appear the term
—Agp,y which is in (6), related to the hierarchy
of the microstructures in that case, while here we
have a “peer” coupling term A5,

Equation (19) is very similar with the DDE (3.16)
in Samsonov [17], the meaning of the coefficients
being obviously different. Hence we can follow the
same procedure. Introducing the phase variable
2 = x = V't we obtain the 4th order PDE

(VZ + al)u” -+ ﬁl(uz)n + 61 ((3(3 =+ V2044) UIV
+ 62 (a5 + V2ag)u'V = 0. (20)

By double integration and regrouping the last two
terms we obtain the 2nd order ODE

b1 (as + VZ2ay) + 62 (a5 + VZag) u!

+51(U2)+(V2+(1’1)U+CIZ+CQ:O. (21)

This equation can be formally written, with obvious
meaning of the cocfficients, as

u +b(u?) + cu+ 12+ = 0. (22)

Multiplying by u’ and integrating once more we
have

l(u’)2 = —lbu‘g - lcu2 —cou —c1(z + l,zQ)u +d.
2 3 2

(23)
In Samsonov [17], Chapter 3 one can find an ex-
tensive analysis of equations of this kind and we
can apply here his conclusions too, namely that by
means of an appropriate choice of the invariants
of the elliptic P-functions appearing in the Weier-
strass equation associated to (23) and appropriate
P-function limits in real axis, equation (23) can ad-
mit a discontinuous general travelling wave solution
that can be reduced to solitary wave and to cnoidal
wave solution.
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Indeed one can imagine higher order coupling
terms introducing in W products of derivatives of
and ¥, namely terms containing ¢, ¥, ¥,¢, L%z,
but for need of brevity we do not go further in this
direction.

5 CONCLUSIONS

The problem of the propagation of non linear waves
in solids with different internal structural scales is
studied. The general model developed in [3] and
[14] has been used. In the case of one microstruc-
ture a 6th order PDE is obtained and the hierarchy
of waves is clearly obtained. Using the same basic
model, the case of two concurrent microstructures
is studied and by means of the slaving principle one
can reach meaningful approximate equations.

This model takes in account interaction between
microstructures and macrostructure. We have de-
rived the model equations for single and multiple
scales and we have shown that we can obtain ana-
lytical solutions, but in many cases numerics are
needed. Such an approach demonstrates clearly
that complexity appears naturally in Continuum
Mechanics, when you deal with microstructures.
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